बीयर-लैंबर्ट नियम: Difference between revisions
No edit summary |
No edit summary |
||
Line 44: | Line 44: | ||
<math display="block">\tau = \ell\sum_{i = 1}^N \sigma_i n_i,</math> | <math display="block">\tau = \ell\sum_{i = 1}^N \sigma_i n_i,</math> | ||
<math display="block">A = \ell\sum_{i = 1}^N \varepsilon_i c_i.</math> | <math display="block">A = \ell\sum_{i = 1}^N \varepsilon_i c_i.</math> | ||
उदाहरण के लिए [[वायुमंडलीय विज्ञान]] अनुप्रयोगों और [[विकिरण परिरक्षण]] सिद्धांत में अन्य -समान क्षीणन के | उदाहरण के लिए [[वायुमंडलीय विज्ञान]] अनुप्रयोगों और [[विकिरण परिरक्षण]] सिद्धांत में अन्य -समान क्षीणन के स्थिति होते हैं। | ||
कानून बहुत अधिक सांद्रता पर टूट जाता है, खासकर यदि सामग्री अत्यधिक बिखरी हुई हो। बीयर-लैंबर्ट कानून में रैखिकता बनाए रखने के लिए 0.2 से 0.5 की सीमा के भीतर अवशोषण आदर्श है। यदि विकिरण विशेष रूप से तीव्र है, तो अन्य -रैखिक प्रकाशिकी प्रक्रियाएं भी भिन्नताएं पैदा कर सकती हैं। सम्मिलित , मुख्य कारण यह है कि एकाग्रता निर्भरता सामान्य रूप से अन्य-रैखिक है और बीयर का नियम केवल कुछ शर्तों के | कानून बहुत अधिक सांद्रता पर टूट जाता है, खासकर यदि सामग्री अत्यधिक बिखरी हुई हो। बीयर-लैंबर्ट कानून में रैखिकता बनाए रखने के लिए 0.2 से 0.5 की सीमा के भीतर अवशोषण आदर्श है। यदि विकिरण विशेष रूप से तीव्र है, तो अन्य -रैखिक प्रकाशिकी प्रक्रियाएं भी भिन्नताएं पैदा कर सकती हैं। सम्मिलित , मुख्य कारण यह है कि एकाग्रता निर्भरता सामान्य रूप से अन्य-रैखिक है और बीयर का नियम केवल कुछ शर्तों के अनुसार मान्य है जैसा कि नीचे व्युत्पत्ति द्वारा दिखाया गया है। मजबूत ऑसिलेटर्स और उच्च सांद्रता के लिए विचलन मजबूत होते हैं। यदि [[अणु]] एक-दूसरे के करीब हैं तो परस्पर क्रियाएं प्रारंभ हो सकती हैं। इन अंतःक्रियाओं को सामान्यतः भौतिक और रासायनिक अंतःक्रियाओं में विभाजित किया जा सकता है। भौतिक संपर्क अणुओं की ध्रुवीकरण क्षमता को तब तक नहीं बदलते जब तक कि बातचीत इतनी मजबूत न हो कि प्रकाश और आणविक क्वांटम अवस्था इंटरमिक्स (मजबूत युग्मन), लेकिन विद्युत चुम्बकीय युग्मन के माध्यम से क्षीणन क्रॉस सेक्शन अन्य -योज्य हो। इसके विपरीत रासायनिक अंतःक्रियाएं ध्रुवीकरण और इस प्रकार अवशोषण को बदल देती हैं। | ||
<nowiki>===</nowiki> [[क्षीणन गुणांक]] === के साथ अभिव्यक्ति | <nowiki>===</nowiki> [[क्षीणन गुणांक]] === के साथ अभिव्यक्ति | ||
बीयर-लैम्बर्ट कानून को क्षीणन गुणांक के संदर्भ में व्यक्त किया जा सकता है, लेकिन इस | बीयर-लैम्बर्ट कानून को क्षीणन गुणांक के संदर्भ में व्यक्त किया जा सकता है, लेकिन इस स्थिति में बेहतर है कि लैम्बर्ट का कानून कहा जाए, क्योंकि बियर के कानून से राशि एकाग्रता, क्षीणन गुणांक के अंदर छिपी हुई है। (नेपियरियन) क्षीणन गुणांक <math>\mu</math> और दशकीय क्षीणन गुणांक <math>\mu_{10}=\mu/\ln 10</math> सामग्री के प्रतिरूप की मात्रा इसकी संख्या घनत्व और मात्रा सांद्रता से संबंधित होती है | ||
<math display="block">\mu(z) = \sum_{i = 1}^N \mu_i(z) = \sum_{i = 1}^N \sigma_i n_i(z),</math> | <math display="block">\mu(z) = \sum_{i = 1}^N \mu_i(z) = \sum_{i = 1}^N \sigma_i n_i(z),</math> | ||
