संरचनात्मक समीकरण मॉडलिंग: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Form of causal modeling that fit networks of constructs to data}} {{for|the journal|Structural Equation Modeling (journal)}} File:Example Structural equ...")
 
No edit summary
Line 52: Line 52:
=== मुक्त मापदंडों का अनुमान ===
=== मुक्त मापदंडों का अनुमान ===
पैरामीटर अनुमान वास्तविक सहप्रसरण मैट्रिक्स की तुलना करके किया जाता है जो चर और सर्वोत्तम फिटिंग मॉडल के अनुमानित सहप्रसरण मैट्रिक्स के बीच संबंधों का प्रतिनिधित्व करता है। यह अपेक्षा-अधिकतमकरण एल्गोरिथ्म के माध्यम से संख्यात्मक अधिकतमकरण के माध्यम से प्राप्त किया जाता है। अपेक्षा-अधिकतम मानदंड का अधिकतमकरण जैसा कि अधिकतम संभावना अनुमान, [[अर्ध-अधिकतम संभावना]] अनुमान, भारित कम से कम वर्ग या असमान रूप से वितरण-मुक्त विधियों द्वारा प्रदान किया जाता है। यह अक्सर एक विशेष एसईएम विश्लेषण कार्यक्रम का उपयोग करके पूरा किया जाता है, जिनमें से कई मौजूद हैं।
पैरामीटर अनुमान वास्तविक सहप्रसरण मैट्रिक्स की तुलना करके किया जाता है जो चर और सर्वोत्तम फिटिंग मॉडल के अनुमानित सहप्रसरण मैट्रिक्स के बीच संबंधों का प्रतिनिधित्व करता है। यह अपेक्षा-अधिकतमकरण एल्गोरिथ्म के माध्यम से संख्यात्मक अधिकतमकरण के माध्यम से प्राप्त किया जाता है। अपेक्षा-अधिकतम मानदंड का अधिकतमकरण जैसा कि अधिकतम संभावना अनुमान, [[अर्ध-अधिकतम संभावना]] अनुमान, भारित कम से कम वर्ग या असमान रूप से वितरण-मुक्त विधियों द्वारा प्रदान किया जाता है। यह अक्सर एक विशेष एसईएम विश्लेषण कार्यक्रम का उपयोग करके पूरा किया जाता है, जिनमें से कई मौजूद हैं।
<!--
 
such as SPSS' [http://www.spss.com/amos AMOS], [http://www.mvsoft.com/eqs60.htm EQS], [[LISREL]], [http://www.statmodel.com/features.shtml Mplus], [http://www.vcu.edu/mx/ Mx], the [http://socserv.mcmaster.ca/jfox/Misc/sem/index.html sem] package in [http://www.r-project.org/  R], or [http://v8doc.sas.com/sashtml/stat/chap19/sect5.htm SAS PROC CALIS] (more information on SAS PROC CALIS: see [http://www.ats.ucla.edu/stat/sas/library/proc_calis.htm UCLA] or [http://faculty.ucr.edu/~hanneman/soc203b/examples/calis.htm UCR]). -->




=== मॉडल और मॉडल फिट का मूल्यांकन ===
=== मॉडल और मॉडल फिट का मूल्यांकन ===
{{More citations needed section|date=February 2019}}
एक मॉडल का अनुमान लगाने के बाद, विश्लेषक मॉडल की व्याख्या करना चाहेंगे। अनुमानित पथों को पथ मॉडल के रूप में सारणीबद्ध और/या रेखांकन के रूप में प्रस्तुत किया जा सकता है। पथ विश्लेषण (सांख्यिकी)#पथ अनुरेखण नियमों (पथ विश्लेषण (सांख्यिकी) देखें) का उपयोग करके चरों के प्रभाव का आकलन किया जाता है।
एक मॉडल का अनुमान लगाने के बाद, विश्लेषक मॉडल की व्याख्या करना चाहेंगे। अनुमानित पथों को पथ मॉडल के रूप में सारणीबद्ध और/या रेखांकन के रूप में प्रस्तुत किया जा सकता है। पथ विश्लेषण (सांख्यिकी)#पथ अनुरेखण नियमों (पथ विश्लेषण (सांख्यिकी) देखें) का उपयोग करके चरों के प्रभाव का आकलन किया जाता है।



Revision as of 23:34, 1 March 2023

An example structural equation model
चित्र 1. आकलन के बाद एक उदाहरण संरचनात्मक समीकरण मॉडल। अव्यक्त चर सामान्य रूप से अंडाकार के साथ दर्शाए जाते हैं और देखे गए चर आयतों में दिखाए जाते हैं। अवशिष्ट और प्रसरण दो सिरों वाले तीरों (यहां दिखाए गए) या एकल तीरों और एक वृत्त (यहां उपयोग नहीं किए गए) के रूप में खींचे गए हैं। मॉडल को पैमाना प्रदान करने के लिए अव्यक्त IQ विचरण 1 पर तय किया गया है। चित्र 1 गुप्त बुद्धि के प्रत्येक संकेतक और गुप्त उपलब्धि के प्रत्येक संकेतक को प्रभावित करने वाली माप त्रुटियों को दर्शाता है। न तो संकेतकों और न ही संकेतकों की माप त्रुटियों को अव्यक्त चरों को प्रभावित करने के रूप में प्रतिरूपित किया जाता है, लेकिन यदि शोधकर्ता उन्हें मॉडल करने का विकल्प चुनते हैं तो वे ऐसा कर सकते हैं।
An example structural equation model pre-estimation
चित्र 2. आकलन से पहले एक उदाहरण संरचनात्मक समीकरण मॉडल। चित्र 1 के समान लेकिन मानकीकृत मूल्यों और कम वस्तुओं के बिना। क्योंकि बुद्धि और अकादमिक प्रदर्शन केवल कल्पना या सिद्धांत-पोस्ट किए गए चर हैं, उनके सटीक पैमाने के मूल्य अज्ञात हैं, हालांकि मॉडल निर्दिष्ट करता है कि प्रत्येक अव्यक्त चर के मूल्यों को संकेतकों में से एक के पास देखे जाने योग्य पैमाने के साथ कहीं गिरना चाहिए। एक अव्यक्त को एक संकेतक से जोड़ने वाला 1.0 प्रभाव निर्दिष्ट करता है कि प्रत्येक वास्तविक इकाई में अव्यक्त चर के मूल्य में वृद्धि या कमी के परिणामस्वरूप एक संबंधित इकाई में वृद्धि या संकेतक के मूल्य में कमी होती है। यह आशा की जाती है कि प्रत्येक अव्यक्त के लिए एक अच्छा संकेतक चुना गया है, लेकिन 1.0 मान सही माप का संकेत नहीं देते हैं क्योंकि यह मॉडल यह भी बताता है कि अन्य अनिर्दिष्ट संस्थाएं हैं जो प्रेक्षित संकेतक मापों को कारणात्मक रूप से प्रभावित करती हैं, जिससे माप त्रुटि का परिचय मिलता है। यह मॉडल बताता है कि अलग-अलग माप त्रुटियां गुप्त बुद्धि के दो संकेतकों में से प्रत्येक को प्रभावित करती हैं, और गुप्त उपलब्धि के प्रत्येक संकेतक को प्रभावित करती हैं। अकादमिक प्रदर्शन की ओर इशारा करते हुए बिना लेबल वाला तीर स्वीकार करता है कि बुद्धिमत्ता के अलावा अन्य चीजें भी अकादमिक प्रदर्शन को प्रभावित कर सकती हैं।

