गुणा: Difference between revisions
(→संगणना) |
|||
Line 148: | Line 148: | ||
==== मिस्रवासी ==== | ==== मिस्रवासी ==== | ||
{{Main|प्राचीन मिस्र का गुणन}} | {{Main|प्राचीन मिस्र का गुणन}} | ||
पूर्णांकों और भिन्नों के गुणन की | पूर्णांकों और भिन्नों के गुणन की मिस्र विधि है, जो कि [[ रिहंद गणितीय पेपिरस ]] में उत्तरोत्तर जोड़ और दोहरीकरण प्रलेखित है,। उदाहरण के लिए, 13 और 21 का गुणनफल ज्ञात करने के लिए व्यक्ति को 21 को तीन बार दुगुना करके प्राप्त करना होता है {{nowrap|1=2 × 21 = 42}}, {{nowrap|1=4 × 21 = 2 × 42 = 84}}, {{nowrap|1=8 × 21 = 2 × 84 = 168}}. पूर्ण गुणन तथा दोहरीकरण अनुक्रम में पाए जाने वाले उपयुक्त संबंध को जोड़कर पाया जा सकता है: | ||
:13 × 21 = (1 + 4 + 8) × 21 = (1 × 21) + (4 × 21) + (8 × 21) = 21 + 84 + 168 = 273. | :13 × 21 = (1 + 4 + 8) × 21 = (1 × 21) + (4 × 21) + (8 × 21) = 21 + 84 + 168 = 273. | ||
==== [[ बेबीलोन ]] ==== | ==== [[ बेबीलोन ]] ==== | ||
बेबीलोनियों ने आधुनिक समय के [[ दशमलव विस्तार ]] के अनुरूप एक [[ साठवाँ ]] [[ स्थितीय संख्या प्रणाली ]] का उपयोग | बेबीलोनियों ने आधुनिक समय के [[ दशमलव विस्तार ]] के अनुरूप एक [[ साठवाँ |षाष्टिक]] [[ स्थितीय संख्या प्रणाली ]] का उपयोग किया है। इस प्रकार, बेबीलोनियाई गुणन आधुनिक दशमलव गुणन के समान था। याद रखने की कठिनाई के कारण {{nowrap|60 × 60}} विभिन्न उत्पादों, बेबीलोनियन गणितज्ञों ने गुणन सारणी का उपयोग किया है। इन तालिकाओं में एक निश्चित प्रमुख संख्या n: n, 2n, ..., 20n के पहले बीस गुणकों की सूची शामिल है | इसके बाद 10n: 30n 40n, और 50n के गुणक आते हैं,फिर किसी भी [[ साठवाँ |षाष्टिक]] गुणन की गणना करने के लिए, 53 n के लिए कहें गए, की गई 50 n और 3 n को जोड़ने के लिए तालिका से अभिकलन करने की केवल आवश्यकता है।{{Citation needed|date=December 2021}} | ||
==== चीनी ==== | ==== चीनी ==== | ||
{{see also|चीनी गुणा तालिका}} | {{see also|चीनी गुणा तालिका}} | ||
[[File:Multiplication algorithm.GIF|thumb|right|250px|{{nowrap|1=38 × 76 = 2888}}]]300 ईसा पूर्व के गणितीय पाठ | [[File:Multiplication algorithm.GIF|thumb|right|250px|{{nowrap|1=38 × 76 = 2888}}]]300 ईसा पूर्व के गणितीय पाठ झोउबी सुआंजिंग, और गणितीय कला पर नौ अध्यायों में, गुणन गणना को शब्दों में लिखा गया था ,हालांकि प्रारंभिक चीनी गणितज्ञों ने स्थानीय मूल्य वृद्धि, घटाव, गुणा और भाग को शामिल करते हुए [[ रॉड कैलकुलस ]] को नियोजित किया था। [[ युद्धरत राज्य ]] की अवधि के अंत तक चीनी पहले से ही एक चीनी गुणन तालिका का उपयोग कर रहे थे। | ||
=== आधुनिक तरीके === | === आधुनिक तरीके === | ||
[[Image:Gelosia multiplication 45 256.png|right|250px|thumb|45 और 256 का गुणनफल। ध्यान दें कि 45 में अंकों का क्रम बाएँ कॉलम में उल्टा है। गुणन का कैरी स्टेप गणना के अंतिम चरण में (बोल्ड में) किया जा सकता है, का अंतिम उत्पाद लौटाता है {{nowrap|1=45 × 256 = 11520}}. यह [[ जाली गुणन ]] का एक रूप है।]]हिंदू-अरबी अंक प्रणाली पर आधारित गुणन की आधुनिक विधि का वर्णन सर्वप्रथम [[ ब्रह्मगुप्त ]] ने किया था। ब्रह्मगुप्त ने जोड़, घटाव, गुणा और भाग के नियम दिए। [[ प्रिंसटन विश्वविद्यालय ]] में गणित के तत्कालीन प्रोफेसर [[ हेनरी बर्चर्ड फाइन ]] ने निम्नलिखित लिखा : | [[Image:Gelosia multiplication 45 256.png|right|250px|thumb|45 और 256 का गुणनफल। ध्यान दें कि 45 में अंकों का क्रम बाएँ कॉलम में उल्टा है। गुणन का कैरी स्टेप गणना के अंतिम चरण में (बोल्ड में) किया जा सकता है, का अंतिम उत्पाद लौटाता है {{nowrap|1=45 × 256 = 11520}}. यह [[ जाली गुणन ]] का एक रूप है।]]हिंदू-अरबी अंक प्रणाली पर आधारित गुणन की आधुनिक विधि का वर्णन सर्वप्रथम [[ ब्रह्मगुप्त ]] ने किया था। ब्रह्मगुप्त ने जोड़, घटाव, गुणा और भाग के नियम दिए। [[ प्रिंसटन विश्वविद्यालय ]] में गणित के तत्कालीन प्रोफेसर [[ हेनरी बर्चर्ड फाइन ]] ने निम्नलिखित लिखा : | ||