<math display="block">\mu_{10}(z) = \sum_{i = 1}^N \mu_{10,i}(z) = \sum_{i = 1}^N \varepsilon_i c_i(z)</math> | <math display="block">\mu_{10}(z) = \sum_{i = 1}^N \mu_{10,i}(z) = \sum_{i = 1}^N \varepsilon_i c_i(z)</math> | ||
Line 62: | Line 62: | ||
<math display="block">\tau = \mu\ell,</math> | <math display="block">\tau = \mu\ell,</math> | ||
<math display="block">A = \mu_{10}\ell.</math> | <math display="block">A = \mu_{10}\ell.</math> | ||
कई | कई स्थितियों में, क्षीणन गुणांक भिन्न नहीं होता है <math>z</math>, जिस स्थिति में किसी को अभिन्न प्रदर्शन नहीं करना पड़ता है और कानून को इस प्रकार व्यक्त कर सकता है: | ||
<math display="block">I(z) = I_0 e^{-\mu z}</math> | <math display="block">I(z) = I_0 e^{-\mu z}</math> | ||
जहां क्षीणन सामान्यतः अवशोषण गुणांक का जोड़ होता है <math>\alpha</math> (इलेक्ट्रॉन-होल जोड़े का निर्माण) या प्रकीर्णन (उदाहरण के लिए [[रेले स्कैटरिंग]] यदि प्रकीर्णन केंद्र घटना तरंग दैर्ध्य की तुलना में बहुत छोटा है)।<ref>{{cite book |last=Fox |first=Mark |date=2010 |title=Optical Properties of Solids |edition=2 |url=https://global.oup.com/academic/product/optical-properties-of-solids-9780199573370?lang=en&cc=no |publisher=[[Oxford University Press]] |isbn=978-0199573370 |page=3}}</ref> यह भी ध्यान दें कि कुछ प्रणालियों के लिए हम रख सकते हैं <math>1/\lambda</math> (1 ओवर इनलेस्टिक मीन फ्री पाथ) के स्थान पर {{nowrap|<math>\mu</math>.}}<ref>{{cite book |last1=Attard |first1=Gary |last2=Barnes |first2=Colin |date=1998 |title=Surfaces |publisher=Oxford Chemistry Primers |page=26 |isbn=978-0198556862 }}</ref> | जहां क्षीणन सामान्यतः अवशोषण गुणांक का जोड़ होता है <math>\alpha</math> (इलेक्ट्रॉन-होल जोड़े का निर्माण) या प्रकीर्णन (उदाहरण के लिए [[रेले स्कैटरिंग]] यदि प्रकीर्णन केंद्र घटना तरंग दैर्ध्य की तुलना में बहुत छोटा है)।<ref>{{cite book |last=Fox |first=Mark |date=2010 |title=Optical Properties of Solids |edition=2 |url=https://global.oup.com/academic/product/optical-properties-of-solids-9780199573370?lang=en&cc=no |publisher=[[Oxford University Press]] |isbn=978-0199573370 |page=3}}</ref> यह भी ध्यान दें कि कुछ प्रणालियों के लिए हम रख सकते हैं <math>1/\lambda</math> (1 ओवर इनलेस्टिक मीन फ्री पाथ) के स्थान पर {{nowrap|<math>\mu</math>.}}<ref>{{cite book |last1=Attard |first1=Gary |last2=Barnes |first2=Colin |date=1998 |title=Surfaces |publisher=Oxford Chemistry Primers |page=26 |isbn=978-0198556862 }}</ref> | ||
Line 80: | Line 80: | ||
दशकीय क्षीणन गुणांक μ के बाद से<sub>10</sub> द्वारा (नेपियरियन) क्षीणन गुणांक से संबंधित है {{math|1=''μ''<sub>10</sub> = ''μ''/ln 10}}, भी है | दशकीय क्षीणन गुणांक μ के बाद से<sub>10</sub> द्वारा (नेपियरियन) क्षीणन गुणांक से संबंधित है {{math|1=''μ''<sub>10</sub> = ''μ''/ln 10}}, भी है | ||
<math display="block">T = e^{-\int_0^\ell \ln{10}\,\mu_{10}(z)\mathrm{d}z} = \bigl(e^{-\int_0^\ell \mu_{10}(z)\mathrm{d}z}\bigr)^{\ln{10}} = 10^{-\int_0^\ell \mu_{10}(z)\mathrm{d}z}.</math> | <math display="block">T = e^{-\int_0^\ell \ln{10}\,\mu_{10}(z)\mathrm{d}z} = \bigl(e^{-\int_0^\ell \mu_{10}(z)\mathrm{d}z}\bigr)^{\ln{10}} = 10^{-\int_0^\ell \mu_{10}(z)\mathrm{d}z}.</math> | ||
