समबाहु बहुभुज: Difference between revisions
No edit summary |
No edit summary |
||
Line 12: | Line 12: | ||
एक [[स्पर्शरेखा बहुभुज]] (जिसकी सभी भुजाओं पर एक अंतवृत्त स्पर्शरेखा है) समबाहु है और एकांतर कोण बराबर हैं अर्थात्, कोण 1, 3, 5, ... बराबर हैं और कोण 2, 4, .. बराबर हैं। इस प्रकार यदि n भुजाओं की संख्या विषम है, तो एक स्पर्शरेखा बहुभुज समबाहु है यदि यह सम है।<ref>{{citation|last=De Villiers|first=Michael|title=Equi-angled cyclic and equilateral circumscribed polygons|journal=[[Mathematical Gazette]]|volume=95|date=March 2011|pages=102–107|doi=10.1017/S0025557200002461|url=http://frink.machighway.com/~dynamicm/equi-anglecyclicpoly.pdf}}.</ref> | एक [[स्पर्शरेखा बहुभुज]] (जिसकी सभी भुजाओं पर एक अंतवृत्त स्पर्शरेखा है) समबाहु है और एकांतर कोण बराबर हैं अर्थात्, कोण 1, 3, 5, ... बराबर हैं और कोण 2, 4, .. बराबर हैं। इस प्रकार यदि n भुजाओं की संख्या विषम है, तो एक स्पर्शरेखा बहुभुज समबाहु है यदि यह सम है।<ref>{{citation|last=De Villiers|first=Michael|title=Equi-angled cyclic and equilateral circumscribed polygons|journal=[[Mathematical Gazette]]|volume=95|date=March 2011|pages=102–107|doi=10.1017/S0025557200002461|url=http://frink.machighway.com/~dynamicm/equi-anglecyclicpoly.pdf}}.</ref> | ||
== लम्बाई == | == लम्बाई == | ||
विवियन की प्रमेय समबाहु बहुभुजों के लिए सामान्यीकरण करती है<ref>{{citation|last=De Villiers|first=Michael|title=An illustration of the explanatory and discovery functions of proof|journal=[[Leonardo (journal)|Leonardo]]|year=2012|volume=33|issue=3|pages=1–8|doi=10.4102/pythagoras.v33i3.193|url=http://www.pythagoras.org.za/index.php/pythagoras/article/view/193/228|quote=explaining (proving) Viviani’s theorem for an equilateral triangle by determining the area of the three triangles it is divided up into, and noticing the ‘common factor’ of the equal sides of these triangles as bases, may allow one to immediately see that the result generalises to any equilateral polygon|doi-access=free}}.</ref> एक आंतरिक बिंदु से समबाहु बहुभुज की भुजाओं तक लंबवत दूरियों का योग आंतरिक बिंदु के स्थान से स्वतंत्र होता है। | विवियन की प्रमेय समबाहु बहुभुजों के लिए सामान्यीकरण करती है<ref>{{citation|last=De Villiers|first=Michael|title=An illustration of the explanatory and discovery functions of proof|journal=[[Leonardo (journal)|Leonardo]]|year=2012|volume=33|issue=3|pages=1–8|doi=10.4102/pythagoras.v33i3.193|url=http://www.pythagoras.org.za/index.php/pythagoras/article/view/193/228|quote=explaining (proving) Viviani’s theorem for an equilateral triangle by determining the area of the three triangles it is divided up into, and noticing the ‘common factor’ of the equal sides of these triangles as bases, may allow one to immediately see that the result generalises to any equilateral polygon|doi-access=free}}.</ref> कि एक आंतरिक बिंदु से समबाहु बहुभुज की भुजाओं तक लंबवत दूरियों का योग आंतरिक बिंदु के स्थान से स्वतंत्र होता है। | ||