:भारतीय न केवल स्थितीय दशमलव प्रणाली के आविष्कारक हैं, बल्कि प्रणाली के साथ प्राथमिक गणना में शामिल अधिकांश प्रक्रियाओं के भी आविष्कारक हैं। जोड़ और घटाव उन्होंने वैसा ही किया जैसा आजकल किया जाता है; वे बहुत प्रकार से गुणा करते थे, उन में हमारा भी, परन्तु | :भारतीय न केवल स्थितीय दशमलव प्रणाली के आविष्कारक हैं, बल्कि प्रणाली के साथ प्राथमिक गणना में शामिल अधिकांश प्रक्रियाओं के भी आविष्कारक हैं। जोड़ और घटाव उन्होंने वैसा ही किया जैसा आजकल किया जाता है; वे बहुत प्रकार से गुणा करते थे, उन में हमारा भी,परन्तु विभाजन उन्होंने बड़ी चतुराई से किया | ||
ये स्थानीय मान दशमलव अंकगणितीय एल्गोरिदम 9वीं शताब्दी की शुरुआत में [[ अलखावरिज़मी ]] द्वारा अरब देशों में | ये स्थानीय मान दशमलव अंकगणितीय एल्गोरिदम 9वीं शताब्दी की शुरुआत में [[ अलखावरिज़मी ]] द्वारा अरब देशों में प्रस्तुत किया गया था,और 13 वीं शताब्दी में [[ फिबोनैकी ]] द्वारा पश्चिमी दुनिया में लोकप्रिय हो गया था। | ||
Revision as of 21:13, 20 February 2023
This article needs additional citations for verification. (April 2012) (Learn how and when to remove this template message) |
<डिव क्लास = राइट>
Arithmetic operations | ||||||||||||||||||||||||||||||||||||||||||
|
गुणन अक्सर गुणन चिन्ह द्वारा निरूपित किया जाता है ×, मध्य-पंक्ति संकेत और शब्दावली द्वारा ⋅, तुलना द्वारा, या, संगणक पर, तारक द्वारा * अंकगणित के चार प्राथमिक अंकगणितीय कार्य विधि में से एक है, अन्य जोड़, घटाव और भाग गणित हैं। गुणन संक्रिया के परिणाम को गुणनफल गणित कहा जाता है।
प्राकृतिक संख्या के गुणन को गुणन और बार-बार जोड़ के रूप में जाना जाता है; अर्थात्, दो संख्याओं का गुणन उनमें से एक की कई प्रतियों को जोड़ने के बराबर है, गुण्य, दूसरे की मात्रा के रूप में, गुणक होता है। दोनों संख्याओं को कारकों के रूप में संदर्भित किया जा सकता है।
उदाहरण के लिए, 4 का 3 से गुणा किया जाता है, जिसे अक्सर इस रूप में लिखा जाता है और 3 गुना 4 के रूप में बोला जाता है, इसकी गणना 4 की 3 प्रतियों को एक साथ जोड़कर भी की जा सकती है:
यहाँ, 3 गुणक और 4 गुणक गुणनखंड हैं, और 12 गुणनफल है।
गुणन के मुख्य गुणों में से एक क्रमचयी गुणधर्म है, जो इस स्थिति में बताता है कि 4 की 3 प्रतियां जोड़ने से 3 की 4 प्रतियां जोड़ने के समान परिणाम मिलता है:
इस प्रकार गुणक और गुणक का पदनाम गुणन के परिणाम को प्रभावित नहीं करता है।इस मूल परिभाषा के व्यवस्थित सामान्यीकरण पूर्णांकों ऋणात्मक संख्याओं सहित, परिमेय संख्याओं के अंशों और वास्तविक संख्याओं के गुणन को परिभाषित करता हैं।
गुणन के एक आयत में पूर्ण संख्याओं के लिए व्यवस्थित वस्तुओं की गिनती के रूप में भी देखा जा सकता है या आयत के क्षेत्रफल को खोज के रूप में देखा जा सकता है, जिनके पक्षों में कुछ दी गई लंबाई है। एक आयत का क्षेत्रफल इस बात पर निर्भर नहीं करता है,कि किस पक्ष को पहले मापा जाता है,यह क्रमविनिमेय विशेषता का एक परिणाम है।
दो मापों का गुणन एक नए प्रकार का मापन है। उदाहरण के लिए, किसी आयत की दोनों भुजाओं की लंबाइयों को गुणा करने पर उसका क्षेत्रफल प्राप्त होता है। ऐसा गुणनआयामी विश्लेषण का विषय है।
गुणन की व्युत्क्रम संक्रिया विभाजन है। उदाहरण के लिए, 4 को 3 से गुणा करने पर 12 प्राप्त होता है, तो 12 को 3 से विभाजित करने पर भी 4 प्राप्त होता है। वास्तव में, 3 से गुणा करने पर 3 से भाग करने पर मूल संख्या प्राप्त होती है। 0 के अलावा किसी अन्य संख्या का विभाजन 1 के बराबर होता है।
गुणन को अन्य प्रकार की संख्याओं के लिए भी परिभाषित किया गया है, जैसे कि सम्मिश्र संख्याएँ , और अधिक अमूर्त निर्माणों के लिए मैट्रिक्स गणित हैं। इनमें से कुछ अधिक अमूर्त निर्माणों के लिए,यह मायने रखता है जिस क्रम में ऑपरेंड को एक साथ गुणा किया जाय ।गणित में उपयोग किए जाने वाले विभिन्न प्रकार के गुणन की सूची गुणन गणित में दी गई है।[verification needed]
संकेतन और शब्दावली
× ⋅ | |
---|---|
Multiplication signs | |
In Unicode | U+00D7 × MULTIPLICATION SIGN (×) U+22C5 ⋅ DOT OPERATOR (⋅) |
Different from | |
Different from | U+00B7 · MIDDLE DOT U+002E . FULL STOP |
अंकगणित में, गुणन को अक्सर गुणन चिह्न को या तो × या शर्तों के बीच यानी, इन्फिक्स नोटेशन में दर्शाया जाता है। उदाहरण के लिए,
गुणन के लिए अन्य गणितीय संकेतन हैं:
