बीयर-लैंबर्ट नियम: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{short description|Law describing absorption of light}}
फ़ाइल: बियर-Lambert law in solution.JPG|thumb| बीयर-लैम्बर्ट नियम का प्रदर्शन: [[रोडामाइन बी]] के घोल में हरी लेसर [[रोशनी]]। घोल से गुजरते ही बीम की विकिरण शक्ति कमजोर हो जाती है।
बीयर-लैंबर्ट कानून, जिसे बीयर के कानून, लैम्बर्ट-बीयर कानून या बीयर-लैंबर्ट-बाउगर कानून के नाम से भी जाना जाता है, प्रकाश के [[अवशोषण (विद्युत चुम्बकीय विकिरण)|क्षीणन (विद्युत चुम्बकीय विकिरण)]] को उस सामग्री के गुणों से संबंधित करता है जिसके माध्यम से प्रकाश यात्रा कर रहा है। कानून सामान्यतः [[रासायनिक विश्लेषण]] मापों पर प्रारम्भ होता है और [[फोटॉनों]], [[न्यूट्रॉन]] या दुर्लभ गैसों के लिए [[भौतिक प्रकाशिकी]] में क्षीणन को समझने में उपयोग किया जाता है। [[गणितीय भौतिकी]] में, यह नियम भटनागर-ग्रॉस-क्रूक (बीजीके) समीकरण के समाधान के रूप में उत्पन्न होता है।
बीयर-लैंबर्ट कानून, जिसे बीयर के कानून, लैम्बर्ट-बीयर कानून या बीयर-लैंबर्ट-बाउगर कानून के नाम से भी जाना जाता है, प्रकाश के [[अवशोषण (विद्युत चुम्बकीय विकिरण)|क्षीणन (विद्युत चुम्बकीय विकिरण)]] को उस सामग्री के गुणों से संबंधित करता है जिसके माध्यम से प्रकाश यात्रा कर रहा है। कानून सामान्यतः [[रासायनिक विश्लेषण]] मापों पर प्रारम्भ होता है और [[फोटॉनों]], [[न्यूट्रॉन]] या दुर्लभ गैसों के लिए [[भौतिक प्रकाशिकी]] में क्षीणन को समझने में उपयोग किया जाता है। [[गणितीय भौतिकी]] में, यह नियम भटनागर-ग्रॉस-क्रूक (बीजीके) समीकरण के समाधान के रूप में उत्पन्न होता है।


== इतिहास ==
== इतिहास ==
कानून की खोज 1729 से पूर्व पियरे बौगुएर ने की थी, जब वह [[पुर्तगाल]] के [[Alentejo|अलेंटेजो]] में संक्षिप्त छुट्टी के समय रेड वाइन को देख रहे थे।<ref>{{cite book |last1=Bouguer |first1=Pierre |title=Essai d'optique sur la gradation de la lumière |trans-title=Optics essay on the attenuation of light |date=1729 |publisher=Claude Jombert |location=Paris, France |pages=[https://archive.org/details/UFIE003101_TO0324_PNI-2703_000000/page/16 16]–22 |url=https://archive.org/details/UFIE003101_TO0324_PNI-2703_000000 |language=fr}}</ref> इसे प्रायः [[जोहान हेनरिक लैम्बर्ट]] के लिए उत्तरदायी माना जाता है, जिन्होंने 1760 में अपने [[फोटोमेट्रिया]] में बौगुएर के एस्साई डी'ओप्टिक सुर ला ग्रेडेशन डे ला लुमिएर (क्लाउड जोम्बर्ट, पेरिस, 1729) का अधिकार दिया - और यहां तक ​​​​कि इससे उद्धृत भी किया।<ref>{{cite book |last1=Lambert |first1=J.H. |title=Photometria sive de mensura et gradibus luminis, colorum et umbrae |trans-title=Photometry, or, On the measure and gradations of light intensity, colors, and shade |date=1760 |publisher=Eberhardt Klett |location=Augsburg, (Germany) |url=https://archive.org/details/TO0E039861_TO0324_PNI-2733_000000 |language=la}}</ref> लैम्बर्ट के नियम में कहा गया है कि प्रकाश की तीव्रता की हानि जब माध्यम में फैलती है तो तीव्रता और पथ की लंबाई के सीधे आनुपातिक होती है।अंत में, जर्मन वैज्ञानिक [[अगस्त बीयर|ऑगस्ट बीयर]] ने 1852 में एक और क्षीणन संबंध का शोध किया। बीयर के नियम में कहा गया है कि यदि एकाग्रता और पथ की लंबाई का उत्पाद स्थिर रहता है, तो समाधान का संप्रेषण स्थिर रहता है।<ref>{{cite journal | last1 = Beer | year = 1852 | title = Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten |trans-title=Determination of the absorption of red light in colored liquids | url =https://books.google.com/books?id=PNmXAAAAIAAJ&pg=PA78 | journal = Annalen der Physik und Chemie | volume = 162 | issue = 5| pages = 78–88 |language=de | doi = 10.1002/andp.18521620505 | bibcode = 1852AnP...162...78B }}</ref> बीयर-लैंबर्ट कानून की आधुनिक व्युत्पत्ति दो कानूनों को जोड़ती है और अवशोषण को सहसंबद्ध करती है, जो संप्रेषण का नकारात्मक दशकीय लघुगणक है, जो क्षीण प्रजातियों की सांद्रता और सामग्री के प्रतिरूप की मोटाई दोनों के लिए है।<ref>{{cite book |first1=J. D. J. |last1=Ingle |first2=S. R. |last2=Crouch |title=Spectrochemical Analysis |publisher=[[Prentice Hall]] |location=New Jersey|year=1988}}</ref> प्रथम आधुनिक सूत्रीकरण संभवतः 1913 में रॉबर्ट लूथर और एंड्रियास निकोलोपुलोस द्वारा दिया गया था।<ref>{{cite journal |last1=Mayerhöfer |first1=Thomas G. |last2=Pahlow |first2=Susanne |last3=Popp |first3=Jürgen |title=The Bouguer-Beer-Lambert Law: Shining Light on the Obscure |journal=ChemPhysChem |date=2020 |volume=21 |issue=18 |page=2031 |doi=10.1002/cphc.202000464|pmid=32662939 |pmc=7540309 |doi-access=free }}</ref>
कानून का शोध 1729 से पूर्व पियरे बौगुएर ने की थी, जब वह [[पुर्तगाल]] के [[Alentejo|अलेंटेजो]] में संक्षिप्त छुट्टी के समय रेड वाइन को देख रहे थे।<ref>{{cite book |last1=Bouguer |first1=Pierre |title=Essai d'optique sur la gradation de la lumière |trans-title=Optics essay on the attenuation of light |date=1729 |publisher=Claude Jombert |location=Paris, France |pages=[https://archive.org/details/UFIE003101_TO0324_PNI-2703_000000/page/16 16]–22 |url=https://archive.org/details/UFIE003101_TO0324_PNI-2703_000000 |language=fr}}</ref> इसे प्रायः [[जोहान हेनरिक लैम्बर्ट]] के लिए उत्तरदायी माना जाता है, जिन्होंने 1760 में अपने [[फोटोमेट्रिया]] में बौगुएर के एस्साई डी' ओप्टिक सुर ला ग्रेडेशन डे ला लुमिएर (क्लाउड जोम्बर्ट, पेरिस, 1729) का अधिकार दिया- और यहां तक ​​​​कि इससे उद्धृत भी किया।<ref>{{cite book |last1=Lambert |first1=J.H. |title=Photometria sive de mensura et gradibus luminis, colorum et umbrae |trans-title=Photometry, or, On the measure and gradations of light intensity, colors, and shade |date=1760 |publisher=Eberhardt Klett |location=Augsburg, (Germany) |url=https://archive.org/details/TO0E039861_TO0324_PNI-2733_000000 |language=la}}</ref> लैम्बर्ट के नियम में कहा गया है कि प्रकाश की तीव्रता की हानि जब माध्यम में विस्तारित होती है तो तीव्रता और पथ की लंबाई के सीधे आनुपातिक होती है। अंत में, जर्मन वैज्ञानिक [[अगस्त बीयर|ऑगस्ट बीयर]] ने 1852 में अन्य क्षीणन संबंध का शोध किया। बीयर के नियम में कहा गया है कि यदि एकाग्रता और पथ की लंबाई का उत्पाद स्थिर रहता है, तो समाधान का संप्रेषण स्थिर रहता है।<ref>{{cite journal | last1 = Beer | year = 1852 | title = Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten |trans-title=Determination of the absorption of red light in colored liquids | url =https://books.google.com/books?id=PNmXAAAAIAAJ&pg=PA78 | journal = Annalen der Physik und Chemie | volume = 162 | issue = 5| pages = 78–88 |language=de | doi = 10.1002/andp.18521620505 | bibcode = 1852AnP...162...78B }}</ref> बीयर-लैंबर्ट कानून की आधुनिक व्युत्पत्ति दो कानूनों को जोड़ती है और अवशोषण को सह-संबद्ध करती है, जो संप्रेषण का नकारात्मक दशकीय लघुगणक है, जो क्षीण प्रजातियों की सांद्रता और सामग्री के प्रतिरूप की मोटाई दोनों के लिए है।<ref>{{cite book |first1=J. D. J. |last1=Ingle |first2=S. R. |last2=Crouch |title=Spectrochemical Analysis |publisher=[[Prentice Hall]] |location=New Jersey|year=1988}}</ref> प्रथम आधुनिक सूत्रीकरण संभवतः 1913 में रॉबर्ट लूथर और एंड्रियास निकोलोपुलोस द्वारा दिया गया था।<ref>{{cite journal |last1=Mayerhöfer |first1=Thomas G. |last2=Pahlow |first2=Susanne |last3=Popp |first3=Jürgen |title=The Bouguer-Beer-Lambert Law: Shining Light on the Obscure |journal=ChemPhysChem |date=2020 |volume=21 |issue=18 |page=2031 |doi=10.1002/cphc.202000464|pmid=32662939 |pmc=7540309 |doi-access=free }}</ref>
== गणितीय सूत्रीकरण ==
== गणितीय सूत्रीकरण ==
बीयर-लैंबर्ट कानून की सरल और व्यावहारिक अभिव्यक्ति भौतिक सामग्री के ऑप्टिकल क्षीणन से संबंधित है जिसमें प्रजातियों के प्रतिरूप और मोलर अवशोषकता के माध्यम से [[ऑप्टिकल पथ की लंबाई]] समान एकाग्रता की एकल क्षीणन प्रजातियां होती हैं। यह अभिव्यक्ति है:
बीयर-लैंबर्ट कानून की सरल और व्यावहारिक अभिव्यक्ति भौतिक सामग्री के ऑप्टिकल क्षीणन से संबंधित है जिसमें प्रजातियों के प्रतिरूप और मोलर अवशोषकता के माध्यम से [[ऑप्टिकल पथ की लंबाई]] समान एकाग्रता की एकल क्षीणन प्रजातियां होती हैं। यह अभिव्यक्ति है:
<math display="block">A=\varepsilon \ell c</math>
<math display="block">A=\varepsilon \ell c</math>
जहाँ  
जहाँ  
*<math>A</math> अवशोषण है
*<math>A</math> अवशोषण है।
*<math>\varepsilon</math> क्षीणन प्रजातियों की [[दाढ़ क्षीणन गुणांक|मोलर क्षीणन गुणांक]] या मोलर अवशोषण है
*<math>\varepsilon</math> क्षीणन प्रजातियों की [[दाढ़ क्षीणन गुणांक|मोलर क्षीणन गुणांक]] या मोलर अवशोषण है।
*<math>\ell</math> cm में ऑप्टिकल पथ की लंबाई है
*<math>\ell</math> cm में ऑप्टिकल पथ की लंबाई है।
*<math>c</math> क्षीणन प्रजातियों की एकाग्रता है
*<math>c</math> क्षीणन प्रजातियों की एकाग्रता है।