स्ट्रक्चरल इक्वेशन मॉडलिंग (SEM) वैज्ञानिकों द्वारा प्रयोग किए जाने वाले तरीकों के विविध सेट के लिए एक लेबल है, जो विज्ञान में प्रयोगात्मक और अवलोकन अनुसंधान दोनों में उपयोग किया जाता है,[1]व्यवसाय,[2] और अन्य क्षेत्र। इसका उपयोग सामाजिक और व्यवहार विज्ञान में सबसे अधिक किया जाता है। अत्यधिक तकनीकी भाषा के संदर्भ के बिना SEM की परिभाषा कठिन है, लेकिन एक अच्छी शुरुआत का स्थान नाम ही है।

SEM में एक नमूना का निर्माण शामिल है, यह दर्शाने के लिए कि कैसे एक अवलोकनीय या सैद्धांतिक घटना के विभिन्न पहलुओं को एक दूसरे से संरचनात्मक रूप से संबंधित कार्य-कारण माना जाता है। मॉडल के संरचना पहलू का तात्पर्य उन चरों के बीच सैद्धांतिक संघों से है जो जांच के तहत घटना का प्रतिनिधित्व करते हैं। अनुमानित कारण संरचना को अक्सर चर के बीच कारण कनेक्शन का प्रतिनिधित्व करने वाले तीरों के साथ चित्रित किया जाता है (जैसा कि आंकड़े 1 और 2 में) लेकिन इन कारण कनेक्शनों को समान रूप से समीकरणों के रूप में दर्शाया जा सकता है। कारण संरचनाओं का अर्थ है कि कनेक्शन के विशिष्ट पैटर्न चर के मूल्यों के बीच दिखाई देने चाहिए, और चर के मूल्यों के बीच देखे गए कनेक्शन का उपयोग कारण प्रभाव के परिमाण का अनुमान लगाने के लिए किया जाता है, और यह जांचने के लिए कि क्या मनाया गया डेटा संगत है या नहीं अनुमानित कारण संरचना। SEM में समीकरण गणित और सांख्यिकी गुण हैं जो मॉडल और इसकी संरचनात्मक विशेषताओं द्वारा निहित हैं, और फिर प्रायोगिक या अवलोकन संबंधी डेटा पर चलने वाले सांख्यिकीय एल्गोरिदम (आमतौर पर मैट्रिक्स कैलकुलस और सामान्यीकृत रैखिक मॉडल पर आधारित) के साथ अनुमानित हैं।

एक संरचनात्मक समीकरण मॉडल क्या है और क्या नहीं है, के बीच की सीमा हमेशा स्पष्ट नहीं होती है, लेकिन एसई मॉडल में अक्सर अव्यक्त चर के एक सेट के बीच अनुमानित कारण कनेक्शन होते हैं (वैरिएबल मौजूद होते हैं लेकिन जिन्हें सीधे नहीं देखा जा सकता है) और पोस्ट किए गए को जोड़ने वाले कारण कनेक्शन अव्यक्त चर से वेरिएबल्स जिन्हें देखा जा सकता है और जिनके मान कुछ डेटा सेट में उपलब्ध हैं। अव्यक्त कारण कनेक्शन की शैलियों के बीच भिन्नता, अव्यक्त चर को मापने वाले प्रेक्षित चर के बीच भिन्नता, और सांख्यिकीय अनुमान रणनीतियों में भिन्नता के परिणामस्वरूप SEM टूलकिट में पुष्टि कारक विश्लेषण, पुष्टिकरण समग्र विश्लेषण, पथ विश्लेषण (सांख्यिकी), बहु-समूह मॉडलिंग शामिल हैं। , अनुदैर्ध्य मॉडलिंग, आंशिक न्यूनतम वर्ग पथ मॉडलिंग, अव्यक्त विकास मॉडलिंग और श्रेणीबद्ध या बहुस्तरीय मॉडलिंग।[3][4][5] SEM का उपयोग आमतौर पर उचित है क्योंकि यह उन अव्यक्त चरों की पहचान करने में मदद करता है जिनके बारे में माना जाता है कि वे मौजूद हैं, लेकिन उन्हें सीधे तौर पर नहीं देखा जा सकता है (जैसे एक रवैया, बुद्धि या मानसिक बीमारी)। हालांकि एसईएम क्या है और क्या नहीं है, इसकी हमेशा स्पष्ट सीमाएं नहीं होती हैं,[6] इसमें आम तौर पर पथ मॉडल शामिल होते हैं (पथ विश्लेषण (सांख्यिकी) भी देखें) और माप मॉडल (कारक विश्लेषण भी देखें) और देखे गए डेटा से लिए गए वास्तविक चर के अंतर्निहित अंतर्निहित चर के बीच संरचनात्मक कनेक्शन की जांच करने के लिए हमेशा सांख्यिकीय मॉडल और कंप्यूटर प्रोग्राम को नियोजित करते हैं।[3] SEM का उपयोग करने वाले शोधकर्ता प्रत्येक मॉडल किए गए तीर (उदाहरण के लिए चित्र 1 में दिखाए गए नंबर) के लिए एक गुणांक की ताकत और संकेत का अनुमान लगाने के लिए सॉफ्टवेयर प्रोग्राम का उपयोग करते हैं, और डायग्नोस्टिक सुराग प्रदान करने के लिए सुझाव देते हैं कि कौन से संकेतक या मॉडल घटक के बीच असंगतता पैदा कर सकते हैं। मॉडल और डेटा। एसईएम विधियों की आलोचना गणितीय सूत्रीकरण समस्याओं, बाहरी वैधता स्थापित किए बिना मॉडल को स्वीकार करने की प्रवृत्ति और संभावित दार्शनिक पूर्वाग्रह की ओर इशारा करती है। रेफरी>Tarka, Piotr (2017). "संरचनात्मक समीकरण मॉडलिंग का अवलोकन: सामाजिक विज्ञान में इसकी शुरुआत, ऐतिहासिक विकास, उपयोगिता और विवाद". Quality & Quantity. 52 (1): 313–54. doi:10.1007/s11135-017-0469-8. PMC 5794813. PMID 29416184.</ref>