संख्या घनत्व n से स्वतंत्र तरीके से क्षीणन गुणांक का वर्णन करने के लिए<sub>''i''</sub> सामग्री के प्रतिरूप की एन क्षीणन प्रजातियों में से, क्रॉस सेक्शन (भौतिकी) का परिचय देता है {{math|1=''σ''<sub>''i''</sub> = ''μ''<sub>''i''</sub>(''z'')/''n''<sub>''i''</sub>(''z'')}}. पी<sub>''i''</sub> क्षेत्र का आयाम है; यह सामग्री के प्रतिरूप में बीम के कणों और विशिष्ट i के कणों के | संख्या घनत्व n से स्वतंत्र तरीके से क्षीणन गुणांक का वर्णन करने के लिए<sub>''i''</sub> सामग्री के प्रतिरूप की एन क्षीणन प्रजातियों में से, क्रॉस सेक्शन (भौतिकी) का परिचय देता है {{math|1=''σ''<sub>''i''</sub> = ''μ''<sub>''i''</sub>(''z'')/''n''<sub>''i''</sub>(''z'')}}. पी<sub>''i''</sub> क्षेत्र का आयाम है; यह सामग्री के प्रतिरूप में बीम के कणों और विशिष्ट i के कणों के मध्यपरस्पर क्रिया की संभावना को व्यक्त करता है: | ||
<math display="block">T = e^{-\sum_{i = 1}^N \sigma_i \int_0^\ell n_i(z)\mathrm{d}z}.</math> | <math display="block">T = e^{-\sum_{i = 1}^N \sigma_i \int_0^\ell n_i(z)\mathrm{d}z}.</math> | ||
कोई दाढ़ क्षीणन गुणांक का भी उपयोग कर सकता है {{math|1=''ε''<sub>''i''</sub> = (''N''<sub>A</sub>/ln 10)''σ''<sub>''i''</sub>}}, जहां एन<sub>A</sub> राशि सांद्रता से स्वतंत्र तरीके से क्षीणन गुणांक का वर्णन करने के लिए एवोगैड्रो स्थिरांक है {{math|1=''c''<sub>''i''</sub>(''z'') = ''n''<sub>''i''</sub>(''z'')/N<sub>A</sub>}} सामग्री के प्रतिरूप की क्षीणन प्रजातियों में से: | कोई दाढ़ क्षीणन गुणांक का भी उपयोग कर सकता है {{math|1=''ε''<sub>''i''</sub> = (''N''<sub>A</sub>/ln 10)''σ''<sub>''i''</sub>}}, जहां एन<sub>A</sub> राशि सांद्रता से स्वतंत्र तरीके से क्षीणन गुणांक का वर्णन करने के लिए एवोगैड्रो स्थिरांक है {{math|1=''c''<sub>''i''</sub>(''z'') = ''n''<sub>''i''</sub>(''z'')/N<sub>A</sub>}} सामग्री के प्रतिरूप की क्षीणन प्रजातियों में से: | ||
Line 88: | Line 88: | ||
\end{align} </math> | \end{align} </math> | ||
== वैधता == | == वैधता == | ||
कुछ शर्तों के | कुछ शर्तों के अनुसार बीयर-लैंबर्ट कानून विश्लेषण के क्षीणन और एकाग्रता के मध्य रैखिक संबंध बनाए रखने में विफल रहता है।{{cn|date=February 2022}} इन विचलनों को तीन श्रेणियों में वर्गीकृत किया गया है: | ||
# वास्तविक—कानून की सीमाओं के कारण मौलिक विचलन। | # वास्तविक—कानून की सीमाओं के कारण मौलिक विचलन। | ||
# रासायनिक—जिस प्रतिरूप का विश्लेषण किया जा रहा है उसकी विशिष्ट रासायनिक प्रजातियों के कारण विचलन देखा गया। | # रासायनिक—जिस प्रतिरूप का विश्लेषण किया जा रहा है उसकी विशिष्ट रासायनिक प्रजातियों के कारण विचलन देखा गया। | ||
Line 98: | Line 98: | ||
# क्षीण करने वाले माध्यम को विकिरण को बिखेरना नहीं चाहिए - कोई मैलापन नहीं - जब तक कि इसे [[विभेदक ऑप्टिकल अवशोषण स्पेक्ट्रोस्कोपी]] के रूप में नहीं माना जाता है। | # क्षीण करने वाले माध्यम को विकिरण को बिखेरना नहीं चाहिए - कोई मैलापन नहीं - जब तक कि इसे [[विभेदक ऑप्टिकल अवशोषण स्पेक्ट्रोस्कोपी]] के रूप में नहीं माना जाता है। | ||
# आपतित विकिरण में समानांतर किरणें होनी चाहिए, प्रत्येक अवशोषी माध्यम में समान लंबाई में घूम रही हों। | # आपतित विकिरण में समानांतर किरणें होनी चाहिए, प्रत्येक