- गुणन चिह्न × और सामान्य चर के बीच दुविधा को कम करने के लिए x, गुणन को बिंदु चिह्नों द्वारा भी निरूपित किया जाता है,आमतौर पर एक मध्य-स्थिति वाला बिंदु शायद ही कदाचित् समय मै प्रयोग किया जाता हैं :-
- या
- मध्य बिंदु संकेतन, यूनिकोड में एन्कोड किया गया है U+22C5 ⋅ बिंदु ऑपरेटर, अब संयुक्त राज्य अमेरिका और अन्य देशों में मानक है जहां एक समय इसका उपयोग दशमलव विभाजक के रूप में लिया जाता है। जब बिंदु ऑपरेटर वर्ण पहुंच योग्य नहीं होता है, तो इंटरपंक (·) का उपयोग किया जाता है। अन्य देशों में जो दशमलव चिह्न के रूप में अल्पविराम (विराम चिह्न) का उपयोग करते हैं, गुणा के लिए या तो समय या मध्य बिंदु का उपयोग किया जाता है।[citation needed]
- ऐतिहासिक रूप से, यूनाइटेड किंगडम और आयरलैंड में, मध्य बिंदु का उपयोग कभी-कभी दशमलव के लिए रेखांकित रेखा के लोप होने से रोकने के लिए किया जाता था, और अवधि/पूर्ण विराम का उपयोग गुणा के लिए किया जाता था। हालाँकि, चूंकि प्रौद्योगिकी मंत्रालय ने 1968 में इस अवधि को दशमलव बिंदु के रूप में उपयोग करने का फैसला किया था,[1]और एसआई मानक तब से व्यापक रूप से अपनाया गया है, यह उपयोग अब केवल प्राचीन पत्रिकाओं जैसे द लांसेट में पाया जाता है।[2]
- बीजगणित में, चर (गणित) से जुड़े गुणन को अक्सर एक संयोजन गणित के रूप में लिखा जाता है उदाहरण के लिए, के लिये बार या पाँच बार के लिए , जिसे निहित गुणन भी कहा जाता है। अंकन का उपयोग उन मात्राओं के लिए भी किया जा सकता है जो कोष्ठकों से घिरी हुई हैं उदाहरण के लिए, , या पांच बार दो के लिए। गुणन का यह निहित उपयोग अस्पष्टता का कारण बन सकता है जब समवर्ती चर किसी अन्य चर के नाम से मेल खाते हैं, जब एक कोष्ठक के सामने एक चर नाम को फ़ंक्शन नाम के साथ भ्रमित किया जा सकता है, या संचालन के क्रम के सही निर्धारण में।[citation needed]
- सदिश गुणन में, रेखित करना और बिंदु प्रतीकों के बीच अंतर करना है। रेखित गुणन आम तौर पर दो सदिश के क्रॉस गुणन को करने का संकेत देता है, जिसके परिणामस्वरूप एक सदिश उत्पन्न होता है, जबकि बिंदु दो सदिश के बिंदु गुणन को करने का संकेत देता है, जिसके परिणामस्वरूप एक स्केलर गणित होता है।[citation needed]
संगणक प्रोग्रामिंग में, तारांकन चिह्न जैसा कि 5*2
अभी भी सबसे आम अंकन है। यह इस तथ्य के कारण है कि अधिकांश कंप्यूटर ऐतिहासिक रूप से छोटे वर्ण सेट जैसे ASCII और EBCDIC तक सीमित थे जिनमें गुणन चिह्न जैसे कि ⋅
या ×
, जबकि प्रत्येक कीबोर्ड पर तारक (*) दिखाई देता है। यह प्रयोग फोरट्रान प्रोग्रामिंग भाषा में उत्पन्न हुआ।[citation needed]
गुणा की जाने वाली संख्याओं को आम तौर पर गुणन खंड कहा जाता है। गुणा की जाने वाली संख्या गुण्य है, और जिस संख्या से गुणा किया जाता है वह गुणक है। आमतौर पर, गुणक को पहले और गुण्य को दूसरे स्थान पर रखा जाता है ,हालांकि कभी-कभी पहला कारक गुणक और दूसरा गुणक होता है। इसके अलावा, चूंकि गुणन का परिणाम कारकों के क्रम पर निर्भर नहीं करता है, गुणक और गुणक के बीच का अंतर केवल एक बहुत ही प्रारंभिक स्तर पर और कुछ गुणन एल्गोरिदम में उपयोगी होता है, जैसे कि लंबा गुणन , इसलिए, कुछ स्रोतों में, गुणक शब्द को कारक के पर्याय के रूप में माना जाता है। बीजगणित में, एक संख्या जो एक चर या अभिव्यक्ति का गुणक है उदाहरण के लिए, 3 में को गुणांक कहा जाता है।
गुणन के परिणाम को गुणन गणित कहा जाता है,और जब एक गुणनखंड पूर्णांक होता है, तो एक गुणनफल दूसरे का गुणनफल होता है या अन्य का गुणनफल होता है। इस प्रकार का एक बहुगुणज है π, ऐसा है . पूर्णांकों का गुणनफल प्रत्येक गुणनखंड का गुणज होता है; उदाहरण के लिए, 15 3 और 5 का गुणनफल है और दोनों 3 का गुणज और 5 का गुणज है।[citation needed]
परिभाषाएँ
दो संख्याओं के उत्पाद या दो संख्याओं के बीच गुणन को सामान्य विशेष स्थिति के लिए परिभाषित किया जाता है, जैसे पूर्णांक, प्राकृतिक संख्याएँ, भिन्न, वास्तविक संख्याएँ,सम्मिश्र संख्याएँ और चतुष्कोण इत्यादि।
दो प्राकृत संख्याओं का गुणनफल
एक आयताकार प्रतिरुप में कई पत्थरों को रखकर पंक्तियाँ और कॉलम देता है
पत्थर।
दो पूर्णांकों का गुणनफल
पूर्णांक सकारात्मक और नकारात्मक संख्याओं की अनुमति देता हैं। उनका गुणन उनकी सकारात्मक मात्रा के गुणन द्वारा निर्धारित किया जाता है, जो निम्नलिखित नियम से प्राप्त संकेत के साथ संयुक्त होता है:
यह नियम जोड़ पर गुणन की विशेषताये की मांग का एक आवश्यक परिणाम है, और इसके अतिरिक्त्त कोई नियम नहीं है।
शब्दों में, हमारे पास है:
- ऋणात्मक संख्या को ऋणात्मक संख्या से गुणा करने पर धनात्मक संख्या प्राप्त होती है,
- ऋणात्मक संख्या को धनात्मक संख्या से गुणा करने पर ऋणात्मक संख्या प्राप्त होती है,
- ऋणात्मक संख्या को धनात्मक संख्या से गुणा करने पर ऋणात्मक संख्या प्राप्त होती है,
- धनात्मक संख्या को धनात्मक संख्या से गुणा करने पर धनात्मक संख्या प्राप्त होती है।
दो भिन्नों का गुणनफल
दो भिन्नों को उनके अंश और उनके हर को गुणा करके फिर गुणा किया जा सकता है:
दो वास्तविक संख्याओं का गुणनफल
दो वास्तविक संख्याओं के गुणनफल की कठोर परिभाषा वास्तविक संख्याओं के निर्माण का उपोत्पाद है। इस रचना का तात्पर्य है कि, प्रत्येक वास्तविक संख्या के लिए a एक सेट A हैं परिमेय संख्या a के तत्वों की सबसे कम ऊपरी सीमा A है :
यदि b एक और वास्तविक संख्या है जो की सबसे कम ऊपरी सीमा B हैं गुणन की तरह परिभाषित किया जाता है
यह परिभाषा किसी विशेष पसंद पर निर्भर नहीं करती है A तथा b. यही है, अगर वे अपनी कम से कम ऊपरी सीमा को बदले बिना बदल जाते हैं, तो कम से कम ऊपरी सीमा परिभाषित होती है नहीं बदला है।
दो सम्मिश्र संख्याओं का गुणनफल
दो सम्मिश्र संख्याओं को वितरण नियम और इस तथ्य से गुणा किया जा सकता है , निम्नलिखित अनुसार:
सम्मिश्र गुणन का ज्यामितीय अर्थ समझा जा सकता है ध्रुवीय निर्देशांक में सम्मिश्र संख्याओं को फिर से लिखना:
आगे,
जिससे प्राप्त होता है
ज्यामितीय का अर्थ यह है,कि गुणा का विस्तार किया जाता है और तर्क जोड़े जाते हैं।
दो चतुर्भुजों का गुणनफल
दो चतुर्भुजों के उत्पाद चतुष्कोणों पर लेख में पाया जा सकता है। ध्यान दें, इस मामले में, कि और सामान्य रूप से भिन्न होते हैं।
संगणना
पेंसिल और कागज का उपयोग करके संख्याओं को गुणा करने के कई सामान्य तरीके बहुत हैं , परंतु छोटी संख्याओं आमतौर पर 0 से 9 तक कोई भी दो संख्या के याद किए गए या परामर्शित गुणन की गुणन तालिका की आवश्यकता होती है। हालाँकि, यह विधि, प्राचीन मिस्री गुणन एल्गोरिथम, नहीं है। नीचे दिया गया उदाहरण दीर्घ गुणन मानक एल्गोरिथम , ग्रेड-स्कूल गुणन दिखाता है:
23958233 × 5830 ———————————————— 00000000 (= 23,958,233 × 0) 71874699 (= 23,958,233 × 30) 191665864 (= 23,958,233 × 800) + 119791165 (= 23,958,233 × 5,000) ———————————————— 139676498390 (= 139,676,498,390)
जर्मनी जैसे कुछ देशों में, उपरोक्त गुणन को समान रूप से दर्शाया गया है, लेकिन मूल उत्पाद को क्षैतिज रखा गया है और गणना गुणक के पहले अंक से शुरू होती है:
23958233 · 5830 ———————————————— 119791165 191665864 71874699 00000000 ———————————————— 139676498390
संख्याओं को दशमलव स्थानों के एक जोड़े से अधिक हाथ से गुणा करना थकाऊ और त्रुटि-प्रवण है। ऐसी गणनाओं को सरल बनाने के लिए सामान्य लघुगणक का आविष्कार किया गया था, क्योंकि लघुगणक जोड़ना गुणा करने के बराबर है। स्लाइड नियम ने संख्याओं को सटीकता के लगभग तीन स्थानों पर त्वरित रूप से गुणा करने की अनुमति दी। 20 वीं शताब्दी की शुरुआत में, यांत्रिक कैलकुलेटर , जैसे कि मर्चेंट कैलकुलेटर , 10-अंकों की संख्या का स्वचालित गुणन। आधुनिक इलेक्ट्रॉनिक कंप्यूटर और कैलकुलेटर ने हाथ से गुणा करने की आवश्यकता को बहुत कम कर दिया है।
ऐतिहासिक एल्गोरिदम
गुणन के तरीके प्राचीन मिस्र Greek, Indian,[citation needed] और चीन का इतिहास प्राचीन चीन की सभ्यताएं लेखन में प्रलेखित थे,।
लगभग 18,000 से 20,000 ईसा पूर्व ईशांगो की हड्डी मध्य अफ्रीका में ऊपरी पुरापाषाण युग में गुणन के ज्ञान का संकेत दे दिया था, लेकिन यह काल्पनिक है।[verification needed]
मिस्रवासी
पूर्णांकों और भिन्नों के गुणन की मिस्र विधि है, जो कि रिहंद गणितीय पेपिरस में उत्तरोत्तर जोड़ और दोहरीकरण प्रलेखित है,। उदाहरण के लिए, 13 और 21 का गुणनफल ज्ञात करने के लिए व्यक्ति को 21 को तीन बार दुगुना करके प्राप्त करना होता है 2 × 21 = 42, 4 × 21 = 2 × 42 = 84, 8 × 21 = 2 × 84 = 168. पूर्ण गुणन तथा दोहरीकरण अनुक्रम में पाए जाने वाले उपयुक्त संबंध को जोड़कर पाया जा सकता है:
- 13 × 21 = (1 + 4 + 8) × 21 = (1 × 21) + (4 × 21) + (8 × 21) = 21 + 84 + 168 = 273.