एक SEM सुझाव देता है कि बुद्धि (जैसा कि चार प्रश्नों द्वारा मापा जाता है) अकादमिक प्रदर्शन की भविष्यवाणी कर सकता है (जैसा कि SAT, ACT, और हाई स्कूल GPA द्वारा मापा जाता है) चित्र 1 में दिखाया गया है। मानव बुद्धि की अवधारणा को सीधे उस तरह से नहीं मापा जा सकता है जिससे कोई व्यक्ति ऊंचाई या वजन मापें। इसके बजाय, शोधकर्ताओं के पास बुद्धि का एक सिद्धांत और अवधारणा है और फिर एक प्रश्नावली या परीक्षण जैसे माप उपकरणों को डिजाइन करते हैं जो उन्हें बुद्धि के कई संकेतक प्रदान करते हैं। इन संकेतकों को तब एक मॉडल में संयोजित किया जाता है ताकि संकेतकों से एक अव्यक्त चर (चित्र 1 में बुद्धि के लिए वृत्त) के रूप में बुद्धिमत्ता को मापने का एक प्रशंसनीय तरीका बनाया जा सके (चित्र 1 में स्केल 1-4 के साथ वर्गाकार बक्से)।[7]चित्र 1 को अंतिम मॉडल के रूप में प्रस्तुत किया गया है, इसे चलाने और सभी अनुमानों (तीरों पर संख्या) प्राप्त करने के बाद। SEMs का प्रतिनिधित्व करने के लिए सबसे अच्छे प्रतीकात्मक संकेतन पर कोई सहमति नहीं है, उदाहरण के लिए चित्र 2 चित्र 1 के समान मॉडल का प्रतिनिधित्व करता है, बिना कई तीरों के और एक प्रारूप में जो मॉडल को चलाने से पहले हो सकता है।

एसईएम का एक बड़ा फायदा यह है कि ये सभी माप और परीक्षण एक साथ एक सांख्यिकीय अनुमान प्रक्रिया में होते हैं, जहां मॉडल से सभी जानकारी का उपयोग करके पूरे मॉडल में त्रुटियों की गणना की जाती है। इसका मतलब यह है कि त्रुटियां अधिक सटीक हैं यदि एक शोधकर्ता को मॉडल के प्रत्येक भाग की अलग-अलग गणना करनी है।[8]

इतिहास

स्ट्रक्चरल इक्वेशन मॉडलिंग (SEM) की जड़ें सेवेल राइट के काम में हैं, जिन्होंने जनसंख्या आनुवंशिकी में देखे गए चर के प्रत्यक्ष और अप्रत्यक्ष प्रभावों के आधार पर प्रतिगमन समीकरणों के लिए स्पष्ट कारण व्याख्याएं लागू कीं।[9][10] ली एम. वोल्फले ने सिवाल राइट की पथ गुणांक पद्धति का एक व्याख्यात्मक ग्रंथसूची इतिहास संकलित किया जिसे आज हम पथ विश्लेषण (सांख्यिकी) के रूप में जानते हैं।[11] राइट ने परिणाम की भविष्यवाणी करने के लिए प्रतिगमन का उपयोग करने के मानक अभ्यास में दो महत्वपूर्ण तत्व जोड़े। ये थे (1) एक से अधिक समाश्रयण समीकरणों की जानकारी को संयोजित करने के लिए (2) प्रतिगमन प्रतिगमन के लिए केवल पूर्वानुमान के बजाय एक कारणात्मक दृष्टिकोण का उपयोग करना। सीवेल राइट ने अपने 1934 के लेख द मेथड ऑफ पाथ कोएफिशिएंट्स में पथ विश्लेषण की अपनी पद्धति को समेकित किया।[12] ओटिस डुडले डंकन ने 1975 में SEM को सामाजिक विज्ञान में पेश किया[13] और यह 1970 और 80 के दशक में खूब फला-फूला। मनोविज्ञान, समाजशास्त्र और अर्थशास्त्र में विकसित विभिन्न अभी तक गणितीय रूप से संबंधित मॉडलिंग दृष्टिकोण। इनमें से दो विकासात्मक धाराओं (मनोविज्ञान से कारक विश्लेषण, और डंकन के माध्यम से समाजशास्त्र से पथ विश्लेषण) के अभिसरण ने SEM के वर्तमान कोर का उत्पादन किया, हालांकि एक साथ समीकरणों और बहिर्जात (कारण चर) को नियोजित करने वाले अर्थमितीय प्रथाओं के साथ बहुत अधिक ओवरलैप है।[14][15]

1970 के दशक की शुरुआत में एजुकेशनल टेस्टिंग सर्विसेज (LISREL) में विकसित कई कार्यक्रमों में से एक कार्ल गुस्ताव जोरेस्कॉग पथ-विश्लेषण-शैली समीकरणों (जो समाजशास्त्रियों को राइट और डंकन से विरासत में मिला था) के भीतर अंतर्निहित अव्यक्त चर (जिसे मनोवैज्ञानिक कारक विश्लेषण से अव्यक्त कारकों के रूप में जानते थे) ).[16] मॉडल के कारक-संरचित हिस्से में माप त्रुटियां शामिल थीं और इस प्रकार अव्यक्त चरों को जोड़ने वाले प्रभावों के माप-त्रुटि-समायोजित अनुमान की अनुमति दी गई थी।

तरीकों में कमजोरियों को अस्पष्ट करने के लिए ढीली और भ्रामक शब्दावली का उपयोग किया गया है। विशेष रूप से, PLS-PA (जिसे PLS-PM के रूप में भी जाना जाता है) को आंशिक न्यूनतम वर्ग प्रतिगमन PLSR के साथ मिला दिया गया है, जो साधारण न्यूनतम वर्ग प्रतिगमन का विकल्प है और इसका पथ विश्लेषण से कोई लेना-देना नहीं है। पीएलएस-पीए को गलत तरीके से एक विधि के रूप में प्रचारित किया गया है जो छोटे डेटासेट के साथ काम करता है जब अन्य अनुमान विफल हो जाते हैं; वास्तव में, यह दिखाया गया है कि इस पद्धति के लिए न्यूनतम आवश्यक नमूना आकार कई प्रतिगमन में आवश्यक के अनुरूप हैं।[17] LISREL और PLS-PA दोनों की परिकल्पना पुनरावृत्त कंप्यूटर एल्गोरिदम के रूप में की गई थी, जिसमें शुरू से ही एक सुलभ ग्राफिकल और डेटा प्रविष्टि इंटरफ़ेस बनाने और राइट के (1921) पथ विश्लेषण के विस्तार पर जोर दिया गया था। अर्ली काउल्स फाउंडेशन, कोपमैन एंड हूड्स (1953) के एल्गोरिदम पर परिवहन अर्थशास्त्र और इष्टतम रूटिंग से अधिकतम संभावना अनुमान, और क्लोज्ड फॉर्म बीजगणितीय गणनाओं पर केंद्रित एक साथ समीकरण मॉडल अनुमान पर काम करता है, क्योंकि पुनरावृत्त समाधान खोज तकनीक कंप्यूटर से पहले के दिनों में सीमित थी।