बीयर-लैंबर्ट कानून का अधिक सामान्य रूप बताता है कि, <math>N</math> के लिए सामग्री के प्रतिरूप में क्षीणन प्रजातियां,
बीयर-लैंबर्ट कानून का अधिक सामान्य रूप बताता है कि, <math>N</math> के लिए सामग्री के प्रतिरूप में क्षीणन प्रजातियां,
Line 40: Line 36:
जहाँ  <math>\mathrm{N_A}</math> अवोगाद्रो नियतांक है।
जहाँ  <math>\mathrm{N_A}</math> अवोगाद्रो नियतांक है।


एकसमान क्षीणन की स्थिति में ये संबंध बन जाते हैं<ref name="GoldBook">{{GoldBookRef|title=Beer–Lambert law|file=B00626|accessdate=2015-03-15}}</ref>
समान क्षीणन की स्थिति में ये संबंध बन जाते हैं<ref name="GoldBook">{{GoldBookRef|title=Beer–Lambert law|file=B00626|accessdate=2015-03-15}}</ref>
<math display="block">T = e^{-\ell\sum_{i = 1}^N \sigma_i n_i} = 10^{-\ell\sum_{i = 1}^N \varepsilon_i c_i},</math>
<math display="block">T = e^{-\ell\sum_{i = 1}^N \sigma_i n_i} = 10^{-\ell\sum_{i = 1}^N \varepsilon_i c_i},</math>
या समकक्ष
या समकक्ष
Line 47: Line 43:
उदाहरण के लिए [[वायुमंडलीय विज्ञान]] अनुप्रयोगों और [[विकिरण परिरक्षण]] सिद्धांत में अन्य-समान क्षीणन की स्थिति होती हैं।
उदाहरण के लिए [[वायुमंडलीय विज्ञान]] अनुप्रयोगों और [[विकिरण परिरक्षण]] सिद्धांत में अन्य-समान क्षीणन की स्थिति होती हैं।


कानून अत्यधिक सांद्रता पर खंडित हो जाता है, यदि सामग्री अत्यधिक बिखरी हुई हो। बीयर-लैंबर्ट कानून में रैखिकता बनाए रखने के लिए 0.2 से 0.5 की सीमा के भीतर अवशोषण आदर्श है। यदि विकिरण विशेष रूप से तीव्र है, तो अन्य-रैखिक प्रकाशिकी प्रक्रियाएं भी भिन्नताएं उत्पन्न कर सकती हैं। यद्यपि, मुख्य कारण यह है कि एकाग्रता निर्भरता सामान्य रूप से अन्य-रैखिक है और बीयर का नियम केवल कुछ प्रावधानों के अनुसार मान्य है जैसा कि नीचे व्युत्पत्ति द्वारा दिखाया गया है। दृढ़ ऑसिलेटर्स और उच्च सांद्रता के लिए विचलन दृढ़ होते हैं। यदि [[अणु]] एक-दूसरे के निकट हैं तो अंतःक्रिया प्रारंभ हो सकती हैं। इन अंतःक्रियाओं को सामान्यतः भौतिक और रासायनिक अंतःक्रियाओं में विभाजित किया जा सकता है। भौतिक संपर्क अणुओं की ध्रुवीकरण क्षमता को तब तक नहीं परिवर्तित करते हैं जब तक कि अंतःक्रिया इतनी दृढ़ न हो कि प्रकाश और आणविक क्वांटम अवस्था इंटरमिक्स (दृढ़ युग्मन), लेकिन विद्युत चुम्बकीय युग्मन के माध्यम से क्षीणन क्रॉस सेक्शन अन्य-योज्य हो। इसके विपरीत रासायनिक अंतःक्रियाएं ध्रुवीकरण और इस प्रकार अवशोषण को परिवर्तित कर देती हैं।
कानून अत्यधिक सांद्रता पर खंडित हो जाता है, यदि सामग्री अत्यधिक विस्तृत हुई हो। बीयर-लैंबर्ट कानून में रैखिकता बनाए रखने के लिए 0.2 से 0.5 की सीमा के भीतर अवशोषण आदर्श है। यदि विकिरण विशेष रूप से तीव्र है, तो अन्य-रैखिक प्रकाशिकी प्रक्रियाएं भी भिन्नताएं उत्पन्न कर सकती हैं। यद्यपि, मुख्य कारण यह है कि एकाग्रता निर्भरता सामान्य रूप से अन्य-रैखिक है और बीयर का नियम केवल कुछ प्रावधानों के अनुसार मान्य है जैसा कि नीचे व्युत्पत्ति द्वारा दिखाया गया है। दृढ़ दोलक और उच्च सांद्रता के लिए विचलन दृढ़ होते हैं। यदि [[अणु]] एक-दूसरे के निकट हैं तो अंतःक्रिया प्रारंभ हो सकती हैं। इन अंतःक्रियाओं को सामान्यतः भौतिक और रासायनिक अंतःक्रियाओं में विभाजित किया जा सकता है। भौतिक संपर्क अणुओं की ध्रुवीकरण क्षमता को तब तक नहीं परिवर्तित करते हैं जब तक कि अंतःक्रिया इतनी दृढ़ न हो कि प्रकाश और आणविक क्वांटम अवस्था इंटरमिक्स (दृढ़ युग्मन), किन्तु विद्युत चुम्बकीय युग्मन के माध्यम से क्षीणन क्रॉस सेक्शन अन्य-योज्य हो। इसके विपरीत रासायनिक अंतःक्रियाएं ध्रुवीकरण और इस प्रकार अवशोषण को परिवर्तित कर देती हैं।