बेबीलोन
बेबीलोनियों ने आधुनिक समय के दशमलव विस्तार के अनुरूप एक षाष्टिक स्थितीय संख्या प्रणाली का उपयोग किया है। इस प्रकार, बेबीलोनियाई गुणन आधुनिक दशमलव गुणन के समान था। याद रखने की कठिनाई के कारण 60 × 60 विभिन्न उत्पादों, बेबीलोनियन गणितज्ञों ने गुणन सारणी का उपयोग किया है। इन तालिकाओं में एक निश्चित प्रमुख संख्या n: n, 2n, ..., 20n के पहले बीस गुणकों की सूची शामिल है | इसके बाद 10n: 30n 40n, और 50n के गुणक आते हैं,फिर किसी भी षाष्टिक गुणन की गणना करने के लिए, 53 n के लिए कहें गए, की गई 50 n और 3 n को जोड़ने के लिए तालिका से अभिकलन करने की केवल आवश्यकता है।[citation needed]
चीनी
300 ईसा पूर्व के गणितीय पाठ झोउबी सुआंजिंग, और गणितीय कला पर नौ अध्यायों में, गुणन गणना को शब्दों में लिखा गया था ,हालांकि प्रारंभिक चीनी गणितज्ञों ने स्थानीय मूल्य वृद्धि, घटाव, गुणा और भाग को शामिल करते हुए रॉड कैलकुलस को नियोजित किया था। युद्धरत राज्य की अवधि के अंत तक चीनी पहले से ही एक चीनी गुणन तालिका का उपयोग कर रहे थे।
आधुनिक तरीके
हिंदू-अरबी अंक प्रणाली पर आधारित गुणन की आधुनिक विधि का वर्णन सर्वप्रथम ब्रह्मगुप्त ने किया था। ब्रह्मगुप्त ने जोड़, घटाव, गुणा और भाग के नियम दिए। प्रिंसटन विश्वविद्यालय में गणित के तत्कालीन प्रोफेसर हेनरी बर्चर्ड फाइन ने निम्नलिखित लिखा :
- भारतीय न केवल स्थितीय दशमलव प्रणाली के आविष्कारक हैं, बल्कि प्रणाली के साथ प्राथमिक गणना में शामिल अधिकांश प्रक्रियाओं के भी आविष्कारक हैं। जोड़ और घटाव उन्होंने वैसा ही किया जैसा आजकल किया जाता है; वे बहुत प्रकार से गुणा करते थे, उन में हमारा भी,परन्तु विभाजन उन्होंने बड़ी चतुराई से किया
ये स्थानीय मान दशमलव अंकगणितीय एल्गोरिदम 9वीं शताब्दी की शुरुआत में अलखावरिज़मी द्वारा अरब देशों में प्रस्तुत किया गया था,और 13 वीं शताब्दी में फिबोनैकी द्वारा पश्चिमी दुनिया में लोकप्रिय हो गया था।
ग्रिड विधि
ग्रिड विधि गुणन , या बॉक्स विधि, इंग्लैंड और वेल्स के प्राथमिक विद्यालयों और कुछ क्षेत्रों में उपयोग की जाती है[which?] संयुक्त राज्य अमेरिका की यह समझने में मदद करने के लिए कि एकाधिक अंकों का गुणन कैसे काम करता है। 34 को 13 से गुणा करने का एक उदाहरण संख्याओं को एक ग्रिड में इस प्रकार रखना होगा:
× 30 4 5 150 20 10 300 40 3 90 12
और फिर प्रविष्टियाँ जोड़ें।
कंप्यूटर एल्गोरिदम
दो को गुणा करने की शास्त्रीय विधि n-अंकीय संख्या की आवश्यकता है n2 अंकों का गुणन। गुणन एल्गोरिदम को डिज़ाइन किया गया है जो बड़ी संख्या को गुणा करते समय गणना समय को काफी कम करता है। असतत फूरियर रूपांतरण पर आधारित विधियाँ बड़े पूर्णांकों का गुणन कम्प्यूटेशनल जटिलता को कम करता है O(n log n log log n). 2016 में, कारक log log n एक फ़ंक्शन द्वारा प्रतिस्थापित किया गया था जो बहुत धीमी गति से बढ़ता है, हालांकि अभी भी स्थिर नहीं है। मार्च 2019 में, डेविड हार्वे और जोरिस वैन डेर होवेन ने एक जटिलता के साथ एक पूर्णांक गुणन एल्गोरिथ्म प्रस्तुत करते हुए एक पेपर प्रस्तुत किया एल्गोरिथम, फास्ट फूरियर परिवर्तन पर भी आधारित है, जिसे एसिम्प्टोटिक रूप से इष्टतम माना जाता है। एल्गोरिथ्म व्यावहारिक रूप से उपयोगी नहीं है, क्योंकि यह केवल बहुत बड़ी संख्याओं को गुणा करने के लिए तेज़ हो जाता है इससे अधिक होने पर 2172912 बिट्स।
माप के उत्पाद
एक ही प्रकार की मात्राओं को केवल अर्थपूर्ण रूप से जोड़ या घटाया जा सकता है, लेकिन विभिन्न प्रकार की मात्राओं को बिना किसी समस्या के गुणा या विभाजित किया जा सकता है। उदाहरण के लिए, तीन कंचों वाले चार बैगों के बारे में सोचा जा सकता है: [4 बैग] × [3 मार्बल्स प्रति बैग] = 12 मार्बल्स।
जब दो मापों को एक साथ गुणा किया जाता है, तो उत्पाद माप के प्रकार के आधार पर एक प्रकार का होता है। सामान्य सिद्धांत आयामी विश्लेषण द्वारा दिया गया है। यह विश्लेषण भौतिकी में नियमित रूप से लागू होता है, लेकिन इसमें वित्त और अन्य अनुप्रयुक्त क्षेत्रों में भी अनुप्रयोग हैं।
भौतिकी में एक सामान्य उदाहरण यह तथ्य है कि भौतिकी में गति को समय से गुणा करने पर दूरी मिलती है। उदाहरण के लिए:
- 50 किलोमीटर प्रति घंटा × 3 घंटे = 150 किलोमीटर।
इस मामले में, घंटे की इकाइयां रद्द हो जाती हैं, उत्पाद को केवल किलोमीटर इकाइयों के साथ छोड़ दिया जाता है।