एंडरसन और रुबिन (1949, 1950) ने एकल संरचनात्मक समीकरण के मापदंडों के लिए सीमित जानकारी अधिकतम संभावना अनुमानक विकसित किया, जिसमें अप्रत्यक्ष रूप से दो-चरण न्यूनतम वर्ग अनुमानक और इसके स्पर्शोन्मुख वितरण (एंडरसन, 2005) (फेयरब्रदर, 1999) शामिल थे। हेनरी थेल (1953a, 1953b, 1961) द्वारा पेश किए गए रैखिक युगपत समीकरणों की प्रणाली में एकल संरचनात्मक समीकरण के मापदंडों का अनुमान लगाने की एक विधि के रूप में दो-चरण कम से कम वर्गों को मूल रूप से प्रस्तावित किया गया था और रॉबर्ट बसमैन (1957) द्वारा कमोबेश स्वतंत्र रूप से पेश किया गया था। ) और सरगन टेनिस (1958)। एंडरसन की सीमित जानकारी की अधिकतम संभावना का अनुमान अंततः एक खोज एल्गोरिथ्म में लागू किया गया था, जहां यह अन्य पुनरावृत्त SEM एल्गोरिदम के साथ प्रतिस्पर्धा करता था। इनमें से, 1960 के दशक और 1970 के दशक की शुरुआत में दो-चरण न्यूनतम वर्ग अब तक सबसे व्यापक रूप से इस्तेमाल की जाने वाली विधि थी।

1950 के दशक से काउल्स आयोग में प्रतिगमन समीकरण दृष्टिकोण की प्रणालियाँ विकसित की गईं, जो तजालिंग कोपमैन्स के परिवहन मॉडलिंग का विस्तार करती हैं। सीवेल राइट और अन्य सांख्यिकीविदों ने काउल्स (तब शिकागो विश्वविद्यालय में) में पथ विश्लेषण विधियों को बढ़ावा देने का प्रयास किया। शिकागो विश्वविद्यालय के सांख्यिकीविदों ने सामाजिक विज्ञानों के पथ विश्लेषण अनुप्रयोगों के साथ कई दोषों की पहचान की; दोष जो राइट के संदर्भ में जीन संचरण की पहचान करने के लिए महत्वपूर्ण समस्याएँ पैदा नहीं करते थे, लेकिन जिन्होंने सामाजिक विज्ञानों में PLS-PA और LISREL जैसी पथ विधियों को समस्याग्रस्त बना दिया। फ्रीडमैन (1987) ने पथ विश्लेषण में इन आपत्तियों को संक्षेप में प्रस्तुत किया: सामाजिक विज्ञानों में मात्रात्मक तरीकों के आसपास संदेह और भ्रम के मुख्य कारणों में से एक कारण धारणाओं, सांख्यिकीय निहितार्थों और नीतिगत दावों के बीच अंतर करने में विफलता रही है (वोल्ड्स (1987) भी देखें) जवाब)। राइट के पथ विश्लेषण ने अमेरिकी अर्थमितिविदों के बीच कभी भी बड़ा अनुसरण नहीं किया, लेकिन हरमन वॉल्ड और उनके छात्र कार्ल गुस्ताव जोरेस्कोग को प्रभावित करने में सफल रहे। जोरेस्कोग के छात्र क्लेस फोर्नेल ने अमेरिका में एलआईएसआरएल को बढ़ावा दिया।

कंप्यूटर में प्रगति ने नौसिखियों के लिए जटिल, असंरचित समस्याओं में बड़े डेटासेट के कंप्यूटर-गहन विश्लेषण में संरचनात्मक समीकरण विधियों को लागू करना आसान बना दिया। सबसे लोकप्रिय समाधान तकनीकें एल्गोरिदम के तीन वर्गों में आती हैं: (1) सामान्य न्यूनतम वर्ग एल्गोरिदम प्रत्येक पथ पर स्वतंत्र रूप से लागू होते हैं, जैसे तथाकथित पीएलएस पथ विश्लेषण पैकेज में लागू होते हैं जो ओएलएस के साथ अनुमान लगाते हैं; (2) वोल्ड और उनके छात्र कार्ल जोरेस्कॉग द्वारा एलआईएसआरएल, एएमओएस और ईक्यूएस में लागू किए गए मौलिक कार्य से विकसित सहप्रसरण विश्लेषण एल्गोरिदम; और (3) एक साथ समीकरण प्रतिगमन एल्गोरिदम काउल्स आयोग में तजालिंग कोपमैन्स द्वारा विकसित किया गया।

मोती[18]SEM को रैखिक से गैर पैरामीट्रिक मॉडल तक विस्तारित किया है, और समीकरणों के कारण और प्रतितथ्यात्मक व्याख्याओं का प्रस्ताव दिया है। उदाहरण के लिए, एक समीकरण के तर्कों से एक चर Z को छोड़कर यह दावा करता है कि आश्रित चर बहिष्कृत चर पर हस्तक्षेप से स्वतंत्र है, एक बार जब हम शेष तर्कों को स्थिर रखते हैं। Nonparametric SEMs समीकरणों के रूप में या त्रुटि शर्तों के वितरण के लिए कोई प्रतिबद्धता किए बिना कुल, प्रत्यक्ष और अप्रत्यक्ष प्रभावों के अनुमान की अनुमति देते हैं। यह गैर-रेखीय अंतःक्रियाओं की उपस्थिति में श्रेणीबद्ध चरों को शामिल करने वाली प्रणालियों के लिए मध्यस्थता विश्लेषण का विस्तार करता है। बोलेन और पर्ल[19]एसईएम की कारण व्याख्या के इतिहास का सर्वेक्षण करें और यह क्यों भ्रम और विवादों का स्रोत बन गया है।

SEM पथ विश्लेषण विधियाँ अपनी पहुँच के कारण सामाजिक विज्ञानों में लोकप्रिय हैं; पैक किए गए कंप्यूटर प्रोग्राम शोधकर्ताओं को प्रयोगात्मक डिजाइन और नियंत्रण, प्रभाव और नमूना आकार, और कई अन्य कारकों को समझने की असुविधा के बिना परिणाम प्राप्त करने की अनुमति देते हैं जो अच्छे शोध डिजाइन का हिस्सा हैं।[citation needed] समर्थकों का कहना है कि यह प्राकृतिक विज्ञानों में अपनाए जाने की तुलना में - विशेष रूप से मनोविज्ञान और सामाजिक संपर्क में - कई वास्तविक दुनिया की घटनाओं की एक समग्र, और कम स्पष्ट रूप से कारण, व्याख्या को दर्शाता है; आलोचकों का सुझाव है कि प्रयोगात्मक नियंत्रण की इस कमी के कारण कई त्रुटिपूर्ण निष्कर्ष निकाले गए हैं।[citation needed]