=== [[क्षीणन गुणांक]] के साथ अभिव्यक्ति ===
=== [[क्षीणन गुणांक]] के साथ अभिव्यक्ति ===
बीयर-लैम्बर्ट कानून को क्षीणन गुणांक के संदर्भ में व्यक्त किया जा सकता है, लेकिन इस स्थिति में उत्तम है कि लैम्बर्ट का कानून कहा जाए, क्योंकि बियर के कानून से राशि एकाग्रता, क्षीणन गुणांक के अंदर छिपी हुई है। (नेपियरियन) क्षीणन गुणांक <math>\mu</math> और दशकीय क्षीणन गुणांक <math>\mu_{10}=\mu/\ln 10</math> सामग्री के प्रतिरूप की मात्रा इसकी संख्या घनत्व और मात्रा सांद्रता से संबंधित होती है
बीयर-लैम्बर्ट कानून को क्षीणन गुणांक के संदर्भ में व्यक्त किया जा सकता है, किन्तु इस स्थिति में उत्तम है कि लैम्बर्ट का कानून कहा जाए, क्योंकि बियर के कानून से राशि एकाग्रता, क्षीणन गुणांक के अंदर छिपी हुई है। (नेपियरियन) क्षीणन गुणांक <math>\mu</math> और दशकीय क्षीणन गुणांक <math>\mu_{10}=\mu/\ln 10</math> सामग्री के प्रतिरूप की मात्रा इसकी संख्या घनत्व और मात्रा सांद्रता से संबंधित होती है
<math display="block">\mu(z) = \sum_{i = 1}^N \mu_i(z) = \sum_{i = 1}^N \sigma_i n_i(z),</math>
<math display="block">\mu(z) = \sum_{i = 1}^N \mu_i(z) = \sum_{i = 1}^N \sigma_i n_i(z),</math>
<math display="block">\mu_{10}(z) = \sum_{i = 1}^N \mu_{10,i}(z) = \sum_{i = 1}^N \varepsilon_i c_i(z)</math>
<math display="block">\mu_{10}(z) = \sum_{i = 1}^N \mu_{10,i}(z) = \sum_{i = 1}^N \varepsilon_i c_i(z)</math>
Line 58: Line 54:
<math display="block">\tau = \int_0^\ell \mu(z)\,\mathrm{d}z,</math>
<math display="block">\tau = \int_0^\ell \mu(z)\,\mathrm{d}z,</math>
<math display="block">A = \int_0^\ell \mu_{10}(z)\,\mathrm{d}z.</math>
<math display="block">A = \int_0^\ell \mu_{10}(z)\,\mathrm{d}z.</math>
एकसमान क्षीणन की स्थिति में ये संबंध बन जाते हैं
समान क्षीणन की स्थिति में ये संबंध बन जाते हैं
<math display="block">T = e^{-\mu\ell} = 10^{-\mu_{10}\ell},</math>
<math display="block">T = e^{-\mu\ell} = 10^{-\mu_{10}\ell},</math>
या समकक्ष
या समकक्ष
Line 67: Line 63:
जहां क्षीणन सामान्यतः अवशोषण गुणांक का जोड़ होता है <math>\alpha</math> (इलेक्ट्रॉन-होल जोड़े का निर्माण) या प्रकीर्णन (उदाहरण के लिए [[रेले स्कैटरिंग]] यदि प्रकीर्णन केंद्र घटना तरंग दैर्ध्य की अपेक्षा में बहुत छोटा है)।<ref>{{cite book |last=Fox |first=Mark |date=2010 |title=Optical Properties of Solids |edition=2 |url=https://global.oup.com/academic/product/optical-properties-of-solids-9780199573370?lang=en&cc=no |publisher=[[Oxford University Press]]  |isbn=978-0199573370 |page=3}}</ref> यह भी ध्यान दें कि कुछ प्रणालियों के लिए हम रख सकते हैं <math>1/\lambda</math> (1 ओवर इनलेस्टिक मीन फ्री पाथ) के स्थान पर {{nowrap|<math>\mu</math>.}}<ref>{{cite book |last1=Attard |first1=Gary |last2=Barnes |first2=Colin |date=1998 |title=Surfaces |publisher=Oxford Chemistry Primers |page=26 |isbn=978-0198556862 }}</ref>
जहां क्षीणन सामान्यतः अवशोषण गुणांक का जोड़ होता है <math>\alpha</math> (इलेक्ट्रॉन-होल जोड़े का निर्माण) या प्रकीर्णन (उदाहरण के लिए [[रेले स्कैटरिंग]] यदि प्रकीर्णन केंद्र घटना तरंग दैर्ध्य की अपेक्षा में बहुत छोटा है)।<ref>{{cite book |last=Fox |first=Mark |date=2010 |title=Optical Properties of Solids |edition=2 |url=https://global.oup.com/academic/product/optical-properties-of-solids-9780199573370?lang=en&cc=no |publisher=[[Oxford University Press]]  |isbn=978-0199573370 |page=3}}</ref> यह भी ध्यान दें कि कुछ प्रणालियों के लिए हम रख सकते हैं <math>1/\lambda</math> (1 ओवर इनलेस्टिक मीन फ्री पाथ) के स्थान पर {{nowrap|<math>\mu</math>.}}<ref>{{cite book |last1=Attard |first1=Gary |last2=Barnes |first2=Colin |date=1998 |title=Surfaces |publisher=Oxford Chemistry Primers |page=26 |isbn=978-0198556862 }}</ref>
== व्युत्पत्ति ==
== व्युत्पत्ति ==
मान लें कि प्रकाश की किरण सामग्री के प्रतिरूप में प्रवेश करती है। बीम की दिशा के समानांतर अक्ष के रूप में z को परिभाषित करें। सामग्री के प्रतिरूप को पतली स्लाइस में विभाजित करें, प्रकाश की किरण के लंबवत, मोटाई dz के साथ पर्याप्त रूप से छोटा है कि स्लाइस में कण उसी स्लाइस में दूसरे कण को ​​अस्पष्ट नहीं कर सकता है जब z दिशा के साथ देखा जाता है। स्लाइस से निकलने वाले प्रकाश का उज्ज्वल प्रवाह, उसमें प्रवेश करने वाले प्रकाश की तुलना में कम हो जाता है, द्वारा {{nobreak|1=dΦ<sub>e</sub>(''z'') = −''μ''(''z'')Φ<sub>e</sub>(''z'') d''z''}}, जहां μ (नेपियरियन) क्षीणन गुणांक है, जो निम्न प्रथम-क्रम [[रैखिक अंतर समीकरण]] (ओडीई ) उत्पन्न करता है:
मान लें कि प्रकाश की किरण सामग्री के प्रतिरूप में प्रवेश करती है। बीम की दिशा के समानांतर अक्ष के रूप में z को परिभाषित करें। सामग्री के प्रतिरूप को पतली स्लाइस में विभाजित करें, प्रकाश की किरण के लंबवत, मोटाई dz के साथ पर्याप्त रूप से छोटा है कि स्लाइस में कण उसी स्लाइस में दूसरे कण को ​​अस्पष्ट नहीं कर सकता है जब z दिशा के साथ देखा जाता है। स्लाइस से निकलने वाले प्रकाश का उज्ज्वल प्रवाह, उसमें प्रवेश करने वाले प्रकाश की तुलना में अल्प हो जाता है, द्वारा {{nobreak|1=dΦ<sub>e</sub>(''z'') = −''μ''(''z'')Φ<sub>e</sub>(''z'') d''z''}}, जहां μ (नेपियरियन) क्षीणन गुणांक है, जो निम्न प्रथम-क्रम [[रैखिक अंतर समीकरण]] (ओडीई ) उत्पन्न करता है:
<math display="block">\frac{\mathrm{d}\Phi_\mathrm{e}(z)}{\mathrm{d}z} = -\mu(z)\Phi_\mathrm{e}(z).</math>
<math display="block">\frac{\mathrm{d}\Phi_\mathrm{e}(z)}{\mathrm{d}z} = -\mu(z)\Phi_\mathrm{e}(z).</math>
क्षीणन उन फोटॉनों के कारण होता है जो प्रसारित होने पर या अवशोषण (विद्युत चुम्बकीय विकिरण) के कारण स्लाइस के दूसरी ओर नहीं बन पाए। इस अवकल समीकरण का हल समाकलन गुणक को गुणा करके प्राप्त किया जाता है
क्षीणन उन फोटॉनों के कारण होता है जो प्रसारित होने पर या अवशोषण (विद्युत चुम्बकीय विकिरण) के कारण स्लाइस के दूसरी ओर नहीं बन पाए। इस अवकल समीकरण का समाधान समाकलन गुणक को गुणा करके प्राप्त किया जाता है
<math display="block">e^{\int_0^z \mu(z')\mathrm{d}z'}</math>
<math display="block">e^{\int_0^z \mu(z')\mathrm{d}z'}</math>
प्राप्त करने के लिए
प्राप्त करने के लिए
Line 75: Line 71:
जो उत्पाद नियम (पीछे की ओर प्रारम्भ) के कारण सरल हो जाता है
जो उत्पाद नियम (पीछे की ओर प्रारम्भ) के कारण सरल हो जाता है
<math display="block">\frac{\mathrm{d}}{\mathrm{d}z}\bigl(\Phi_\mathrm{e}(z)\,e^{\int_0^z \mu(z')\mathrm{d}z'}\bigr) = 0.</math>
<math display="block">\frac{\mathrm{d}}{\mathrm{d}z}\bigl(\Phi_\mathrm{e}(z)\,e^{\int_0^z \mu(z')\mathrm{d}z'}\bigr) = 0.</math>
वास्तविक मोटाई ℓ की सामग्री के लिए, दोनों पक्षों को एकीकृत करना और Φ<sub>e</sub> के लिए हल करना, घटना के साथ स्लाइस के साथ {{nobreak|1=Φ<sub>e</sub><sup>i</sup> = Φ<sub>e</sub>(0)}} पर उज्ज्वल प्रवाह और प्रेषित उज्ज्वल प्रवाह {{nobreak|1=Φ<sub>e</sub><sup>t</sup> = Φ<sub>e</sub>(''ℓ'' )}} देता है
वास्तविक मोटाई ℓ की सामग्री के लिए, दोनों पक्षों को एकीकृत करना और Φ<sub>e</sub> के लिए समाधान करना, घटना के साथ स्लाइस के साथ {{nobreak|1=Φ<sub>e</sub><sup>i</sup> = Φ<sub>e</sub>(0)}} पर उज्ज्वल प्रवाह और प्रेषित उज्ज्वल प्रवाह {{nobreak|1=Φ<sub>e</sub><sup>t</sup> = Φ<sub>e</sub>(''ℓ'' )}} देता है
<math display="block">\Phi_\mathrm{e}^\mathrm{t} = \Phi_\mathrm{e}^\mathrm{i}\,e^{-\int_0^\ell \mu(z)\mathrm{d}z},</math>
<math display="block">\Phi_\mathrm{e}^\mathrm{t} = \Phi_\mathrm{e}^\mathrm{i}\,e^{-\int_0^\ell \mu(z)\mathrm{d}z},</math>
और अंत में
और अंत में
Line 81: Line 77:
दशकीय क्षीणन गुणांक μ<sub>10</sub> द्वारा (नेपियरियन) क्षीणन गुणांक {{math|1=''μ''<sub>10</sub> = ''μ''/ln 10}}, से संबंधित है
दशकीय क्षीणन गुणांक μ<sub>10</sub> द्वारा (नेपियरियन) क्षीणन गुणांक {{math|1=''μ''<sub>10</sub> = ''μ''/ln 10}}, से संबंधित है
<math display="block">T = e^{-\int_0^\ell \ln{10}\,\mu_{10}(z)\mathrm{d}z} = \bigl(e^{-\int_0^\ell \mu_{10}(z)\mathrm{d}z}\bigr)^{\ln{10}} = 10^{-\int_0^\ell \mu_{10}(z)\mathrm{d}z}.</math>
<math display="block">T = e^{-\int_0^\ell \ln{10}\,\mu_{10}(z)\mathrm{d}z} = \bigl(e^{-\int_0^\ell \mu_{10}(z)\mathrm{d}z}\bigr)^{\ln{10}} = 10^{-\int_0^\ell \mu_{10}(z)\mathrm{d}z}.</math>
सामग्री के प्रतिरूप की ''N'' क्षीणन प्रजातियों की संख्या घनत्व n<sub>''i''</sub> से स्वतंत्र तरीके से क्षीणन गुणांक का वर्णन करने के लिए, कोई क्षीणन क्रॉस सेक्शन (भौतिकी)  {{math|1=''σ''<sub>''i''</sub> = ''μ''<sub>''i''</sub>(''z'')/''n''<sub>''i''</sub>(''z'')}} प्रदर्शित करता है। σ<sub>''i''</sub> क्षेत्र का आयाम है; यह सामग्री के प्रतिरूप में बीम के कणों और विशिष्ट i के कणों के मध्य परस्पर क्रिया की संभावना को व्यक्त करता है:
सामग्री के प्रतिरूप की ''N'' क्षीणन प्रजातियों की संख्या घनत्व n<sub>''i''</sub> से स्वतंत्र विधि से क्षीणन गुणांक का वर्णन करने के लिए, कोई क्षीणन क्रॉस सेक्शन (भौतिकी)  {{math|1=''σ''<sub>''i''</sub> = ''μ''<sub>''i''</sub>(''z'')/''n''<sub>''i''</sub>(''z'')}} प्रदर्शित करता है। σ<sub>''i''</sub> क्षेत्र का आयाम है; यह सामग्री के प्रतिरूप में बीम के कणों और विशिष्ट i के कणों के मध्य परस्पर क्रिया की संभावना को व्यक्त करता है:
<math display="block">T = e^{-\sum_{i = 1}^N \sigma_i \int_0^\ell n_i(z)\mathrm{d}z}.</math>
<math display="block">T = e^{-\sum_{i = 1}^N \sigma_i \int_0^\ell n_i(z)\mathrm{d}z}.</math>
मोलर क्षीणन गुणांक  {{math|1=''ε''<sub>''i''</sub> = (''N''<sub>A</sub>/ln 10)''σ''<sub>''i''</sub>}},का भी उपयोग कर सकता है जहां N<sub>A</sub> एवोगैड्रो स्थिरांक है क्षीणन गुणांक का वर्णन करने के लिए {{math|1=''c''<sub>''i''</sub>(''z'') = ''n''<sub>''i''</sub>(''z'')/N<sub>A</sub>}} की मात्रा सांद्रता से स्वतंत्र प्रकार से सामग्री के प्रतिरूप की क्षीणन प्रजातियों में से है:
मोलर क्षीणन गुणांक  {{math|1=''ε''<sub>''i''</sub> = (''N''<sub>A</sub>/ln 10)''σ''<sub>''i''</sub>}},का भी उपयोग कर सकता है जहां N<sub>A</sub> एवोगैड्रो स्थिरांक है क्षीणन गुणांक का वर्णन करने के लिए {{math|1=''c''<sub>''i''</sub>(''z'') = ''n''<sub>''i''</sub>(''z'')/N<sub>A</sub>}} की मात्रा सांद्रता से स्वतंत्र प्रकार से सामग्री के प्रतिरूप की क्षीणन प्रजातियों में से है:
Line 94: Line 90:
# उपकरण—विचलन जो क्षीणन मापन के विधि के कारण होता है।
# उपकरण—विचलन जो क्षीणन मापन के विधि के कारण होता है।