अवशोषी माध्यम में समान लंबाई में घूम रही हों। | ||
# घटना विकिरण अधिमानतः [[एकरंगा]] होना चाहिए, या कम से कम चौड़ाई होनी चाहिए जो क्षीणन संक्रमण की तुलना में संकीर्ण हो। अन्यथा फोटोडायोड के अतिरिक्त शक्ति के लिए डिटेक्टर के रूप में स्पेक्ट्रोमीटर की आवश्यकता होती है जो तरंग दैर्ध्य के | # घटना विकिरण अधिमानतः [[एकरंगा]] होना चाहिए, या कम से कम चौड़ाई होनी चाहिए जो क्षीणन संक्रमण की तुलना में संकीर्ण हो। अन्यथा फोटोडायोड के अतिरिक्त शक्ति के लिए डिटेक्टर के रूप में स्पेक्ट्रोमीटर की आवश्यकता होती है जो तरंग दैर्ध्य के मध्य भेदभाव नहीं कर सकता। | ||
# घटना प्रवाह परमाणुओं या अणुओं को प्रभावित नहीं करना चाहिए; इसे केवल अध्ययन के | # घटना प्रवाह परमाणुओं या अणुओं को प्रभावित नहीं करना चाहिए; इसे केवल अध्ययन के अनुसार प्रजातियों की अन्य -इनवेसिव जांच के रूप में कार्य करना चाहिए। विशेष रूप से, इसका तात्पर्य यह है कि प्रकाश को ऑप्टिकल संतृप्ति या ऑप्टिकल पंपिंग का कारण नहीं बनना चाहिए, क्योंकि इस तरह के प्रभाव निचले स्तर को कम कर देंगे और संभवतः उत्तेजित उत्सर्जन को जन्म देंगे। | ||
यदि इनमें से कोई भी शर्त पूरी नहीं होती है, तो बीयर-लैम्बर्ट नियम से विचलन होगा। | यदि इनमें से कोई भी शर्त पूरी नहीं होती है, तो बीयर-लैम्बर्ट नियम से विचलन होगा। | ||
== [[स्पेक्ट्रोफोटोमेट्री]] द्वारा रासायनिक विश्लेषण == | == [[स्पेक्ट्रोफोटोमेट्री]] द्वारा रासायनिक विश्लेषण == | ||
प्रतिरूप के व्यापक पूर्व-प्रसंस्करण की आवश्यकता के बिना, स्पेक्ट्रोफोटोमेट्री द्वारा मिश्रण के विश्लेषण के लिए बीयर-लैंबर्ट कानून लागू किया जा सकता है। उदाहरण रक्त प्लाज्मा के | प्रतिरूप के व्यापक पूर्व-प्रसंस्करण की आवश्यकता के बिना, स्पेक्ट्रोफोटोमेट्री द्वारा मिश्रण के विश्लेषण के लिए बीयर-लैंबर्ट कानून लागू किया जा सकता है। उदाहरण रक्त प्लाज्मा के प्रतिरूपों में [[बिलीरुबिन]] का निर्धारण है। शुद्ध बिलीरुबिन का स्पेक्ट्रम ज्ञात है, इसलिए दाढ़ क्षीणन गुणांक ε ज्ञात है। डेकाडिक क्षीणन गुणांक μ के माप<sub>10</sub> तरंग दैर्ध्य λ पर बने होते हैं जो बिलीरुबिन के लिए लगभग अद्वितीय होते हैं और संभावित हस्तक्षेपों के लिए सही करने के लिए दूसरे तरंग दैर्ध्य पर होते हैं। राशि एकाग्रता c तब द्वारा दी जाती है | ||
<math display="block">c = \frac{\mu_{10}(\lambda)}{\varepsilon(\lambda)}.</math> | <math display="block">c = \frac{\mu_{10}(\lambda)}{\varepsilon(\lambda)}.</math> | ||
अधिक जटिल उदाहरण के लिए, मात्रा सांद्रता c पर दो प्रजातियों वाले घोल में मिश्रण पर विचार करें<sub>1</sub> और सी<sub>2</sub>. किसी भी तरंग दैर्ध्य λ पर डेकाडिक क्षीणन गुणांक द्वारा दिया जाता है | अधिक जटिल उदाहरण के लिए, मात्रा सांद्रता c पर दो प्रजातियों वाले घोल में मिश्रण पर विचार करें<sub>1</sub> और सी<sub>2</sub>. किसी भी तरंग दैर्ध्य λ पर डेकाडिक क्षीणन गुणांक द्वारा दिया जाता है | ||
Line 113: | Line 113: | ||
== वातावरण के लिए आवेदन == | == वातावरण के लिए आवेदन == | ||