SEM के निर्देशित नेटवर्क मॉडल में दिशा वास्तविकता के बारे में अनुमानित कारण-प्रभाव धारणाओं से उत्पन्न होती है। सामाजिक संपर्क और कलाकृतियाँ अक्सर एपिफेनोमेना होती हैं - द्वितीयक घटनाएँ जो सीधे तौर पर कारण कारकों से जुड़ती हैं। फिजियोलॉजिकल एपिफेनोमेनन का एक उदाहरण है, उदाहरण के लिए, 100 मीटर स्प्रिंट को पूरा करने का समय। एक व्यक्ति अपनी स्प्रिंट गति को 12 सेकंड से 11 सेकंड तक सुधारने में सक्षम हो सकता है, लेकिन आहार, दृष्टिकोण, मौसम इत्यादि जैसे किसी भी प्रत्यक्ष कारक कारकों में सुधार को श्रेय देना मुश्किल होगा। स्प्रिंट समय में 1 सेकंड का सुधार एक है एपिफेनोमेनन - कई अलग-अलग कारकों की बातचीत का समग्र उत्पाद।

SEM के लिए सामान्य दृष्टिकोण

हालांकि SEM परिवार में प्रत्येक तकनीक अलग है, निम्नलिखित पहलू कई SEM विधियों के लिए सामान्य हैं, क्योंकि इसे एलेक्स लियू जैसे कई SEM विद्वानों द्वारा 4E ढांचे के रूप में संक्षेपित किया जा सकता है, जो कि 1) समीकरण (मॉडल या समीकरण विनिर्देश), 2 ) मुक्त मापदंडों का अनुमान, 3) मॉडल और मॉडल फिट का मूल्यांकन, 4) स्पष्टीकरण और संचार, साथ ही परिणामों का निष्पादन।

मॉडल विनिर्देश

SEM में मॉडल के दो मुख्य घटक प्रतिष्ठित हैं: अंतर्जात और बहिर्जात चर के बीच संभावित कारण निर्भरता दिखाने वाला संरचनात्मक मॉडल, और अव्यक्त चर और उनके संकेतकों के बीच संबंध दिखाने वाला माप मॉडल। अन्वेषी और पुष्टि कारक विश्लेषण मॉडल, उदाहरण के लिए, केवल माप भाग होते हैं, जबकि पथ विश्लेषण (सांख्यिकी) को एसईएम के रूप में देखा जा सकता है जिसमें केवल संरचनात्मक भाग होता है।

एक मॉडल में पथों को निर्दिष्ट करने में, मॉडलर दो प्रकार के संबंधों को प्रस्तुत कर सकता है: (1) मुक्त मार्ग, जिसमें परिकल्पित कारण (वास्तव में प्रतितथ्यात्मक) चर के बीच संबंधों का परीक्षण किया जाता है, और इसलिए भिन्नता के लिए 'मुक्त' छोड़ दिया जाता है, और (2) ) वेरिएबल्स के बीच संबंध जिनका पहले से ही अनुमानित संबंध है, आमतौर पर पिछले अध्ययनों पर आधारित होते हैं, जो मॉडल में 'निश्चित' होते हैं।

एक मॉडलर अक्सर सैद्धांतिक रूप से प्रशंसनीय मॉडल का एक सेट निर्दिष्ट करेगा ताकि यह आकलन किया जा सके कि प्रस्तावित मॉडल संभावित मॉडल के सेट में सबसे अच्छा है या नहीं। मॉडलर को न केवल मॉडल के निर्माण के लिए सैद्धांतिक कारणों के लिए खाता होना चाहिए, बल्कि मॉडलर को डेटा बिंदुओं की संख्या और मॉडल की पहचान करने के लिए अनुमान लगाने वाले मापदंडों की संख्या को भी ध्यान में रखना चाहिए।

एक पहचाना गया मॉडल एक मॉडल है जहां एक विशिष्ट पैरामीटर मान विशिष्ट रूप से मॉडल (पुनरावर्ती परिभाषा) की पहचान करता है, और कोई भिन्न पैरामीटर मान द्वारा कोई अन्य समकक्ष सूत्रीकरण नहीं दिया जा सकता है। एक डेटा बिंदु देखे गए अंकों वाला एक चर है, जैसे एक चर जिसमें किसी प्रश्न पर स्कोर होता है या उत्तरदाताओं द्वारा कार खरीदने की संख्या। पैरामीटर ब्याज का मूल्य है, जो बहिर्जात और अंतर्जात चर या कारक लोडिंग (एक संकेतक और उसके कारक के बीच प्रतिगमन गुणांक) के बीच एक प्रतिगमन गुणांक हो सकता है। यदि अनुमानित मापदंडों की संख्या से कम डेटा बिंदु हैं, तो परिणामी मॉडल अज्ञात है, क्योंकि मॉडल में सभी भिन्नताओं के लिए बहुत कम संदर्भ बिंदु हैं। समाधान पथों में से एक को शून्य तक सीमित करना है, जिसका अर्थ है कि यह अब मॉडल का हिस्सा नहीं है।

मुक्त मापदंडों का अनुमान

पैरामीटर अनुमान वास्तविक सहप्रसरण मैट्रिक्स की तुलना करके किया जाता है जो चर और सर्वोत्तम फिटिंग मॉडल के अनुमानित सहप्रसरण मैट्रिक्स के बीच संबंधों का प्रतिनिधित्व करता है। यह अपेक्षा-अधिकतमकरण एल्गोरिथ्म के माध्यम से संख्यात्मक अधिकतमकरण के माध्यम से प्राप्त किया जाता है। अपेक्षा-अधिकतम मानदंड का अधिकतमकरण जैसा कि अधिकतम संभावना अनुमान, अर्ध-अधिकतम संभावना अनुमान, भारित कम से कम वर्ग या असमान रूप से वितरण-मुक्त विधियों द्वारा प्रदान किया जाता है। यह अक्सर एक विशेष एसईएम विश्लेषण कार्यक्रम का उपयोग करके पूरा किया जाता है, जिनमें से कई मौजूद हैं।


मॉडल और मॉडल फिट का मूल्यांकन

एक मॉडल का अनुमान लगाने के बाद, विश्लेषक मॉडल की व्याख्या करना चाहेंगे। अनुमानित पथों को पथ मॉडल के रूप में सारणीबद्ध और/या रेखांकन के रूप में प्रस्तुत किया जा सकता है। पथ विश्लेषण (सांख्यिकी)#पथ अनुरेखण नियमों (पथ विश्लेषण (सांख्यिकी) देखें) का उपयोग करके चरों के प्रभाव का आकलन किया जाता है।