इकाइयों से जुड़े गुणन के अन्य उदाहरणों में शामिल हैं:
- 2.5 मीटर × 4.5 मीटर = 11.25 वर्ग मीटर
- 11 मीटर/सेकंड × 9 सेकंड = 99 मीटर
- 4.5 निवासी प्रति घर × 20 घर = 90 निवासी
एक अनुक्रम का उत्पाद
कैपिटल पाई नोटेशन
गुणनखंडों के अनुक्रम के गुणनफल को गुणन चिह्न के साथ लिखा जा सकता है , जो ग्रीक वर्णमाला के बड़े अक्षर Π (पाई) से निकला है बिल्कुल उसी तरह जैसे योग प्रतीक ग्रीक अक्षर सिग्मा से लिया गया है। इस अंकन का अर्थ द्वारा दिया गया है
जिसके परिणामस्वरूप
ऐसे अंकन में, चर गणित i एक भिन्न पूर्णांक का प्रतिनिधित्व करता है, जिसे गुणन सूचकांक कहा जाता है, जो निम्न मान से चलता है 1 सबस्क्रिप्ट में ऊपरी मूल्य के लिए संकेत दिया गया है 4 सुपरस्क्रिप्ट द्वारा दिया गया। उत्पाद ऑपरेटर का अनुसरण करने वाली अभिव्यक्ति में निचले और ऊपरी मूल्यों में शामिल सीमा के बीच एक पूर्णांक के लिए गुणन सूचकांक को प्रतिस्थापित करके प्राप्त सभी कारकों को एक साथ गुणा करके उत्पाद प्राप्त किया जाता है।
अधिक सामान्यतः, अंकन के रूप में परिभाषित किया गया है
जहाँ m और n पूर्णांक या व्यंजक हैं जो पूर्णांकों का मूल्यांकन करते हैं। मामले में जहां m = n, गुणनफल का मान वही है जो एकल कारक x का हैm; यदि m > n, उत्पाद एक खाली उत्पाद है जिसका मान 1 है—कारकों के लिए व्यंजक पर ध्यान दिए बिना।
पूंजी पाई संकेतन के गुण
परिभाषा से,
यदि सभी कारक समान हैं, तो का एक उत्पाद n कारक घातांक के बराबर है:
गुणन की साहचर्यता और क्रमविनिमेयता का अर्थ है
- तथा
यदि a एक ऋणात्मक पूर्णांक है, या यदि सभी धनात्मक वास्तविक संख्या एँ हैं, और
मैं गिरा गैर-ऋणात्मक पूर्णांक हैं, या यदि x एक धनात्मक वास्तविक संख्या है।
अनंत उत्पाद
कोई अपरिमित रूप से अनेक पदों के गुणनफलों पर भी विचार कर सकता है; इन्हें अनंत उत्पाद कहा जाता है। उल्लेखनीय रूप से, इसमें ऊपर n को इन्फिनिटी प्रतीक द्वारा प्रतिस्थापित करना शामिल है। इस तरह के एक अनंत अनुक्रम के उत्पाद को पहले n शर्तों के उत्पाद के अनुक्रम की सीमा के रूप में परिभाषित किया जाता है, क्योंकि n बिना सीमा के बढ़ता है,
कोई इसी तरह m को नकारात्मक अनंतता से बदल सकता है, और परिभाषित कर सकता है:
बशर्ते दोनों सीमाएं मौजूद हों।[citation needed]
घातांक
जब गुणन दोहराया जाता है, तो परिणामी संक्रिया घातांक कहलाती है। उदाहरण के लिए, दो (2×2×2) के तीन कारकों का गुणनफल दो को तीसरी शक्ति तक बढ़ा दिया जाता है, और इसे 2 से दर्शाया जाता है।3, एक दो ऊपर की ओर लिखा हुआ तीन के साथ। इस उदाहरण में, संख्या दो आधार है, और तीन घातांक है।[3] सामान्य तौर पर, एक्सपोनेंट (या सुपरस्क्रिप्ट) इंगित करता है कि अभिव्यक्ति में आधार कितनी बार प्रकट होता है, ताकि अभिव्यक्ति
इंगित करता है कि आधार की n प्रतियां एक साथ गुणा की जानी हैं। इस अंकन का उपयोग तब भी किया जा सकता है जब गुणन को शक्ति सहयोगीता के रूप में जाना जाता है।
गुण
वास्तविक संख्या और जटिल संख्या संख्याओं के लिए, जिसमें शामिल हैं, उदाहरण के लिए, प्राकृतिक संख्याएं, पूर्णांक और परिमेय संख्या, गुणन में कुछ गुण होते हैं:
- क्रमचयी गुणधर्म
- जिस क्रम में दो संख्याओं को गुणा किया जाता है, वह मायने नहीं रखता:
- संबंधी संपत्ति
- केवल गुणन या जोड़ को शामिल करने वाले भाव संचालन के क्रम के संबंध में अपरिवर्तनीय हैं:
- वितरण की जाने वाली संपत्ति
- जोड़ पर गुणन के संबंध में पकड़ रखता है। बीजगणितीय व्यंजकों को सरल बनाने में यह सर्वसमिका अत्यंत महत्वपूर्ण है:
- पहचान तत्व
- गुणात्मक पहचान 1 है; किसी भी चीज़ को 1 से गुणा करने पर वह स्वयं होता है। 1 की इस विशेषता को पहचान संपत्ति के रूप में जाना जाता है:
अब्ज़ॉर्ब करने वाला तत्व
- किसी भी संख्या को 0 से गुणा करने पर 0 होता है। इसे गुणन का शून्य गुण कहा जाता है:
- योगज प्रतिलोम
- −1 गुना कोई भी संख्या उस संख्या के योगात्मक व्युत्क्रम के बराबर होती है।
- कहाँ पे
- -1 गुना -1 1 है।
- प्रत्येक संख्या x, शून्य से भाग देने पर, एक 'गुणात्मक व्युत्क्रम' होता है, , ऐसा है कि .[6]
आदेश सिद्धांत संरक्षण
- एक सकारात्मक संख्या से गुणा आदेश सिद्धांत को संरक्षित करता है:
- के लिये a > 0, यदि b > c फिर ab > ac.
- ऋणात्मक संख्या से गुणा करने पर क्रम उलट जाता है:
- के लिये a < 0, यदि b > c फिर ab < ac.