यह कानून सौर या तारकीय विकिरण के क्षीणन का वर्णन करने के लिए भी लागू होता है क्योंकि यह वायुमंडल के माध्यम से यात्रा करता है। इस | यह कानून सौर या तारकीय विकिरण के क्षीणन का वर्णन करने के लिए भी लागू होता है क्योंकि यह वायुमंडल के माध्यम से यात्रा करता है। इस स्थिति में, विकिरण के बिखरने के साथ-साथ अवशोषण भी होता है। तिरछे पथ के लिए ऑप्टिकल गहराई है {{nobreak|1=''τ''′ = ''mτ''}}, जहां τ ऊर्ध्वाधर पथ को संदर्भित करता है, m को वायु द्रव्यमान कहा जाता है, और समतल-समानांतर वातावरण के लिए इसे निर्धारित किया जाता है {{nobreak|1=''m'' = sec ''θ''}} जहाँ θ दिए गए पथ के संगत [[चरम कोण]] है। वातावरण के लिए बीयर-लैंबर्ट नियम सामान्यतः लिखा जाता है | ||
<math display="block">T = e^{-m(\tau_\mathrm{a} + \tau_\mathrm{g} + \tau_\mathrm{RS} + \tau_\mathrm{NO_2} + \tau_\mathrm{w} + \tau_\mathrm{O_3} + \tau_\mathrm{r} + \cdots)},</math> | <math display="block">T = e^{-m(\tau_\mathrm{a} + \tau_\mathrm{g} + \tau_\mathrm{RS} + \tau_\mathrm{NO_2} + \tau_\mathrm{w} + \tau_\mathrm{O_3} + \tau_\mathrm{r} + \cdots)},</math> | ||
जहां प्रत्येक τ<sub>''x''</sub> ऑप्टिकल गहराई है जिसका सबस्क्रिप्ट अवशोषण या बिखरने के स्रोत की पहचान करता है जिसका वर्णन करता है: | जहां प्रत्येक τ<sub>''x''</sub> ऑप्टिकल गहराई है जिसका सबस्क्रिप्ट अवशोषण या बिखरने के स्रोत की पहचान करता है जिसका वर्णन करता है: |
Revision as of 21:56, 20 February 2023
फ़ाइल: बियर-Lambert law in solution.JPG|thumb| बीयर-लैम्बर्ट नियम का प्रदर्शन: रोडामाइन बी के घोल में हरी लेसर रोशनी। घोल से गुजरते ही बीम की विकिरण शक्ति कमजोर हो जाती है। बीयर-लैंबर्ट कानून, जिसे बीयर के कानून, लैम्बर्ट-बीयर कानून या बीयर-लैंबर्ट-बाउगर कानून के नाम से भी जाना जाता है, प्रकाश के अवशोषण (विद्युत चुम्बकीय विकिरण) को उस सामग्री के गुणों से संबंधित करता है जिसके माध्यम से प्रकाश यात्रा कर रहा है। कानून सामान्यतः रासायनिक विश्लेषण मापों पर लागू होता है और फोटॉनों, न्यूट्रॉन या दुर्लभ गैसों के लिए भौतिक प्रकाशिकी में क्षीणन को समझने में उपयोग किया जाता है। गणितीय भौतिकी में, यह नियम भटनागर-ग्रॉस-क्रूक संकारक के समाधान के रूप में उत्पन्न होता है।
इतिहास
कानून की खोज 1729 से पूर्व पियरे बौगुएर ने की थी, जब वह पुर्तगाल के अलेंटेजो में संक्षिप्त छुट्टी के समय रेड वाइन को देख रहे थे।[1] इसे प्रायः जोहान हेनरिक लैम्बर्ट के लिए उत्तरदायी ठहराया जाता है, जिन्होंने 1760 में अपने फोटोमेट्रिया में बौगुएर के एस्साई डी'ओप्टिक सुर ला ग्रेडेशन डे ला लुमिएर (क्लाउड जोम्बर्ट, पेरिस, 1729) का हवाला दिया - और यहां तक कि इससे उद्धृत भी किया।[2] लैम्बर्ट के नियम में कहा गया है कि प्रकाश की तीव्रता का हानि जब यह माध्यम में फैलता है तो तीव्रता और पथ की लंबाई के सीधे आनुपातिक होता है। बहुत बाद में, जर्मन वैज्ञानिक अगस्त बीयर ने 1852 में और क्षीणन संबंध की खोज की। बीयर के नियम ने कहा कि समाधान का संप्रेषण स्थिर रहता है यदि एकाग्रता और पथ की लंबाई का उत्पाद स्थिर रहता है।[3] बीयर-लैंबर्ट कानून की आधुनिक व्युत्पत्ति दो कानूनों को जोड़ती है और अवशोषण को सहसंबद्ध करती है, जो संप्रेषण का नकारात्मक दशकीय लघुगणक है, जो क्षीण प्रजातियों की सांद्रता और सामग्री के प्रतिरूप की मोटाई दोनों के लिए है।[4] 1913 में संभवतः रॉबर्ट लूथर और एंड्रियास निकोलोपुलोस द्वारा प्रथम आधुनिक सूत्रीकरण दिया गया था।[5]
गणितीय सूत्रीकरण
बीयर-लैंबर्ट कानून की आम और व्यावहारिक अभिव्यक्ति भौतिक सामग्री के ऑप्टिकल क्षीणन से संबंधित है जिसमें प्रजातियों के नमूना और मोलर अवशोषकता के माध्यम से ऑप्टिकल पथ की लंबाई के लिए एकसमान एकाग्रता की एकल क्षीणन प्रजातियां होती हैं। यह अभिव्यक्ति है:
- अवशोषक है
- क्षीणन प्रजातियों की दाढ़ क्षीणन गुणांक या दाढ़ अवशोषण है
- सेमी में ऑप्टिकल पथ की लंबाई है
- क्षीणन प्रजातियों की दाढ़ की सघनता है
बीयर-लैंबर्ट कानून का अधिक सामान्य रूप बताता है कि, के लिए सामग्री के प्रतिरूप में क्षीणन प्रजातियां,
- क्षीणन प्रजातियों का क्रॉस सेक्शन (भौतिकी) है सामग्री के प्रतिरूप में;
- क्षीणन प्रजातियों की संख्या घनत्व हैसामग्री के प्रतिरूप में;
- क्षीणन प्रजातियों की दाढ़ क्षीणन गुणांक या दाढ़ अवशोषण है सामग्री के प्रतिरूप में;
- क्षीणन प्रजातियों की राशि एकाग्रता है सामग्री के प्रतिरूप में;
- सामग्री के प्रतिरूप के माध्यम से प्रकाश की किरण की पथ लंबाई है।
उपरोक्त समीकरणों में, संप्रेषण सामग्री का प्रतिरूप इसकी ऑप्टिकल गहराई से संबंधित है और इसके अवशोषण ए को निम्नलिखित परिभाषा द्वारा
- उस सामग्री के प्रतिरूप द्वारा प्रेषित दीप्तिमान प्रवाह है;
- उस सामग्री के प्रतिरूप द्वारा प्राप्त उज्ज्वल प्रवाह है।
क्षीणन क्रॉस सेक्शन और दाढ़ क्षीणन गुणांक से संबंधित हैं
एकसमान क्षीणन की स्थिति में ये संबंध बन जाते हैं[6]
कानून बहुत अधिक सांद्रता पर टूट जाता है, खासकर यदि सामग्री अत्यधिक बिखरी हुई हो। बीयर-लैंबर्ट कानून में रैखिकता बनाए रखने के लिए 0.2 से 0.5 की सीमा के भीतर अवशोषण आदर्श है। यदि विकिरण विशेष रूप से तीव्र है, तो अन्य -रैखिक प्रकाशिकी प्रक्रियाएं भी भिन्नताएं पैदा कर सकती हैं। सम्मिलित , मुख्य कारण यह है कि एकाग्रता निर्भरता सामान्य रूप से अन्य-रैखिक है और बीयर का नियम केवल कुछ शर्तों के अनुसार मान्य है जैसा कि नीचे व्युत्पत्ति द्वारा दिखाया गया है। मजबूत ऑसिलेटर्स और उच्च सांद्रता के लिए विचलन मजबूत होते हैं। यदि अणु एक-दूसरे के करीब हैं तो परस्पर क्रियाएं प्रारंभ हो सकती हैं। इन अंतःक्रियाओं को सामान्यतः भौतिक और रासायनिक अंतःक्रियाओं में विभाजित किया जा सकता है। भौतिक संपर्क अणुओं की ध्रुवीकरण क्षमता को तब तक नहीं बदलते जब तक कि बातचीत इतनी मजबूत न हो कि प्रकाश और आणविक क्वांटम अवस्था इंटरमिक्स (मजबूत युग्मन), लेकिन विद्युत चुम्बकीय युग्मन के माध्यम से क्षीणन क्रॉस सेक्शन अन्य -योज्य हो। इसके विपरीत रासायनिक अंतःक्रियाएं ध्रुवीकरण और इस प्रकार अवशोषण को बदल देती हैं।
=== क्षीणन गुणांक === के साथ अभिव्यक्ति बीयर-लैम्बर्ट कानून को क्षीणन गुणांक के संदर्भ में व्यक्त किया जा सकता है, लेकिन इस स्थिति में बेहतर है कि लैम्बर्ट का कानून कहा जाए, क्योंकि बियर के कानून से राशि एकाग्रता, क्षीणन गुणांक के अंदर छिपी हुई है। (नेपियरियन) क्षीणन गुणांक और दशकीय क्षीणन गुणांक सामग्री के प्रतिरूप की मात्रा इसकी संख्या घनत्व और मात्रा सांद्रता से संबंधित होती है
व्युत्पत्ति
मान लें कि प्रकाश की किरण सामग्री के प्रतिरूप में प्रवेश करती है। बीम की दिशा के समानांतर अक्ष के रूप में z को परिभाषित करें। सामग्री के प्रतिरूप को पतली स्लाइस में विभाजित करें, प्रकाश की किरण के लंबवत, मोटाई dz के साथ पर्याप्त रूप से छोटा है कि स्लाइस में कण उसी स्लाइस में दूसरे कण को अस्पष्ट नहीं कर सकता है जब z दिशा के साथ देखा जाता है। स्लाइस से निकलने वाले प्रकाश का उज्ज्वल प्रवाह, उसमें प्रवेश करने वाले प्रकाश की तुलना में कम हो जाता है, द्वारा dΦe(z) = −μ(z)Φe(z) dz, जहां μ (नेपियरियन) क्षीणन गुणांक है, जो निम्न प्रथम-क्रम रैखिक अंतर समीकरण उत्पन्न करता है:
वैधता
कुछ शर्तों के अनुसार बीयर-लैंबर्ट कानून विश्लेषण के क्षीणन और एकाग्रता के मध्य रैखिक संबंध बनाए रखने में विफल रहता है।[citation needed] इन विचलनों को तीन श्रेणियों में वर्गीकृत किया गया है:
- वास्तविक—कानून की सीमाओं के कारण मौलिक विचलन।
- रासायनिक—जिस प्रतिरूप का विश्लेषण किया जा रहा है उसकी विशिष्ट रासायनिक प्रजातियों के कारण विचलन देखा गया।
- उपकरण—विचलन जो क्षीणन मापन के तरीके के कारण होता है।
बीयर-लैंबर्ट कानून के वैध होने के लिए कम से कम छह शर्तों को पूरा करने की आवश्यकता है। ये:
- एटेन्यूएटर्स को दूसरे से स्वतंत्र रूप से कार्य करना चाहिए।
- एटेन्यूएटिंग माध्यम इंटरेक्शन वॉल्यूम में सजातीय होना चाहिए।
- क्षीण करने वाले माध्यम को विकिरण को बिखेरना नहीं चाहिए - कोई मैलापन नहीं - जब तक कि इसे विभेदक ऑप्टिकल अवशोषण स्पेक्ट्रोस्कोपी के रूप में नहीं माना जाता है।
- आपतित विकिरण में समानांतर किरणें होनी चाहिए, प्रत्येक अवशोषी माध्यम में समान लंबाई में घूम रही हों।
- घटना विकिरण अधिमानतः एकरंगा होना चाहिए, या कम से कम चौड़ाई होनी चाहिए जो क्षीणन संक्रमण की तुलना में संकीर्ण हो। अन्यथा फोटोडायोड के अतिरिक्त शक्ति के लिए डिटेक्टर के रूप में स्पेक्ट्रोमीटर की आवश्यकता होती है जो तरंग दैर्ध्य के मध्य भेदभाव नहीं कर सकता।
- घटना प्रवाह परमाणुओं या अणुओं को प्रभावित नहीं करना चाहिए; इसे केवल अध्ययन के अनुसार प्रजातियों की अन्य -इनवेसिव जांच के रूप में कार्य करना चाहिए। विशेष रूप से, इसका तात्पर्य यह है कि प्रकाश को ऑप्टिकल संतृप्ति या ऑप्टिकल पंपिंग का कारण नहीं बनना चाहिए, क्योंकि इस तरह के प्रभाव निचले स्तर को कम कर देंगे और संभवतः उत्तेजित उत्सर्जन को जन्म देंगे।
यदि इनमें से कोई भी शर्त पूरी नहीं होती है, तो बीयर-लैम्बर्ट नियम से विचलन होगा।
स्पेक्ट्रोफोटोमेट्री द्वारा रासायनिक विश्लेषण
प्रतिरूप के व्यापक पूर्व-प्रसंस्करण की आवश्यकता के बिना, स्पेक्ट्रोफोटोमेट्री द्वारा मिश्रण के विश्लेषण के लिए बीयर-लैंबर्ट कानून लागू किया जा सकता है। उदाहरण रक्त प्लाज्मा के प्रतिरूपों में बिलीरुबिन का निर्धारण है। शुद्ध बिलीरुबिन का स्पेक्ट्रम ज्ञात है, इसलिए दाढ़ क्षीणन गुणांक ε ज्ञात है। डेकाडिक क्षीणन गुणांक μ के माप10 तरंग दैर्ध्य λ पर बने होते हैं जो बिलीरुबिन के लिए लगभग अद्वितीय होते हैं और संभावित हस्तक्षेपों के लिए सही करने के लिए दूसरे तरंग दैर्ध्य पर होते हैं। राशि एकाग्रता c तब द्वारा दी जाती है
बहुलक गिरावट और ऑक्सीकरण (जैविक ऊतक में भी) के विश्लेषण के साथ-साथ विभिन्न खाद्य प्रतिरूप में विभिन्न यौगिकों की एकाग्रता को मापने के लिए कानून का व्यापक रूप से निकट-अवरक्त स्पेक्ट्रोस्कोपी और निकट-अवरक्त स्पेक्ट्रोस्कोपी में उपयोग किया जाता है। लगभग 6 माइक्रोमीटर पर कार्बोनिल समूह क्षीणन का आसानी से पता लगाया जा सकता है, और गणना की गई बहुलक के ऑक्सीकरण की डिग्री।
वातावरण के लिए आवेदन
यह कानून सौर या तारकीय विकिरण के क्षीणन का वर्णन करने के लिए भी लागू होता है क्योंकि यह वायुमंडल के माध्यम से यात्रा करता है। इस स्थिति में, विकिरण के बिखरने के साथ-साथ अवशोषण भी होता है। तिरछे पथ के लिए ऑप्टिकल गहराई है τ′ = mτ, जहां τ ऊर्ध्वाधर पथ को संदर्भित करता है, m को वायु द्रव्यमान कहा जाता है, और समतल-समानांतर वातावरण के लिए इसे निर्धारित किया जाता है m = sec θ जहाँ θ दिए गए पथ के संगत चरम कोण है। वातावरण के लिए बीयर-लैंबर्ट नियम सामान्यतः लिखा जाता है