यह निर्धारित करने के लिए अनुमानित मॉडल के फिट की जांच करना महत्वपूर्ण है कि यह डेटा को कितनी अच्छी तरह मॉडल करता है। एसईएम मॉडलिंग में यह एक बुनियादी कार्य है, मॉडल को स्वीकार या अस्वीकार करने के लिए आधार तैयार करना और अधिक सामान्यतः, एक प्रतिस्पर्धी मॉडल को दूसरे पर स्वीकार करना। एसईएम कार्यक्रमों के आउटपुट में मॉडल में चरों के बीच अनुमानित संबंधों के आव्यूह शामिल हैं। फिट का आकलन अनिवार्य रूप से गणना करता है कि अनुमानित डेटा वास्तविक डेटा में संबंधों वाले मैट्रिसेस के समान कैसे हैं।

इन उद्देश्यों के लिए औपचारिक सांख्यिकीय परीक्षण और फिट इंडेक्स विकसित किए गए हैं। अनुमानित मॉडल के भीतर मॉडल के व्यक्तिगत मापदंडों की भी जांच की जा सकती है ताकि यह देखा जा सके कि प्रस्तावित मॉडल ड्राइविंग सिद्धांत में कितनी अच्छी तरह फिट बैठता है। अधिकांश, हालांकि सभी नहीं, आकलन विधियां मॉडल के ऐसे परीक्षणों को संभव बनाती हैं।

निश्चित रूप से जैसा कि सभी सांख्यिकीय परिकल्पना परीक्षण में होता है, SEM मॉडल परीक्षण इस धारणा पर आधारित होते हैं कि सही और पूर्ण प्रासंगिक डेटा को मॉडल किया गया है। SEM साहित्य में, फिट की चर्चा ने विभिन्न फिट सूचकांकों और परिकल्पना परीक्षणों के सटीक अनुप्रयोग पर विभिन्न अनुशंसाओं को जन्म दिया है।

फिट का आकलन करने के लिए अलग-अलग दृष्टिकोण हैं। मॉडलिंग के लिए पारंपरिक दृष्टिकोण एक अशक्त परिकल्पना से शुरू होता है, अधिक उदार मॉडल (यानी कम मुक्त मापदंडों वाले) को पुरस्कृत करते हुए, अन्य जैसे कि एकैके सूचना मानदंड जो इस बात पर ध्यान केंद्रित करते हैं कि एक संतृप्त मॉडल से फिट किए गए मान कितने कम हैं।[citation needed] (अर्थात वे कितनी अच्छी तरह से मापा मूल्यों को पुन: उत्पन्न करते हैं), उपयोग किए गए मुक्त मापदंडों की संख्या को ध्यान में रखते हुए। क्योंकि फिट के विभिन्न उपाय मॉडल के फिट के विभिन्न तत्वों को पकड़ते हैं, इसलिए विभिन्न फिट उपायों के चयन की रिपोर्ट करना उचित है। उपयुक्त उपायों की व्याख्या के लिए दिशानिर्देश (यानी, कटऑफ स्कोर), नीचे सूचीबद्ध लोगों सहित, SEM शोधकर्ताओं के बीच बहुत बहस का विषय हैं।[20]

फिट के कुछ अधिक सामान्य रूप से उपयोग किए जाने वाले उपायों में शामिल हैं

  • ची-स्क्वेर्ड परीक्षण|ची-स्क्वेर्ड टेस्ट
    • कई अन्य फिट उपायों की गणना में उपयोग किए जाने वाले फिट का एक मौलिक उपाय। संकल्पनात्मक रूप से यह नमूना आकार का एक कार्य है और देखे गए सहप्रसरण मैट्रिक्स और मॉडल सहप्रसरण मैट्रिक्स के बीच का अंतर है।
  • एकाइके सूचना मानदंड (एआईसी)
    • रिश्तेदार मॉडल फिट का परीक्षण: पसंदीदा मॉडल सबसे कम एआईसी मूल्य वाला है।
    • जहां k सांख्यिकीय मॉडल में मापदंडों की संख्या है, और L मॉडल की संभावना का अधिकतम मूल्य है।
  • सन्निकटन का मूल माध्य वर्ग त्रुटि (RMSEA)
    • फ़िट इंडेक्स जहां शून्य का मान सर्वोत्तम फ़िट इंगित करता है।[21] जबकि आरएमएसईए का उपयोग करके एक करीबी फिट का निर्धारण करने के लिए दिशानिर्देश अत्यधिक विवादित है,[22] अधिकांश शोधकर्ता इस बात से सहमत हैं कि .1 या अधिक का RMSEA खराब फ़िट इंगित करता है।[23][24]* मानकीकृत रूट माध्य चुकता अवशिष्ट (SRMR)
    • SRMR एक लोकप्रिय संपूर्ण फ़िट संकेतक है। हू और बेंटलर (1999) ने अच्छे फिट के लिए एक दिशानिर्देश के रूप में .08 या उससे छोटे का सुझाव दिया।[25] क्लाइन (2011) ने अच्छे फिट के लिए दिशानिर्देश के रूप में .1 या उससे कम का सुझाव दिया।
  • तुलनात्मक फिट इंडेक्स (सीएफआई)
    • बेसलाइन तुलनाओं की जांच में, सीएफआई डेटा में सहसंबंधों के औसत आकार पर बड़े हिस्से पर निर्भर करता है। यदि चरों के बीच औसत सहसंबंध अधिक नहीं है, तो CFI बहुत अधिक नहीं होगा। .95 या उच्चतर का सीएफआई मूल्य वांछनीय है।[25]

फिट के प्रत्येक माप के लिए, मॉडल और डेटा के बीच एक अच्छे-पर्याप्त फिट का प्रतिनिधित्व करने वाले निर्णय को अन्य प्रासंगिक कारकों जैसे नमूना आकार, कारकों के संकेतकों का अनुपात और मॉडल की समग्र जटिलता को प्रतिबिंबित करना चाहिए। उदाहरण के लिए, बहुत बड़े नमूने ची-स्क्वेर्ड परीक्षण को अत्यधिक संवेदनशील बनाते हैं और मॉडल-डेटा फ़िट की कमी का संकेत देने की अधिक संभावना रखते हैं। [26]

