लेमोइन षट्भुज: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Type of cyclic hexagon}} | {{Short description|Type of cyclic hexagon}} | ||
[[File:Lemoine_Hexagon.svg|thumb|360px|लेमोइन षट्भुज, पहले लेमोइन वृत्त द्वारा परिचालित स्व-प्रतिच्छेदी संबद्धता के साथ प्रदर्शित किया गया है। ]][[ज्यामिति]] में, '''लेमोइन षट्भुज''' एक [[त्रिकोण|त्रिभुज]] के | [[File:Lemoine_Hexagon.svg|thumb|360px|लेमोइन षट्भुज, "पहले लेमोइन वृत्त" द्वारा परिचालित स्व-प्रतिच्छेदी संबद्धता के साथ प्रदर्शित किया गया है। ]][[ज्यामिति]] में, '''लेमोइन षट्भुज''' एक [[त्रिकोण|त्रिभुज]] के लम्बवत षट्भुज प्रतिच्छेदन बिन्दु द्वारा दिए गए शीर्ष के साथ एक [[चक्रीय बहुभुज|वृत्तीय षट्भुज]] है और तीन रेखाएं जो लम्बवत समानांतर होती हैं और उसके [[सिम्मेडियन बिंदु|उपमाध्य बिंदु]] से प्रतिच्छेदित होती हैं। [[षट्भुज]] की दो परिभाषाएँ हैं जो उस क्रम के आधार पर भिन्न होती हैं जिसमें शीर्ष सम्बद्ध होते हैं। | ||
== क्षेत्र और परिधि == | == क्षेत्र और परिधि == | ||
लेमोइन षट्भुज को दो प्रकार से परिभाषित किया जा सकता है पहले एक सरल षट्भुज के रूप में जो पहले परिभाषित किए गए प्रतिच्छेदन पर कोणों के साथ होता है। दूसरा एक स्व-प्रतिच्छेदी षट्भुज है जिसमें तीन | लेमोइन षट्भुज को दो प्रकार से परिभाषित किया जा सकता है पहले एक सरल षट्भुज के रूप में जो पहले परिभाषित किए गए प्रतिच्छेदन पर कोणों के साथ होता है। दूसरा एक स्व-प्रतिच्छेदी षट्भुज है जिसमें तीन रेखाएँ लम्बवत के रूप में उपमाध्य बिंदु से गुजरने वाली रेखाएँ होती हैं और अन्य तीन लम्बवत आसन्न कोणो के युग्म में सम्मिलित होती हैं। | ||
भुजाओं की लंबाई वाले त्रिभुज में खींचे गए सरल षट्भुज के लिए <math>a, b, c</math> और क्षेत्र <math>\Delta</math> परिधि द्वारा दिया गया है | भुजाओं की लंबाई वाले त्रिभुज में खींचे गए सरल षट्भुज के लिए <math>a, b, c</math> और क्षेत्र <math>\Delta</math> परिधि द्वारा दिया गया है | ||
Line 10: | Line 10: | ||
p = \frac{a^3+b^3+c^3+3abc}{a^2+b^2+c^2} | p = \frac{a^3+b^3+c^3+3abc}{a^2+b^2+c^2} | ||
</math> | </math> | ||
और | और क्षेत्रफल द्वारा | ||
:<math> | :<math> | ||
Line 20: | Line 20: | ||
p = \frac{\left( a+b+c\right) \left(ab+bc+ca\right)}{a^2+b^2+c^2} | p = \frac{\left( a+b+c\right) \left(ab+bc+ca\right)}{a^2+b^2+c^2} | ||
</math> | </math> | ||
और | और क्षेत्रफल द्वारा | ||
:<math> | :<math> | ||
Line 26: | Line 26: | ||
</math> | </math> | ||
== बाह्य वृत्त == | == बाह्य वृत्त == | ||