- ए एयरोसौल्ज़ (जो अवशोषित और बिखरा हुआ है) को संदर्भित करता है;
- g समान रूप से मिश्रित गैसें हैं (मुख्य रूप से कार्बन डाईऑक्साइड (CO2) और आणविक ऑक्सीजन (O2) जो केवल अवशोषित करता है);
- नहीं2 मुख्य रूप से शहरी प्रदूषण (केवल अवशोषण) के कारण नाइट्रोजन डाइऑक्साइड है;
- RS रमन के वातावरण में बिखरने के कारण होने वाले प्रभाव हैं;
- डब्ल्यू जल वाष्प जल अवशोषण है;
- ओ3 ओजोन है (केवल अवशोषण);
- आर आणविक ऑक्सीजन से रेले स्कैटरिंग है (ओ2) और नाइट्रोजन (एन2) (आकाश के नीले रंग के लिए जिम्मेदार);
- जिन एटेन्यूएटर्स पर विचार किया जाना है, उनका चयन तरंग दैर्ध्य रेंज पर निर्भर करता है और इसमें कई अन्य यौगिक सम्मिलित हो सकते हैं। इसमें टेट्राऑक्सीजन, जोड़ना, formaldehyde, ग्लाइऑक्साल, हलोजन रेडिकल्स की श्रृंखला और अन्य सम्मिलित हो सकते हैं।
m ऑप्टिकल द्रव्यमान या वायु द्रव्यमान कारक है, शब्द लगभग बराबर (θ के छोटे और मध्यम मूल्यों के लिए) 1/cos θ के बराबर है, जहां θ प्रेक्षित वस्तु का खगोलीय समन्वय प्रणाली है (पृथ्वी की सतह पर लंबवत दिशा से मापा गया कोण) अवलोकन स्थल)। इस समीकरण का उपयोग τ को पुनः प्राप्त करने के लिए किया जा सकता हैa, एयरोसोल ऑप्टिकल गहराई, जो उपग्रह छवियों के सुधार के लिए आवश्यक है और जलवायु में एरोसोल की भूमिका के लिए लेखांकन में भी महत्वपूर्ण है।
यह भी देखें
- एप्लाइड स्पेक्ट्रोस्कोपी
- परमाणु अवशोषण स्पेक्ट्रोस्कोपी
- अवशोषण स्पेक्ट्रोस्कोपी
- गुहा रिंग-डाउन स्पेक्ट्रोस्कोपी
- क्लॉसियस-मोसोटी संबंध
- अवरक्त स्पेक्ट्रोस्कोपी
- नौकरी की साजिश
- लेजर अवशोषण स्पेक्ट्रोमेट्री
- क्लॉसियस-मोसोटी संबंध | लोरेंत्ज़-लॉरेंज संबंध
- लघुगणक
- पॉलिमर गिरावट
- लोगों के नाम पर वैज्ञानिक कानून
- न्यूक्लिक एसिड की मात्रा
- ट्यून करने योग्य डायोड लेजर अवशोषण स्पेक्ट्रोस्कोपी
संदर्भ
- ↑ Bouguer, Pierre (1729). Essai d'optique sur la gradation de la lumière [Optics essay on the attenuation of light] (in français). Paris, France: Claude Jombert. pp. 16–22.
- ↑ Lambert, J.H. (1760). Photometria sive de mensura et gradibus luminis, colorum et umbrae [Photometry, or, On the measure and gradations of light intensity, colors, and shade] (in Latina). Augsburg, (Germany): Eberhardt Klett.
- ↑ Beer (1852). "Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten" [Determination of the absorption of red light in colored liquids]. Annalen der Physik und Chemie (in Deutsch). 162 (5): 78–88. Bibcode:1852AnP...162...78B. doi:10.1002/andp.18521620505.
- ↑ Ingle, J. D. J.; Crouch, S. R. (1988). Spectrochemical Analysis. New Jersey: Prentice Hall.
- ↑ Mayerhöfer, Thomas G.; Pahlow, Susanne; Popp, Jürgen (2020). "The Bouguer-Beer-Lambert Law: Shining Light on the Obscure". ChemPhysChem. 21 (18): 2031. doi:10.1002/cphc.202000464. PMC 7540309. PMID 32662939.
- ↑ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "Beer–Lambert law". doi:10.1351/goldbook.B00626
- ↑ Fox, Mark (2010). Optical Properties of Solids (2 ed.). Oxford University Press. p. 3. ISBN 978-0199573370.
- ↑ Attard, Gary; Barnes, Colin (1998). Surfaces. Oxford Chemistry Primers. p. 26. ISBN 978-0198556862.