- जटिल संख्याओं में ऐसा क्रम नहीं होता है जो जोड़ और गुणा दोनों के अनुकूल हो।[7][8]
अन्य गणितीय प्रणालियाँ जिनमें गुणन संक्रिया शामिल है, हो सकता है कि उनमें ये सभी गुण न हों। उदाहरण के लिए, गुणन सामान्य रूप से, मैट्रिक्स (गणित) और चतुष्कोणों के लिए क्रमविनिमेय नहीं है।[4]
स्वयंसिद्ध
अंकगणित प्रिंसिपिया, नोवा मेथोडो एक्सपोसिटा पुस्तक में, जोसेफ पीनो ने प्राकृतिक संख्याओं के लिए अपने स्वयंसिद्धों के आधार पर अंकगणित के लिए स्वयंसिद्धों का प्रस्ताव रखा। पीनो अंकगणित में गुणन के लिए दो अभिगृहीत हैं:
यहाँ S(y) y के उत्तराधिकारी क्रमांक का प्रतिनिधित्व करता है; अर्थात, y के बाद आने वाली प्राकृत संख्या। साहचर्यता जैसे विभिन्न गुणों को इन और गणितीय प्रेरण सहित पीनो अंकगणित के अन्य स्वयंसिद्धों से सिद्ध किया जा सकता है। उदाहरण के लिए, S(0), जिसे 1 से निरूपित किया जाता है, एक गुणनात्मक सर्वसमिका है क्योंकि
पूर्णांकों के अभिगृहीत आमतौर पर उन्हें प्राकृतिक संख्याओं के क्रमित युग्मों के तुल्यता वर्ग के रूप में परिभाषित करते हैं। मॉडल (x, y) को तुल्य मानने पर आधारित है x − y जब x और y को पूर्णांक माना जाता है। इस प्रकार (0,1) और (1,2) दोनों -1 के बराबर हैं। पूर्णांकों के लिए गुणन अभिगृहीत को इस प्रकार परिभाषित किया गया है
वह नियम जिससे −1 × −1 = 1 निकाला जा सकता है
गुणा समान तरीके से परिमेय संख्याओं और फिर वास्तविक संख्याओं तक बढ़ाया जाता है।[citation needed]
सेट सिद्धांत के साथ गुणा
गैर-ऋणात्मक पूर्णांकों के गुणनफल को कार्डिनल नंबर कार्डिनल गुणन या पीनो स्वयंसिद्ध अंकगणित का उपयोग करके सेट सिद्धांत के साथ परिभाषित किया जा सकता है। विभिन्न प्रकार की संख्याओं का गुणन कैसे इसे मनमाना पूर्णांकों को गुणा करने के लिए विस्तारित किया जाए, और फिर मनमाना परिमेय संख्याएँ। वास्तविक संख्याओं के गुणनफल को परिमेय संख्याओं के गुणनफल के रूप में परिभाषित किया जाता है; वास्तविक संख्या का निर्माण देखें।[citation needed]
समूह सिद्धांत में गुणन
ऐसे कई समुच्चय हैं, जो गुणन की संक्रिया के अंतर्गत उन अभिगृहीतों को संतुष्ट करते हैं जो समूह गणित संरचना को परिभाषित करते हैं। ये स्वयंसिद्ध समापन, साहचर्य, और एक पहचान तत्व और व्युत्क्रम का समावेश हैं।
एक साधारण उदाहरण गैर-शून्य परिमेय संख्या ओं का समुच्चय है। यहां हमारे पास पहचान 1 है, इसके अलावा समूहों के विपरीत जहां पहचान आम तौर पर 0 है। ध्यान दें कि परिमेय के साथ, हमें शून्य को बाहर करना चाहिए क्योंकि गुणा के तहत, इसमें व्युत्क्रम नहीं होता है: कोई तर्कसंगत संख्या नहीं है जिसे गुणा किया जा सके शून्य से परिणाम 1. इस उदाहरण में, हमारे पास एक एबेलियन समूह है, लेकिन हमेशा ऐसा नहीं होता है।
इसे देखने के लिए, किसी दिए गए क्षेत्र (गणित) पर दिए गए आयाम के व्युत्क्रमणीय वर्ग मैट्रिक्स के सेट पर विचार करें। यहां, समापन, साहचर्य, और पहचान पहचान मैट्रिक्स और व्युत्क्रमों को शामिल करने को सत्यापित करना सीधा है। हालाँकि, मैट्रिक्स गुणन क्रमविनिमेय नहीं है, जो दर्शाता है कि यह समूह गैर-अबेलियन है।
ध्यान देने योग्य एक अन्य तथ्य यह है कि गुणन के अंतर्गत आने वाले पूर्णांक एक समूह नहीं बनाते हैं - भले ही हम शून्य को छोड़ दें। यह 1 और -1 के अलावा अन्य सभी तत्वों के व्युत्क्रम के अस्तित्वहीनता से आसानी से देखा जा सकता है।
समूह सिद्धांत में गुणन को आमतौर पर या तो डॉट द्वारा या जक्सटैपिशन तत्वों के बीच एक ऑपरेशन प्रतीक की चूक द्वारा नोट किया जाता है। इसलिए तत्व a को तत्व b से गुणा करने पर a के रूप में नोट किया जा सकता है b या ab। सेट और ऑपरेशन के संकेत के माध्यम से एक समूह का जिक्र करते समय, डॉट का उपयोग किया जाता है। उदाहरण के लिए, हमारा पहला उदाहरण किसके द्वारा दर्शाया जा सकता है .[citation needed]
विभिन्न प्रकार की संख्याओं का गुणन
संख्याएं 3 सेब, क्रम तीसरा सेब, या माप 3.5 फ़ुट ऊंचा गिन सकती हैं; जैसे-जैसे गणित का इतिहास हमारी उंगलियों पर गिनने से लेकर क्वांटम यांत्रिकी के मॉडलिंग तक आगे बढ़ा है, गुणा को अधिक जटिल और सार प्रकार की संख्याओं के लिए सामान्यीकृत किया गया है, और उन चीजों के लिए जो संख्याएं नहीं हैं जैसे मैट्रिक्स गणित या ज्यादा नहीं दिखती हैं संख्याओं की तरह जैसे चतुष्कोण।
- पूर्णांक
- M की N प्रतियों का योग है जब N और M धनात्मक पूर्ण संख्याएँ हैं। यह n वाइड और m हाई एरे में चीजों की संख्या देता है। ऋणात्मक संख्याओं का सामान्यीकरण किसके द्वारा किया जा सकता है
- तथा