बीयर-लैंबर्ट कानून के वैध होने के लिए कम से कम छह प्रावधानों को पूरा करने की आवश्यकता है। ये निम्नलिखित हैं:
बीयर-लैंबर्ट कानून के वैध होने के लिए अल्प से अल्प छह प्रावधानों को पूर्ण करने की आवश्यकता है। ये निम्नलिखित हैं:
# क्षीणकारी को एक दूसरे से स्वतंत्र रूप से कार्य करना चाहिए।
# क्षीणकारी को एक दूसरे के साथ स्वतंत्र रूप से कार्य करना चाहिए।
# क्षीणन माध्यम परस्पर क्रिया आयतन में सजातीय होना चाहिए।
# क्षीणन माध्यम परस्पर क्रिया आयतन में सजातीय होना चाहिए।
# क्षीण माध्यम की विकिरण को प्रकीर्णित नहीं करना चाहिए - कोई अशुद्धता नहीं - जब तक कि इसे [[विभेदक ऑप्टिकल अवशोषण स्पेक्ट्रोस्कोपी|विभेदक ऑप्टिकल अवशोषण स्पेक्ट्रोस्कोपी (डीओएएस)]] के रूप में सम्मिलित नहीं किया जाता है।
# क्षीण माध्यम की विकिरण को प्रकीर्णित नहीं करना चाहिए- कोई अशुद्धता नहीं- जब तक कि इसे [[विभेदक ऑप्टिकल अवशोषण स्पेक्ट्रोस्कोपी|विभेदक ऑप्टिकल अवशोषण स्पेक्ट्रोस्कोपी (डीओएएस)]] के रूप में सम्मिलित नहीं किया जाता है।
# आपतित विकिरण में समानांतर किरणें सम्मिलित होनी चाहिए, प्रत्येक अवशोषित माध्यम में समान लंबाई की यात्रा करती है।
# आपतित विकिरण में समानांतर किरणें सम्मिलित होनी चाहिए, प्रत्येक अवशोषित माध्यम में समान लंबाई की यात्रा करती है।
# आपतित विकिरण अधिमानतः [[एकरंगा|मोनोक्रोमैटिक]] होनी चाहिए, या कम से कम चौड़ाई होनी चाहिए जो क्षीणन संक्रमण की तुलना में संकीर्ण हो। अन्यथा फोटोडायोड के अतिरिक्त शक्ति के लिए संसूचक के रूप में स्पेक्ट्रोमीटर की आवश्यकता होती है जो तरंग दैर्ध्य के मध्य भेदभाव नहीं कर सकता।
# आपतित विकिरण अधिमानतः [[एकरंगा|मोनोक्रोमैटिक]] होनी चाहिए, या अल्प से अल्प चौड़ाई होनी चाहिए जो क्षीणन संक्रमण की तुलना में संकीर्ण हो। अन्यथा फोटोडायोड के अतिरिक्त शक्ति के लिए संसूचक के रूप में स्पेक्ट्रोमीटर की आवश्यकता होती है जो तरंग दैर्ध्य के मध्य भेदभाव नहीं कर सकता।
# घटना प्रवाह को परमाणुओं या अणुओं को प्रभावित नहीं करना चाहिए; इसे केवल अध्ययन के अनुसार प्रजातियों की अन्य-इनवेसिव शोध के रूप में कार्य करना चाहिए। विशेष रूप से, इसका तात्पर्य यह है कि प्रकाश को ऑप्टिकल संतृप्ति या ऑप्टिकल पंपिंग का कारण नहीं बनना चाहिए, क्योंकि इस प्रकार के प्रभाव निचले स्तर को अल्प कर देंगे और संभवतः उत्तेजित उत्सर्जन को जन्म देंगे।
# घटना प्रवाह को परमाणुओं या अणुओं को प्रभावित नहीं करना चाहिए; इसे केवल अध्ययन के अनुसार प्रजातियों की अन्य-इनवेसिव शोध के रूप में कार्य करना चाहिए। विशेष रूप से, इसका तात्पर्य यह है कि प्रकाश को ऑप्टिकल संतृप्ति या ऑप्टिकल पंपिंग का कारण नहीं बनना चाहिए, क्योंकि इस प्रकार के प्रभाव निचले स्तर को अल्प कर देंगे और संभवतः उत्तेजित उत्सर्जन को उत्पन्न करते है।