एक [[षट्भुज]] के प्रत्येक प्रमुख विकर्ण षट्भुज को चतुर्भुजों में विभाजित करते हैं। उभयनिष्ठ भुजा a वाले किसी उत्तल समबाहु षट्भुज में, एक मुख्य विकर्ण ''d''<sub>1</sub> सम्मिलित होता है जैसे कि<ref name=Crux>''Inequalities proposed in “[[Crux Mathematicorum]]”'', [http://www.imomath.com/othercomp/Journ/ineq.pdf], p.184,#286.3.</ref> | एक [[षट्भुज]] के प्रत्येक प्रमुख विकर्ण षट्भुज को चतुर्भुजों में विभाजित करते हैं। उभयनिष्ठ भुजा a वाले किसी उत्तल समबाहु षट्भुज में, एक मुख्य विकर्ण ''d''<sub>1</sub> सम्मिलित होता है जैसे कि<ref name=Crux>''Inequalities proposed in “[[Crux Mathematicorum]]”'', [http://www.imomath.com/othercomp/Journ/ineq.pdf], p.184,#286.3.</ref> | ||
Line 22: | Line 22: | ||
== इष्टतमता == | == इष्टतमता == | ||
{{main| रीनहार्ड्ट बहुभुज}} | {{main| रीनहार्ड्ट बहुभुज}} | ||
[[File:Reinhardt 15-gons.svg|thumb|चार रेनहार्ड्ट पेंटाडेकागॉन]]जब एक समबाहु बहुभुज को [[रेलेक्स बहुभुज]] में अंकित किया जाता है, तो यह एक [[रेनहार्ड्ट बहुभुज]] बनाता है। भुजाओं की समान संख्या वाले सभी उत्तल बहुभुजों में, इन बहुभुजों के [[व्यास]] के लिए सबसे बड़ा संभावित [[परिमाप]] होता है और उनके व्यास के लिए सबसे बड़ी संभव चौड़ाई उनके परिमाप के लिए सबसे बड़ी संभव चौड़ाई होती है।<ref>{{citation | [[File:Reinhardt 15-gons.svg|thumb|चार रेनहार्ड्ट पेंटाडेकागॉन]]जब एक समबाहु बहुभुज को [[रेलेक्स बहुभुज]] में अंकित किया जाता है, तो यह एक [[रेनहार्ड्ट बहुभुज|रीनहार्ड्ट बहुभुज]] बनाता है। भुजाओं की समान संख्या वाले सभी उत्तल बहुभुजों में, इन बहुभुजों के [[व्यास]] के लिए सबसे बड़ा संभावित [[परिमाप]] होता है और उनके व्यास के लिए सबसे बड़ी संभव चौड़ाई उनके परिमाप के लिए सबसे बड़ी संभव चौड़ाई होती है।<ref>{{citation | ||
| last1 = Hare | first1 = Kevin G. | | last1 = Hare | first1 = Kevin G. | ||
| last2 = Mossinghoff | first2 = Michael J. | | last2 = Mossinghoff | first2 = Michael J. |
Revision as of 09:06, 6 March 2023
This article needs additional citations for verification. (August 2012) (Learn how and when to remove this template message) |
ज्यामिति में, एक समबाहु बहुभुज एक ऐसा बहुभुज होता है जिसकी सभी भुजाएँ समान लंबाई की होती हैं। त्रिभुज को छोड़कर, एक समबाहु बहुभुज को समकोणीय होने की भी आवश्यकता नहीं है इसमे सभी कोण समान होते हैं, लेकिन यदि ऐसा होता है तो यह एक सम बहुभुज है। यदि भुजाओं की संख्या कम से कम पाँच है, तो एक समबाहु बहुभुज को अवमुख या उत्तल बहुभुज होने की आवश्यकता नहीं होती है तब यह अवतल बहुभुज या स्व-प्रतिच्छेदी भी हो सकता है।
उदाहरण