- समान चिह्न नियम परिमेय और वास्तविक संख्याओं पर लागू होते हैं।[citation needed]
- परिमेय संख्या
- अंशों के लिए सामान्यीकरण अंशों और हरों को क्रमशः गुणा करके है: . यह एक आयत का क्षेत्रफल देता है उच्च और चौड़ा है, और एक सरणी में चीजों की संख्या के समान है जब परिमेय संख्याएँ पूर्ण संख्याएँ होती हैं।
- वास्तविक संख्या
- वास्तविक संख्याएँ और उनके उत्पाद वास्तविक संख्याओं का निर्माण कॉची अनुक्रमों से निर्माण।
- जटिल आंकड़े
- जटिल संख्याओं को ध्यान में रखते हुए तथा वास्तविक संख्याओं के क्रमित जोड़े के रूप में तथा , उत्पाद है . यह रीलों के समान ही है जब काल्पनिक भाग तथा शून्य हैं।[citation needed]
- समतुल्य, निरूपित करना जैसा , अपने पास [4][9]:वैकल्पिक रूप से, त्रिकोणमितीय रूप में, यदि , फिर[4]
आगे सामान्यीकरण
- ऊपर समूह सिद्धांत में गुणा देखें, और गुणक समूह , जिसमें उदाहरण के लिए मैट्रिक्स गुणन शामिल है। एक बहुत ही सामान्य, और अमूर्त, गुणन की अवधारणा एक रिंग गणित में गुणात्मक रूप से निरूपित दूसरा बाइनरी ऑपरेशन के रूप में है। रिंग का एक उदाहरण जो उपरोक्त संख्या प्रणालियों में से कोई नहीं है, एक बहुपद वलय है आप बहुपदों को जोड़ और गुणा कर सकते हैं, लेकिन बहुपद किसी भी सामान्य अर्थ में संख्या नहीं हैं।
- विभाजन
- अक्सर विभाजन, , व्युत्क्रम से गुणा के समान है, . कुछ प्रकार की संख्याओं के गुणन में बिना व्युत्क्रम के समान विभाजन हो सकता है; पूर्णांकीय प्रांत में x का कोई व्युत्क्रम नहीं हो सकता हैलेकिन परिभाषित किया जा सकता है। एक विभाजन वलय में व्युत्क्रम होते हैं, लेकिन गैर-कम्यूटेटिव रिंगों में अस्पष्ट हो सकता है क्योंकि के समान नहीं होना चाहिए .[citation needed]
यह भी देखें
- आयामी विश्लेषण
- गुणन एल्गोरिथ्म
- करत्सुबा एल्गोरिथम , बड़ी संख्या के लिए
- टूम-कुक गुणन, बहुत बड़ी संख्या के लिए
- बड़ी संख्या के लिए शॉनहेज-स्ट्रैसन एल्गोरिथम
- पहाड़ा
- बाइनरी गुणक , कंप्यूटर कैसे गुणा करते हैं
- बूथ का गुणन एल्गोरिथम
- फ़्लोटिंग-पॉइंट अंकगणित
- जुड़े हुए गुणा-जोड़
- गुणा–संचय
- वालेस का पेड़
- गुणात्मक प्रतिलोम, व्युत्क्रम
- कारख़ाने का
- जेनेल-लुकास शासक
- चंद्र अंकगणित
- नेपियर की हड्डियाँ
- किसान गुणन
- उत्पाद (गणित), सामान्यीकरण के लिए
- स्लाइड नियम
टिप्पणियाँ
- ↑ "अंकों पर विजय". Nature. 218 (5137): 111. 1968. Bibcode:1968Natur.218S.111.. doi:10.1038/218111c0.
- ↑ "द लैंसेट - पाण्डुलिपियों के इलेक्ट्रॉनिक प्रस्तुतीकरण के लिए प्रारूपण दिशानिर्देश" (PDF). Retrieved 2017-04-25.
- ↑ Weisstein, Eric W. "घातांक". mathworld.wolfram.com (in English). Retrieved 2021-12-29.
- ↑ 4.0 4.1 4.2 4.3 "गुणन - गणित का विश्वकोश". encyclopediaofmath.org. Retrieved 2021-12-29.
- ↑ Biggs, Norman L. (2002). गणित पृथक करें (in English). Oxford University Press. p. 25. ISBN 978-0-19-871369-2.
- ↑ Weisstein, Eric W. "गुणात्मक प्रतिलोम". mathworld.wolfram.com (in English). Retrieved 2022-04-19.
- ↑ Angell, David. "कॉम्प्लेक्स नंबर ऑर्डर करना... नहीं*" (PDF). web.maths.unsw.edu.au. Retrieved 29 December 2021.
{{cite web}}
: CS1 maint: url-status (link) - ↑ "सम्मिश्र संख्याओं पर कुल आदेश". Mathematics Stack Exchange. Retrieved 2021-12-29.
- ↑ "गुणा". planetmath.org. Retrieved 2021-12-29.
संदर्भ
- Boyer, Carl B. (revised by Merzbach, Uta C.) (1991). History of Mathematics. John Wiley and Sons, Inc. ISBN 978-0-471-54397-8.
{{cite book}}
: CS1 maint: multiple names: authors list (link)
इस पृष्ठ में अनुपलब्ध आंतरिक कड़ियों की सूची
- गुणन चिह्न
- तारांकन
- मुक़ाबला
- गुणा और दोहराया जोड़
- विभाजन (गणित)
- योग
- बराबर का चिह्न
- गणितीय अंकन
- नश्तर
- कोष्टक
- कार्रवाई के आदेश
- अदिश (गणित)
- वेक्टर गुणन
- अक्षरों का समूह
- गुणन एल्गोरिथ्म
- गुणक
- एकाधिक (गणित)
- वितरण की जाने वाली संपत्ति
- वास्तविक संख्याओं का निर्माण
- कम से कम ऊपरी सीमा
- धुवीय निर्देशांक
- प्राचीन मिस्र का गुणन
- पहाड़ा
- ईशांगो ने उन्हें देखा
- अपर पैलियोलिथिक
- चीनी गुणा तालिका
- अभिकलनात्मक जटिलता
- भौतिकी में समय
- रफ़्तार
- संबद्धता
- अनंत चिन्ह
- शक्ति साहचर्य
- एकवचन मैट्रिक्स
- सिद्ध
- शोषक तत्व
- शून्य से विभाजन
- गुणात्मक प्रतिलोम
- गणितीय अधिष्ठापन
- उत्तराधिकारी क्रमसूचक
- अंगूठी (गणित)
- बहुपद की अंगूठी
- इंटीग्रल डोमेन
- विभाजन की अंगूठी