यदि इनमें से कोई भी प्रावधान पूर्ण नहीं होते है, तो बीयर-लैम्बर्ट नियम से विचलन होगा।
यदि इनमें से कोई भी प्रावधान पूर्ण नहीं होते है, तो बीयर-लैम्बर्ट नियम से विचलन होगा।
Line 109: Line 105:
अधिक जटिल उदाहरण के लिए, मात्रा सांद्रता c<sub>1</sub> और c<sub>2</sub> पर दो प्रजातियों वाले समाधान में मिश्रण पर विचार करें। किसी भी तरंग दैर्ध्य λ पर दशकीय क्षीणन गुणांक द्वारा दिया जाता है
अधिक जटिल उदाहरण के लिए, मात्रा सांद्रता c<sub>1</sub> और c<sub>2</sub> पर दो प्रजातियों वाले समाधान में मिश्रण पर विचार करें। किसी भी तरंग दैर्ध्य λ पर दशकीय क्षीणन गुणांक द्वारा दिया जाता है
<math display="block">\mu_{10}(\lambda) = \varepsilon_1(\lambda) c_1 + \varepsilon_2(\lambda) c_2.</math>
<math display="block">\mu_{10}(\lambda) = \varepsilon_1(\lambda) c_1 + \varepsilon_2(\lambda) c_2.</math>
इसलिए, दो तरंग दैर्ध्य पर माप दो अज्ञात में दो समीकरण उत्पन्न करता है और मात्रा सांद्रता ''c''<sub>1</sub> और ''c''<sub>2</sub> निर्धारित करने के लिए पर्याप्त होगा जब तक दो घटकों के मोलर क्षीणन गुणांक, ε<sub>1</sub> और ई<sub>2</sub> दोनों तरंग दैर्ध्य पर ज्ञात हों। क्रैमर के नियम का उपयोग करके इन दो प्रणाली समीकरणों को हल किया जा सकता है। व्यवहार में दो से अधिक तरंग दैर्ध्य पर किए गए मापों से दो राशि सांद्रता निर्धारित करने के लिए रैखिक कम से कम वर्गों (गणित) का उपयोग करना उत्तम होता है। दो से अधिक घटकों वाले मिश्रण का उसी प्रकार से विश्लेषण किया जा सकता है, जिसमें N घटकों वाले मिश्रण के लिए न्यूनतम N तरंग दैर्ध्य का उपयोग किया जाता है।
इसलिए, दो तरंग दैर्ध्य पर माप दो अज्ञात में दो समीकरण उत्पन्न करता है और मात्रा सांद्रता ''c''<sub>1</sub> और ''c''<sub>2</sub> निर्धारित करने के लिए पर्याप्त होगा जब तक दो घटकों के मोलर क्षीणन गुणांक, ε<sub>1</sub> और ई<sub>2</sub> दोनों तरंग दैर्ध्य पर ज्ञात हों। क्रैमर के नियम का उपयोग करके इन दो प्रणाली समीकरणों को समाधान किया जा सकता है। व्यवहार में दो से अधिक तरंग दैर्ध्य पर किए गए मापों से दो राशि सांद्रता निर्धारित करने के लिए रैखिक अल्प से अल्प वर्गों (गणित) का उपयोग करना उत्तम होता है। दो से अधिक घटकों वाले मिश्रण का उसी प्रकार से विश्लेषण किया जा सकता है, जिसमें N घटकों वाले मिश्रण के लिए न्यूनतम N तरंग दैर्ध्य का उपयोग किया जाता है।


बहुलक गिरावट और [[ऑक्सीकरण]] (जैविक ऊतक में भी) के विश्लेषण के साथ-साथ विभिन्न खाद्य प्रतिरूप में विभिन्न यौगिकों की [[एकाग्रता]] को मापने के लिए कानून का व्यापक रूप से [[निकट-अवरक्त स्पेक्ट्रोस्कोपी|इन्फ्रा-रेड स्पेक्ट्रोस्कोपी]] और [[निकट-अवरक्त स्पेक्ट्रोस्कोपी|निकट-अवरक्त]] [[निकट-अवरक्त स्पेक्ट्रोस्कोपी|स्पेक्ट्रोस्कोपी]] में उपयोग किया जाता है। लगभग 6 माइक्रोमीटर पर [[कार्बोनिल समूह]] क्षीणन को सरलता से ज्ञात कर सकते है, और गणना की गई बहुलक के ऑक्सीकरण की डिग्री भी ज्ञात कर सकते है।
बहुलक अल्पता और [[ऑक्सीकरण]] (जैविक ऊतक में भी) के विश्लेषण के साथ-साथ विभिन्न खाद्य प्रतिरूप में विभिन्न यौगिकों की [[एकाग्रता]] को मापने के लिए कानून का व्यापक रूप से [[निकट-अवरक्त स्पेक्ट्रोस्कोपी|इन्फ्रा-रेड स्पेक्ट्रोस्कोपी]] और [[निकट-अवरक्त स्पेक्ट्रोस्कोपी|निकट-अवरक्त]] [[निकट-अवरक्त स्पेक्ट्रोस्कोपी|स्पेक्ट्रोस्कोपी]] में उपयोग किया जाता है। लगभग 6 माइक्रोमीटर पर [[कार्बोनिल समूह]] क्षीणन को सरलता से ज्ञात कर सकते है, और गणना की गई बहुलक के ऑक्सीकरण की डिग्री भी ज्ञात कर सकते है।