मॉडल संशोधन

फिट को बेहतर बनाने के लिए मॉडल को संशोधित करने की आवश्यकता हो सकती है, जिससे चर के बीच सबसे अधिक संभावित संबंधों का अनुमान लगाया जा सके। कई कार्यक्रम संशोधन सूचकांक प्रदान करते हैं जो मामूली संशोधनों का मार्गदर्शन कर सकते हैं। संशोधन सूचकांक χ² में परिवर्तन की रिपोर्ट करते हैं जो निश्चित मापदंडों को मुक्त करने के परिणामस्वरूप होता है: आमतौर पर, इसलिए एक मॉडल के लिए एक पथ जोड़ना जो वर्तमान में शून्य पर सेट है। मॉडल फिट में सुधार करने वाले संशोधनों को मॉडल में किए जा सकने वाले संभावित परिवर्तनों के रूप में फ़्लैग किया जा सकता है। एक मॉडल में संशोधन, विशेष रूप से संरचनात्मक मॉडल, सही होने का दावा करने वाले सिद्धांत में परिवर्तन हैं। इसलिए संशोधनों को परीक्षण किए जा रहे सिद्धांत के संदर्भ में समझ में आना चाहिए, या उस सिद्धांत की सीमाओं के रूप में स्वीकार किया जाना चाहिए। माप मॉडल में परिवर्तन प्रभावी रूप से दावा करते हैं कि आइटम / डेटा सिद्धांत द्वारा निर्दिष्ट अव्यक्त चर के अशुद्ध संकेतक हैं।[27]

मॉडलों को संशोधन सूचकांकों द्वारा नेतृत्व नहीं किया जाना चाहिए, जैसा कि मैककलम (1986) ने प्रदर्शित किया: अनुकूल परिस्थितियों में भी, विनिर्देश खोजों से उत्पन्न होने वाले मॉडलों को सावधानी के साथ देखा जाना चाहिए।[28]


नमूना आकार और शक्ति

जबकि शोधकर्ता इस बात से सहमत हैं कि SEM का उपयोग करके पर्याप्त सांख्यिकीय शक्ति और सटीक अनुमान प्रदान करने के लिए बड़े नमूना आकार की आवश्यकता होती है, पर्याप्त नमूना आकार निर्धारित करने के लिए उपयुक्त विधि पर कोई आम सहमति नहीं है।[29] [30]आम तौर पर, नमूना आकार निर्धारित करने के लिए विचारों में प्रति पैरामीटर टिप्पणियों की संख्या, फिट इंडेक्स के लिए पर्याप्त रूप से प्रदर्शन करने के लिए आवश्यक टिप्पणियों की संख्या और स्वतंत्रता की प्रति डिग्री टिप्पणियों की संख्या शामिल होती है।[29] शोधकर्ताओं ने सिमुलेशन अध्ययनों के आधार पर दिशानिर्देश प्रस्तावित किए हैं,[31]पेशेवर अनुभव,[32]और गणितीय सूत्र।[30][33]

SEM परिकल्पना परीक्षण में एक विशेष महत्व और शक्ति प्राप्त करने के लिए नमूना आकार की आवश्यकताएं उसी मॉडल के लिए समान होती हैं जब परीक्षण के लिए तीन एल्गोरिदम (PLS-PA, LISREL या प्रतिगमन समीकरणों की प्रणाली) का उपयोग किया जाता है।[citation needed]

स्पष्टीकरण और संचार

इसके बाद मॉडलों के सेट की व्याख्या की जाती है ताकि सर्वोत्तम फिटिंग मॉडल के आधार पर निर्माण के बारे में दावा किया जा सके।

प्रयोग या समय-आदेशित अध्ययन किए जाने पर भी कारणता का दावा करते समय हमेशा सावधानी बरतनी चाहिए। शब्द कारणात्मक मॉडल को एक ऐसे मॉडल के रूप में समझा जाना चाहिए जो कारण संबंधी मान्यताओं को व्यक्त करता है, जरूरी नहीं कि ऐसा मॉडल हो जो मान्य कारण निष्कर्ष उत्पन्न करता हो। कई समय बिंदुओं पर डेटा एकत्र करना और एक प्रायोगिक या अर्ध-प्रायोगिक डिजाइन का उपयोग करने से कुछ प्रतिद्वंद्वी परिकल्पनाओं को दूर करने में मदद मिल सकती है, लेकिन एक यादृच्छिक प्रयोग भी ऐसे सभी खतरों से इंकार नहीं कर सकता है। एक कारण परिकल्पना के अनुरूप एक मॉडल द्वारा अच्छा फिट अनिवार्य रूप से एक विरोधी कारण परिकल्पना के अनुरूप दूसरे मॉडल द्वारा समान रूप से अच्छा फिट होता है। कोई भी शोध डिजाइन, चाहे कितना भी चतुर क्यों न हो, इस तरह की प्रतिद्वंद्वी परिकल्पनाओं को अलग करने में मदद कर सकता है, इंटरवेंशनल प्रयोगों को छोड़कर।[18]

किसी भी विज्ञान की तरह, बाद की प्रतिकृति और शायद संशोधन प्रारंभिक खोज से आगे बढ़ेंगे।

उन्नत उपयोग

एसईएम-विशिष्ट सॉफ़्टवेयर

संरचनात्मक समीकरण मॉडल को फ़िट करने के लिए कई सॉफ़्टवेयर पैकेज मौजूद हैं। LISREL ऐसा पहला सॉफ्टवेयर था, जो शुरुआत में 1970 के दशक में जारी किया गया था।[16]शोधकर्ताओं के बीच अक्सर उपयोग किए जाने वाले सॉफ्टवेयर कार्यान्वयन में एमप्लस, आआर (प्रोग्रामिंग भाषा) पैकेज लावान शामिल हैं[34]और sem, LISREL, OpenMx, SPSS AMOS, और Stata[35] बारबरा एम. बायरन ने बहुभिन्नरूपी प्रायोगिक मनोविज्ञान का समाज के मल्टीवीरेट एप्लीकेशन बुक सीरीज के हिस्से के रूप में इन सॉफ्टवेयरों की एक किस्म का उपयोग करने के लिए कई निर्देशात्मक पुस्तकें प्रकाशित कीं।[36] विद्वान इसे रिपोर्ट करने के लिए अच्छा अभ्यास मानते हैं कि एसईएम विश्लेषण के लिए कौन से सॉफ़्टवेयर पैकेज और संस्करण का उपयोग किया गया था क्योंकि उनके पास अलग-अलग क्षमताएं हैं और समान नामित तकनीकों को करने के लिए थोड़ा अलग तरीकों का उपयोग कर सकते हैं।[37]