ज्यामिति में, [[पांच बिंदु एक शंकु निर्धारित करते हैं]] इसलिए छह बिंदुओं के अपेक्षाकृत समुच्चय समान्यतः एक शंकु खंड पर स्थित नहीं होते हैं | ज्यामिति में, [[पांच बिंदु एक शंकु निर्धारित करते हैं]] इसलिए छह बिंदुओं के अपेक्षाकृत समुच्चय समान्यतः एक शंकु खंड पर स्थित नहीं होते हैं यद्यपि लेमोइन षट्भुज (संबद्धता के किसी भी क्रम के साथ) एक चक्रीय बहुभुज है जिसका अर्थ है कि इसके सभी लम्बवत रेखाओ पर एक सामान्य वृत्त पर स्थित होता हैं। लेमोइन षट्भुज के परिवृत्त को "पहले लेमोइन वृत्त" के रूप में जाना जाता है। | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 08:53, 6 March 2023
ज्यामिति में, लेमोइन षट्भुज एक त्रिभुज के लम्बवत षट्भुज प्रतिच्छेदन बिन्दु द्वारा दिए गए शीर्ष के साथ एक वृत्तीय षट्भुज है और तीन रेखाएं जो लम्बवत समानांतर होती हैं और उसके उपमाध्य बिंदु से प्रतिच्छेदित होती हैं। षट्भुज की दो परिभाषाएँ हैं जो उस क्रम के आधार पर भिन्न होती हैं जिसमें शीर्ष सम्बद्ध होते हैं।
क्षेत्र और परिधि
लेमोइन षट्भुज को दो प्रकार से परिभाषित किया जा सकता है पहले एक सरल षट्भुज के रूप में जो पहले परिभाषित किए गए प्रतिच्छेदन पर कोणों के साथ होता है। दूसरा एक स्व-प्रतिच्छेदी षट्भुज है जिसमें तीन रेखाएँ लम्बवत के रूप में उपमाध्य बिंदु से गुजरने वाली रेखाएँ होती हैं और अन्य तीन लम्बवत आसन्न कोणो के युग्म में सम्मिलित होती हैं।
भुजाओं की लंबाई वाले त्रिभुज में खींचे गए सरल षट्भुज के लिए और क्षेत्र परिधि द्वारा दिया गया है
और क्षेत्रफल द्वारा
स्वयं प्रतिच्छेद करने वाले षट्भुज के लिए परिधि द्वारा दिया गया है
और क्षेत्रफल द्वारा
बाह्य वृत्त
ज्यामिति में, पांच बिंदु एक शंकु निर्धारित करते हैं इसलिए छह बिंदुओं के अपेक्षाकृत समुच्चय समान्यतः एक शंकु खंड पर स्थित नहीं होते हैं यद्यपि लेमोइन षट्भुज (संबद्धता के किसी भी क्रम के साथ) एक चक्रीय बहुभुज है जिसका अर्थ है कि इसके सभी लम्बवत रेखाओ पर एक सामान्य वृत्त पर स्थित होता हैं। लेमोइन षट्भुज के परिवृत्त को "पहले लेमोइन वृत्त" के रूप में जाना जाता है।
संदर्भ
- Casey, John (1888), "Lemoine's, Tucker's, and Taylor's Circles", A Sequel to the First Six Books of the Elements of Euclid, Containing an Easy Introduction to Modern Geometry with Numerous Examples (5th ed.), Dublin: Hodges, Figgis, & Co., pp. 179ff.
- Lemoine, É. (1874), "Sur quelques propriétés d'un point remarquable d'un triangle", Association francaise pour l'avancement des sciences, Congrès (002; 1873; Lyon) (in French), pp. 90–95
{{citation}}
: CS1 maint: unrecognized language (link). - Mackay, J. S. (1895), "Symmedians of a triangle and their concomitant circles", Proceedings of the Edinburgh Mathematical Society, 14: 37–103, doi:10.1017/S0013091500031758.