== वातावरण के लिए आवेदन ==
== वातावरण के लिए आवेदन ==
यह कानून सौर या तारकीय विकिरण के क्षीणन का वर्णन करने के लिए भी प्रारम्भ होता है क्योंकि यह वायुमंडल के माध्यम से यात्रा करता है। इस स्थिति में, विकिरण के प्रसारण के साथ-साथ अवशोषण भी होता है। तिरछे पथ के लिए ऑप्टिकल गहराई {{nobreak|1=''τ''′ = ''mτ''}} है, जहां τ ऊर्ध्वाधर पथ को संदर्भित करता है, m को सापेक्ष वायु द्रव्यमान कहा जाता है, और समतल-समानांतर वातावरण के लिए इसे {{nobreak|1=''m'' = sec ''θ''}}  के रूप में निर्धारित किया जाता है जहाँ θ दिए गए पथ के संगत [[चरम कोण]] है। वातावरण के लिए बीयर-लैंबर्ट नियम सामान्यतः लिखा जाता है
यह कानून सौर या तारकीय विकिरण के क्षीणन का वर्णन करने के लिए भी प्रारम्भ होता है क्योंकि यह वायुमंडल के माध्यम से यात्रा करता है। इस स्थिति में, विकिरण के प्रसारण के साथ-साथ अवशोषण भी होता है। तिरछे पथ के लिए ऑप्टिकल गहराई {{nobreak|1=''τ''′ = ''mτ''}} है, जहां τ ऊर्ध्वाधर पथ को संदर्भित करता है, m को सापेक्ष वायु द्रव्यमान कहा जाता है, और समतल-समानांतर वातावरण के लिए इसे {{nobreak|1=''m'' = sec ''θ''}}  के रूप में निर्धारित किया जाता है जहाँ θ दिए गए पथ के संगत [[चरम कोण|शिखर कोण]] है। वातावरण के लिए बीयर-लैंबर्ट नियम सामान्यतः लिखा जाता है
<math display="block">T = e^{-m(\tau_\mathrm{a} + \tau_\mathrm{g} + \tau_\mathrm{RS} + \tau_\mathrm{NO_2} + \tau_\mathrm{w} + \tau_\mathrm{O_3} + \tau_\mathrm{r} + \cdots)},</math>
<math display="block">T = e^{-m(\tau_\mathrm{a} + \tau_\mathrm{g} + \tau_\mathrm{RS} + \tau_\mathrm{NO_2} + \tau_\mathrm{w} + \tau_\mathrm{O_3} + \tau_\mathrm{r} + \cdots)},</math>
जहां प्रत्येक τ<sub>''x''</sub> ऑप्टिकल गहराई है जिसका सबस्क्रिप्ट अवशोषण या प्रसारण के स्रोत की पहचान करता है जो इसका वर्णन करता है:
जहां प्रत्येक τ<sub>''x''</sub> ऑप्टिकल गहराई है जिसका सबस्क्रिप्ट अवशोषण या प्रसारण के स्रोत की पहचान करता है जो इसका वर्णन करता है:
* a [[एयरोसौल्ज़]] को संदर्भित करता है (जो अवशोषित और बिखरा हुआ है) ;
* a [[एयरोसौल्ज़]] को संदर्भित करता है (जो अवशोषित और विस्तृत हुआ है) ;
* g समान रूप से मिश्रित गैसें हैं (मुख्य रूप से [[कार्बन डाईऑक्साइड]] (CO<sub>2</sub>) और आणविक [[ऑक्सीजन]] (O<sub>2</sub>) जो केवल अवशोषित करता है);
* g समान रूप से मिश्रित गैसें हैं (मुख्य रूप से [[कार्बन डाईऑक्साइड]] (CO<sub>2</sub>) और आणविक [[ऑक्सीजन]] (O<sub>2</sub>) जो केवल अवशोषित करता है);
* NO<sub>2</sub> मुख्य रूप से शहरी प्रदूषण (केवल अवशोषण) के कारण [[नाइट्रोजन डाइऑक्साइड]] है;
* NO<sub>2</sub> मुख्य रूप से शहरी प्रदूषण (केवल अवशोषण) के कारण [[नाइट्रोजन डाइऑक्साइड]] है;
Line 124: Line 120:
* O<sub>3</sub> [[ओजोन]] है (केवल अवशोषण);
* O<sub>3</sub> [[ओजोन]] है (केवल अवशोषण);
* r आणविक ऑक्सीजन(O<sub>2</sub>) और [[नाइट्रोजन]] (N<sub>2</sub>) (आकाश के नीले रंग के लिए उत्तरदायी) से रेले स्कैटरिंग है ;
* r आणविक ऑक्सीजन(O<sub>2</sub>) और [[नाइट्रोजन]] (N<sub>2</sub>) (आकाश के नीले रंग के लिए उत्तरदायी) से रेले स्कैटरिंग है ;
* जिन एटेन्यूएटर्स पर विचार किया जाना है, उनका चयन तरंग दैर्ध्य रेंज पर निर्भर करता है और इसमें कई अन्य यौगिक सम्मिलित हो सकते हैं। इसमें [[टेट्राऑक्सीजन]], [[जोड़ना|होनो]], [[formaldehyde|फॉर्मल्डेहाइड]], [[ग्लाइऑक्साल]], हलोजन रेडिकल्स की श्रृंखला और अन्य सम्मिलित हो सकते हैं।
* जिन एटेन्यूएटर्स पर विचार किया जाना है, उनका चयन तरंग दैर्ध्य श्रेणी पर निर्भर करता है और इसमें कई अन्य यौगिक सम्मिलित हो सकते हैं। इसमें [[टेट्राऑक्सीजन]], [[जोड़ना|होनो]], [[formaldehyde|फॉर्मल्डेहाइड]], [[ग्लाइऑक्साल]], हलोजन रेडिकल्स की श्रृंखला और अन्य सम्मिलित हो सकते हैं।


m ऑप्टिकल द्रव्यमान या वायु द्रव्यमान कारक है, शब्द लगभग बराबर (θ के छोटे और मध्यम मूल्यों के लिए) से 1/cos θ के बराबर है, जहां θ प्रेक्षित वस्तु का चरम कोण है (पृथ्वी की सतह पर लंबवत दिशा से मापा गया कोण)। इस समीकरण का उपयोग τ<sub>a</sub> एयरोसोल ऑप्टिकल गहराई को पुनः प्राप्त करने के लिए किया जा सकता है, जो उपग्रह छवियों के सुधार के लिए आवश्यक है और जलवायु में एरोसोल की भूमिका के लिए लेखांकन में भी महत्वपूर्ण है।
m ऑप्टिकल द्रव्यमान या वायु द्रव्यमान कारक है, शब्द लगभग बराबर (θ के छोटे और मध्यम मूल्यों के लिए) से 1/cos θ के बराबर है, जहां θ प्रेक्षित वस्तु का शिखर कोण है (पृथ्वी की सतह पर लंबवत दिशा से मापा गया कोण)। इस समीकरण का उपयोग τ<sub>a</sub> एयरोसोल ऑप्टिकल गहराई को पुनः प्राप्त करने के लिए किया जा सकता है, जो उपग्रह छवियों के सुधार के लिए आवश्यक है और जलवायु में एरोसोल की भूमिका के लिए लेखांकन में भी महत्वपूर्ण है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 01:20, 23 February 2023