यह भी देखें

संदर्भ

  1. Boslaugh, Sarah; McNutt, Louise-Anne (2008). "Structural Equation Modeling". Encyclopedia of Epidemiology. doi:10.4135/9781412953948.n443. hdl:2022/21973. ISBN 978-1-4129-2816-8.
  2. Shelley, Mack C (2006). "Structural Equation Modeling". शैक्षिक नेतृत्व और प्रशासन का विश्वकोश. doi:10.4135/9781412939584.n544. ISBN 978-0-7619-3087-7.
  3. 3.0 3.1 {{Cite book|last=Kline|first=Rex B. |title=आधारभूत समीकरण मोडलिंग के सिद्धांत एवं व्यवहार|date=2016 |isbn=978-1-4625-2334-4|edition=4th |location=New York|oclc=934184322}
  4. Bollen, Kenneth A. (1989). गुप्त चरों के साथ स्ट्रक्चरल समीकरण. New York: Wiley. ISBN 0-471-01171-1. OCLC 18834634.
  5. Kaplan, David (2009). Structural equation modeling: foundations and extensions (2nd ed.). Los Angeles: SAGE. ISBN 978-1-4129-1624-0. OCLC 225852466.
  6. Curran, Patrick J. (2003-10-01). "Have Multilevel Models Been Structural Equation Models All Along?". Multivariate Behavioral Research. 38 (4): 529–569. doi:10.1207/s15327906mbr3804_5. ISSN 0027-3171. PMID 26777445. S2CID 7384127.
  7. Salkind, Neil J. (2007). "Intelligence Tests". Encyclopedia of Measurement and Statistics. doi:10.4135/9781412952644.n220. ISBN 978-1-4129-1611-0.
  8. MacCallum & Austin 2000, p. 209.
  9. Wright, S. (1920-06-01). "गिनी-सूअरों के पाइबल्ड पैटर्न का निर्धारण करने में आनुवंशिकता और पर्यावरण का सापेक्ष महत्व". Proceedings of the National Academy of Sciences (in English). 6 (6): 320–332. Bibcode:1920PNAS....6..320W. doi:10.1073/pnas.6.6.320. ISSN 0027-8424. PMC 1084532. PMID 16576506.
  10. Wright, Sewall (1921). "जर्नल ऑफ एग्रीकल्चरल रिसर्च". जर्नल ऑफ एग्रीकल्चरल रिसर्च. 20 (1): 557–585 – via USDA.
  11. Wolfle, Lee M. (1999). "Sewall wright on the method of path coefficients: An annotated bibliography". Structural Equation Modeling (in English). 6 (3): 280–291. doi:10.1080/10705519909540134. ISSN 1070-5511.
  12. Wright, Sewall (1934). "पथ गुणांक की विधि". The Annals of Mathematical Statistics. 5 (3): 161–215. doi:10.1214/aoms/1177732676. ISSN 0003-4851. JSTOR 2957502.
  13. Duncan, Otis Dudley (1975). संरचनात्मक समीकरण मॉडल का परिचय. New York: Academic Press. ISBN 0-12-224150-9. OCLC 1175858.
  14. Christ, Carl F. (1994). "The Cowles Commission's Contributions to Econometrics at Chicago, 1939-1955". Journal of Economic Literature. 32 (1): 30–59. ISSN 0022-0515. JSTOR 2728422.
  15. Westland, J. Christopher (2015). Structural Equation Modeling: From Paths to Networks. New York: Springer.
  16. 16.0 16.1 Jöreskog, Karl Gustav; van Thillo, Mariella (1972). "LISREL: A General Computer Program for Estimating a Linear Structural Equation System Involving Multiple Indicators of Unmeasured Variables" (PDF). Research Bulletin: Office of Education. ETS-RB-72-56 – via US Government.
  17. Kock, Ned; Hadaya, Pierre (2018). "Minimum sample size estimation in PLS-SEM: The inverse square root and gamma-exponential methods". Information Systems Journal. 28: 227–261. doi:10.1111/isj.12131. S2CID 3733557.
  18. 18.0 18.1 Pearl, Judea (2000). Causality: Models, Reasoning, and Inference. Cambridge University Press. ISBN 978-0-521-77362-1.
  19. Bollen, Kenneth A; Pearl, Judea (2013). "Eight Myths About Causality and Structural Equation Models". Handbook of Causal Analysis for Social Research. Handbooks of Sociology and Social Research. pp. 301–28. doi:10.1007/978-94-007-6094-3_15. ISBN 978-94-007-6093-6.
  20. MacCallum & Austin 2000, p. 218-219.
  21. Kline 2011, p. 205.
  22. Kline 2011, p. 206.
  23. Hu & Bentler 1999, p. 11.
  24. Browne, M. W.; Cudeck, R. (1993). "Alternative ways of assessing model fit". In Bollen, K. A.; Long, J. S. (eds.). Testing structural equation models. Newbury Park, CA: Sage.
  25. 25.0 25.1 Hu & Bentler 1999, p. 27.
  26. Kline 2011, p. 201.
  27. Loehlin, J. C. (2004). Latent Variable Models: An Introduction to Factor, Path, and Structural Equation Analysis. Psychology Press.
  28. MacCallum, Robert (1986). "Specification searches in covariance structure modeling". Psychological Bulletin. 100: 107–120. doi:10.1037/0033-2909.100.1.107.
  29. 29.0 29.1 Quintana & Maxwell 1999, p. 499.
  30. 30.0 30.1 Westland, J. Christopher (2010). "Lower bounds on sample size in structural equation modeling". Electron. Comm. Res. Appl. 9 (6): 476–487. doi:10.1016/j.elerap.2010.07.003.
  31. Chou, C. P.; Bentler, Peter (1995). "Estimates and tests in structural equation modeling". In Hoyle, Rick (ed.). Structural equation modeling: Concepts, issues, and applications. Thousand Oaks, CA: Sage. pp. 37–55.
  32. Bentler, P. M; Chou, Chih-Ping (2016). "Practical Issues in Structural Modeling". Sociological Methods & Research. 16 (1): 78–117. doi:10.1177/0049124187016001004. S2CID 62548269.
  33. MacCallum, Robert C; Browne, Michael W; Sugawara, Hazuki M (1996). "Power analysis and determination of sample size for covariance structure modeling". Psychological Methods. 1 (2): 130–49. doi:10.1037/1082-989X.1.2.130.
  34. Rosseel, Yves (2012-05-24). "lavaan: An R Package for Structural Equation Modeling". Journal of Statistical Software. 48 (2): 1–36. doi:10.18637/jss.v048.i02. Retrieved 27 January 2021.
  35. Narayanan, A. (2012-05-01). "स्ट्रक्चरल इक्वेशन मॉडलिंग के लिए आठ सॉफ्टवेयर पैकेज की समीक्षा". The American Statistician. 66 (2): 129–138. doi:10.1080/00031305.2012.708641. ISSN 0003-1305. S2CID 59460771.
  36. "Barbara Byrne Award for Outstanding Book or Edited Volume | SMEP". smep.org. Retrieved 2022-10-25.
  37. Kline 2011, p. 79-88.


ग्रन्थसूची


अग्रिम पठन


बाहरी संबंध