सभी सम बहुभुज और सकर्मक बहुभुज समबाहु होते हैं। जब एक समबाहु बहुभुज अविनिमय (इसके शीर्ष एक वृत्त पर होते हैं) और चक्रीय बहुभुज होता है और सभी सम या एक समबाहु चतुर्भुज उत्तल होता है तो यह बहुभुज एक समचतुर्भुज (संभवतः एक वर्ग) होता है।
एक उत्तल समबाहु पंचभुज को निरंतर दो कोणों द्वारा वर्णित किया जा सकता है, जो एक साथ अन्य कोणों को निर्धारित करते हैं। हालाँकि, समबाहु पंचकोण और पाँच से अधिक भुजाओं वाले समबाहु बहुभुज भी अवतल हो सकते हैं और यदि अवतल पंचकोणों की स्वीकृति है तो दो कोण पंचकोण के आकार को निर्धारित करने के लिए पर्याप्त नहीं होते हैं।
एक स्पर्शरेखा बहुभुज (जिसकी सभी भुजाओं पर एक अंतवृत्त स्पर्शरेखा है) समबाहु है और एकांतर कोण बराबर हैं अर्थात्, कोण 1, 3, 5, ... बराबर हैं और कोण 2, 4, .. बराबर हैं। इस प्रकार यदि n भुजाओं की संख्या विषम है, तो एक स्पर्शरेखा बहुभुज समबाहु है यदि यह सम है।[1]
लम्बाई
विवियन की प्रमेय समबाहु बहुभुजों के लिए सामान्यीकरण करती है[2] कि एक आंतरिक बिंदु से समबाहु बहुभुज की भुजाओं तक लंबवत दूरियों का योग आंतरिक बिंदु के स्थान से स्वतंत्र होता है।
एक षट्भुज के प्रत्येक प्रमुख विकर्ण षट्भुज को चतुर्भुजों में विभाजित करते हैं। उभयनिष्ठ भुजा a वाले किसी उत्तल समबाहु षट्भुज में, एक मुख्य विकर्ण d1 सम्मिलित होता है जैसे कि[3]
और एक मुख्य विकर्ण d2 जैसे कि
- .
इष्टतमता
जब एक समबाहु बहुभुज को रेलेक्स बहुभुज में अंकित किया जाता है, तो यह एक रीनहार्ड्ट बहुभुज बनाता है। भुजाओं की समान संख्या वाले सभी उत्तल बहुभुजों में, इन बहुभुजों के व्यास के लिए सबसे बड़ा संभावित परिमाप होता है और उनके व्यास के लिए सबसे बड़ी संभव चौड़ाई उनके परिमाप के लिए सबसे बड़ी संभव चौड़ाई होती है।[4]
संदर्भ
- ↑ De Villiers, Michael (March 2011), "Equi-angled cyclic and equilateral circumscribed polygons" (PDF), Mathematical Gazette, 95: 102–107, doi:10.1017/S0025557200002461.
- ↑ De Villiers, Michael (2012), "An illustration of the explanatory and discovery functions of proof", Leonardo, 33 (3): 1–8, doi:10.4102/pythagoras.v33i3.193,
explaining (proving) Viviani's theorem for an equilateral triangle by determining the area of the three triangles it is divided up into, and noticing the 'common factor' of the equal sides of these triangles as bases, may allow one to immediately see that the result generalises to any equilateral polygon
. - ↑ Inequalities proposed in “Crux Mathematicorum”, [1], p.184,#286.3.
- ↑ Hare, Kevin G.; Mossinghoff, Michael J. (2019), "Most Reinhardt polygons are sporadic", Geometriae Dedicata, 198: 1–18, arXiv:1405.5233, doi:10.1007/s10711-018-0326-5, MR 3933447, S2CID 119629098
बाहरी संबंध
- Media related to Equilateral polygons at Wikimedia Commons
- Equilateral triangle With interactive animation
- A Property of Equiangular Polygons: What Is It About? a discussion of Viviani's theorem at Cut-the-knot.