बीयर-लैंबर्ट कानून, जिसे बीयर के कानून, लैम्बर्ट-बीयर कानून या बीयर-लैंबर्ट-बाउगर कानून के नाम से भी जाना जाता है, प्रकाश के क्षीणन (विद्युत चुम्बकीय विकिरण) को उस सामग्री के गुणों से संबंधित करता है जिसके माध्यम से प्रकाश यात्रा कर रहा है। कानून सामान्यतः रासायनिक विश्लेषण मापों पर प्रारम्भ होता है और फोटॉनों, न्यूट्रॉन या दुर्लभ गैसों के लिए भौतिक प्रकाशिकी में क्षीणन को समझने में उपयोग किया जाता है। गणितीय भौतिकी में, यह नियम भटनागर-ग्रॉस-क्रूक (बीजीके) समीकरण के समाधान के रूप में उत्पन्न होता है।

इतिहास

कानून का शोध 1729 से पूर्व पियरे बौगुएर ने की थी, जब वह पुर्तगाल के अलेंटेजो में संक्षिप्त छुट्टी के समय रेड वाइन को देख रहे थे।[1] इसे प्रायः जोहान हेनरिक लैम्बर्ट के लिए उत्तरदायी माना जाता है, जिन्होंने 1760 में अपने फोटोमेट्रिया में बौगुएर के एस्साई डी' ओप्टिक सुर ला ग्रेडेशन डे ला लुमिएर (क्लाउड जोम्बर्ट, पेरिस, 1729) का अधिकार दिया- और यहां तक ​​​​कि इससे उद्धृत भी किया।[2] लैम्बर्ट के नियम में कहा गया है कि प्रकाश की तीव्रता की हानि जब माध्यम में विस्तारित होती है तो तीव्रता और पथ की लंबाई के सीधे आनुपातिक होती है। अंत में, जर्मन वैज्ञानिक ऑगस्ट बीयर ने 1852 में अन्य क्षीणन संबंध का शोध किया। बीयर के नियम में कहा गया है कि यदि एकाग्रता और पथ की लंबाई का उत्पाद स्थिर रहता है, तो समाधान का संप्रेषण स्थिर रहता है।[3] बीयर-लैंबर्ट कानून की आधुनिक व्युत्पत्ति दो कानूनों को जोड़ती है और अवशोषण को सह-संबद्ध करती है, जो संप्रेषण का नकारात्मक दशकीय लघुगणक है, जो क्षीण प्रजातियों की सांद्रता और सामग्री के प्रतिरूप की मोटाई दोनों के लिए है।[4] प्रथम आधुनिक सूत्रीकरण संभवतः 1913 में रॉबर्ट लूथर और एंड्रियास निकोलोपुलोस द्वारा दिया गया था।[5]

गणितीय सूत्रीकरण

बीयर-लैंबर्ट कानून की सरल और व्यावहारिक अभिव्यक्ति भौतिक सामग्री के ऑप्टिकल क्षीणन से संबंधित है जिसमें प्रजातियों के प्रतिरूप और मोलर अवशोषकता के माध्यम से ऑप्टिकल पथ की लंबाई समान एकाग्रता की एकल क्षीणन प्रजातियां होती हैं। यह अभिव्यक्ति है:

जहाँ

  • अवशोषण है।
  • क्षीणन प्रजातियों की मोलर क्षीणन गुणांक या मोलर अवशोषण है।
  • cm में ऑप्टिकल पथ की लंबाई है।
  • क्षीणन प्रजातियों की एकाग्रता है।

बीयर-लैंबर्ट कानून का अधिक सामान्य रूप बताता है कि, के लिए सामग्री के प्रतिरूप में क्षीणन प्रजातियां,

या समकक्ष वह
जहाँ

  • क्षीणन प्रजातियों का क्रॉस सेक्शन (भौतिकी) है सामग्री के प्रतिरूप में;
  • क्षीणन प्रजातियों की संख्या घनत्व है सामग्री के प्रतिरूप में;
  • क्षीणन प्रजातियों की मोलर क्षीणन गुणांक या मोलर अवशोषण है सामग्री के प्रतिरूप में;
  • क्षीणन प्रजातियों की राशि एकाग्रता है सामग्री के प्रतिरूप में;
  • सामग्री के प्रतिरूप के माध्यम से प्रकाश की किरण की पथ लंबाई है।

उपरोक्त समीकरणों में, सामग्री के प्रतिरूप का संप्रेषण इसकी ऑप्टिकल गहराई से संबंधित है और इसके अवशोषण A को निम्नलिखित परिभाषा द्वारा प्रदर्शित किया जाता है।

जहाँ

  • उस सामग्री के प्रतिरूप द्वारा प्रेषित दीप्तिमान प्रवाह है;
  • उस सामग्री के प्रतिरूप द्वारा प्राप्त उज्ज्वल प्रवाह है।

क्षीणन क्रॉस सेक्शन और मोलर क्षीणन गुणांक से संबंधित हैं

और संख्या घनत्व और राशि एकाग्रता द्वारा
जहाँ अवोगाद्रो नियतांक है।

समान क्षीणन की स्थिति में ये संबंध बन जाते हैं[6]

या समकक्ष
उदाहरण के लिए वायुमंडलीय विज्ञान अनुप्रयोगों और विकिरण परिरक्षण सिद्धांत में अन्य-समान क्षीणन की स्थिति होती हैं।

कानून अत्यधिक सांद्रता पर खंडित हो जाता है, यदि सामग्री अत्यधिक विस्तृत हुई हो। बीयर-लैंबर्ट कानून में रैखिकता बनाए रखने के लिए 0.2 से 0.5 की सीमा के भीतर अवशोषण आदर्श है। यदि विकिरण विशेष रूप से तीव्र है, तो अन्य-रैखिक प्रकाशिकी प्रक्रियाएं भी भिन्नताएं उत्पन्न कर सकती हैं। यद्यपि, मुख्य कारण यह है कि एकाग्रता निर्भरता सामान्य रूप से अन्य-रैखिक है और बीयर का नियम केवल कुछ प्रावधानों के अनुसार मान्य है जैसा कि नीचे व्युत्पत्ति द्वारा दिखाया गया है। दृढ़ दोलक और उच्च सांद्रता के लिए विचलन दृढ़ होते हैं। यदि अणु एक-दूसरे के निकट हैं तो अंतःक्रिया प्रारंभ हो सकती हैं। इन अंतःक्रियाओं को सामान्यतः भौतिक और रासायनिक अंतःक्रियाओं में विभाजित किया जा सकता है। भौतिक संपर्क अणुओं की ध्रुवीकरण क्षमता को तब तक नहीं परिवर्तित करते हैं जब तक कि अंतःक्रिया इतनी दृढ़ न हो कि प्रकाश और आणविक क्वांटम अवस्था इंटरमिक्स (दृढ़ युग्मन), किन्तु विद्युत चुम्बकीय युग्मन के माध्यम से क्षीणन क्रॉस सेक्शन अन्य-योज्य हो। इसके विपरीत रासायनिक अंतःक्रियाएं ध्रुवीकरण और इस प्रकार अवशोषण को परिवर्तित कर देती हैं।

क्षीणन गुणांक के साथ अभिव्यक्ति

बीयर-लैम्बर्ट कानून को क्षीणन गुणांक के संदर्भ में व्यक्त किया जा सकता है, किन्तु इस स्थिति में उत्तम है कि लैम्बर्ट का कानून कहा जाए, क्योंकि बियर के कानून से राशि एकाग्रता, क्षीणन गुणांक के अंदर छिपी हुई है। (नेपियरियन) क्षीणन गुणांक और दशकीय क्षीणन गुणांक सामग्री के प्रतिरूप की मात्रा इसकी संख्या घनत्व और मात्रा सांद्रता से संबंधित होती है

क्रमशः, क्षीणन क्रॉस सेक्शन और मोलर क्षीणन गुणांक की परिभाषा द्वारा, बीयर-लैंबर्ट कानून बन जाता है
और
समान क्षीणन की स्थिति में ये संबंध बन जाते हैं
या समकक्ष
कई स्थितियों में, क्षीणन गुणांक भिन्न नहीं होता है , जिस स्थिति में किसी को अभिन्न प्रदर्शन नहीं करना पड़ता है और कानून को व्यक्त कर सकता है:
जहां क्षीणन सामान्यतः अवशोषण गुणांक का जोड़ होता है (इलेक्ट्रॉन-होल जोड़े का निर्माण) या प्रकीर्णन (उदाहरण के लिए रेले स्कैटरिंग यदि प्रकीर्णन केंद्र घटना तरंग दैर्ध्य की अपेक्षा में बहुत छोटा है)।[7] यह भी ध्यान दें कि कुछ प्रणालियों के लिए हम रख सकते हैं (1 ओवर इनलेस्टिक मीन फ्री पाथ) के स्थान पर .[8]

व्युत्पत्ति

मान लें कि प्रकाश की किरण सामग्री के प्रतिरूप में प्रवेश करती है। बीम की दिशा के समानांतर अक्ष के रूप में z को परिभाषित करें। सामग्री के प्रतिरूप को पतली स्लाइस में विभाजित करें, प्रकाश की किरण के लंबवत, मोटाई dz के साथ पर्याप्त रूप से छोटा है कि स्लाइस में कण उसी स्लाइस में दूसरे कण को ​​अस्पष्ट नहीं कर सकता है जब z दिशा के साथ देखा जाता है। स्लाइस से निकलने वाले प्रकाश का उज्ज्वल प्रवाह, उसमें प्रवेश करने वाले प्रकाश की तुलना में अल्प हो जाता है, द्वारा e(z) = −μ(ze(z) dz, जहां μ (नेपियरियन) क्षीणन गुणांक है, जो निम्न प्रथम-क्रम रैखिक अंतर समीकरण (ओडीई ) उत्पन्न करता है:

क्षीणन उन फोटॉनों के कारण होता है जो प्रसारित होने पर या अवशोषण (विद्युत चुम्बकीय विकिरण) के कारण स्लाइस के दूसरी ओर नहीं बन पाए। इस अवकल समीकरण का समाधान समाकलन गुणक को गुणा करके प्राप्त किया जाता है
प्राप्त करने के लिए
जो उत्पाद नियम (पीछे की ओर प्रारम्भ) के कारण सरल हो जाता है
वास्तविक मोटाई ℓ की सामग्री के लिए, दोनों पक्षों को एकीकृत करना और Φe के लिए समाधान करना, घटना के साथ स्लाइस के साथ Φei = Φe(0) पर उज्ज्वल प्रवाह और प्रेषित उज्ज्वल प्रवाह Φet = Φe( ) देता है
और अंत में
दशकीय क्षीणन गुणांक μ10 द्वारा (नेपियरियन) क्षीणन गुणांक μ10 = μ/ln 10, से संबंधित है
सामग्री के प्रतिरूप की N क्षीणन प्रजातियों की संख्या घनत्व ni से स्वतंत्र विधि से क्षीणन गुणांक का वर्णन करने के लिए, कोई क्षीणन क्रॉस सेक्शन (भौतिकी) σi = μi(z)/ni(z) प्रदर्शित करता है। σi क्षेत्र का आयाम है; यह सामग्री के प्रतिरूप में बीम के कणों और विशिष्ट i के कणों के मध्य परस्पर क्रिया की संभावना को व्यक्त करता है:
मोलर क्षीणन गुणांक εi = (NA/ln 10)σi,का भी उपयोग कर सकता है जहां NA एवोगैड्रो स्थिरांक है क्षीणन गुणांक का वर्णन करने के लिए ci(z) = ni(z)/NA की मात्रा सांद्रता से स्वतंत्र प्रकार से सामग्री के प्रतिरूप की क्षीणन प्रजातियों में से है:

वैधता

कुछ प्रावधानों के अनुसार बीयर-लैंबर्ट कानून विश्लेषण के क्षीणन और एकाग्रता के मध्य रैखिक संबंध बनाए रखने में विफल रहता है।[citation needed] इन विचलनों को तीन श्रेणियों में वर्गीकृत किया गया है:

  1. वास्तविक—कानून की सीमाओं के कारण मौलिक विचलन।
  2. रासायनिक—जिस प्रतिरूप का विश्लेषण किया जा रहा है उसकी विशिष्ट रासायनिक प्रजातियों के कारण विचलन देखा गया।
  3. उपकरण—विचलन जो क्षीणन मापन के विधि के कारण होता है।

बीयर-लैंबर्ट कानून के वैध होने के लिए अल्प से अल्प छह प्रावधानों को पूर्ण करने की आवश्यकता है। ये निम्नलिखित हैं:

  1. क्षीणकारी को एक दूसरे के साथ स्वतंत्र रूप से कार्य करना चाहिए।
  2. क्षीणन माध्यम परस्पर क्रिया आयतन में सजातीय होना चाहिए।
  3. क्षीण माध्यम की विकिरण को प्रकीर्णित नहीं करना चाहिए- कोई अशुद्धता नहीं- जब तक कि इसे विभेदक ऑप्टिकल अवशोषण स्पेक्ट्रोस्कोपी (डीओएएस) के रूप में सम्मिलित नहीं किया जाता है।
  4. आपतित विकिरण में समानांतर किरणें सम्मिलित होनी चाहिए, प्रत्येक अवशोषित माध्यम में समान लंबाई की यात्रा करती है।
  5. आपतित विकिरण अधिमानतः मोनोक्रोमैटिक होनी चाहिए, या अल्प से अल्प चौड़ाई होनी चाहिए जो क्षीणन संक्रमण की तुलना में संकीर्ण हो। अन्यथा फोटोडायोड के अतिरिक्त शक्ति के लिए संसूचक के रूप में स्पेक्ट्रोमीटर की आवश्यकता होती है जो तरंग दैर्ध्य के मध्य भेदभाव नहीं कर सकता।
  6. घटना प्रवाह को परमाणुओं या अणुओं को प्रभावित नहीं करना चाहिए; इसे केवल अध्ययन के अनुसार प्रजातियों की अन्य-इनवेसिव शोध के रूप में कार्य करना चाहिए। विशेष रूप से, इसका तात्पर्य यह है कि प्रकाश को ऑप्टिकल संतृप्ति या ऑप्टिकल पंपिंग का कारण नहीं बनना चाहिए, क्योंकि इस प्रकार के प्रभाव निचले स्तर को अल्प कर देंगे और संभवतः उत्तेजित उत्सर्जन को उत्पन्न करते है।

यदि इनमें से कोई भी प्रावधान पूर्ण नहीं होते है, तो बीयर-लैम्बर्ट नियम से विचलन होगा।

स्पेक्ट्रोफोटोमेट्री द्वारा रासायनिक विश्लेषण

प्रतिरूप के व्यापक पूर्व-प्रसंस्करण की आवश्यकता के बिना, स्पेक्ट्रोफोटोमेट्री द्वारा मिश्रण के विश्लेषण के लिए बीयर-लैंबर्ट कानून प्रारम्भ किया जा सकता है। उदाहरण रक्त प्लाज्मा के प्रतिरूपों में बिलीरुबिन का निर्धारण है। शुद्ध बिलीरुबिन का स्पेक्ट्रम ज्ञात है, इसलिए मोलर क्षीणन गुणांक ε ज्ञात है। दशकीय क्षीणन गुणांक μ10 के माप तरंग दैर्ध्य λ पर किए जाते हैं जो बिलीरुबिन के लिए लगभग अद्वितीय होते हैं और संभावित हस्तक्षेपों के लिए सही करने के लिए दूसरे तरंग दैर्ध्य पर होते हैं। तब राशि एकाग्रता c द्वारा दी जाती है

अधिक जटिल उदाहरण के लिए, मात्रा सांद्रता c1 और c2 पर दो प्रजातियों वाले समाधान में मिश्रण पर विचार करें। किसी भी तरंग दैर्ध्य λ पर दशकीय क्षीणन गुणांक द्वारा दिया जाता है
इसलिए, दो तरंग दैर्ध्य पर माप दो अज्ञात में दो समीकरण उत्पन्न करता है और मात्रा सांद्रता c1 और c2 निर्धारित करने के लिए पर्याप्त होगा जब तक दो घटकों के मोलर क्षीणन गुणांक, ε1 और ई2 दोनों तरंग दैर्ध्य पर ज्ञात हों। क्रैमर के नियम का उपयोग करके इन दो प्रणाली समीकरणों को समाधान किया जा सकता है। व्यवहार में दो से अधिक तरंग दैर्ध्य पर किए गए मापों से दो राशि सांद्रता निर्धारित करने के लिए रैखिक अल्प से अल्प वर्गों (गणित) का उपयोग करना उत्तम होता है। दो से अधिक घटकों वाले मिश्रण का उसी प्रकार से विश्लेषण किया जा सकता है, जिसमें N घटकों वाले मिश्रण के लिए न्यूनतम N तरंग दैर्ध्य का उपयोग किया जाता है।

बहुलक अल्पता और ऑक्सीकरण (जैविक ऊतक में भी) के विश्लेषण के साथ-साथ विभिन्न खाद्य प्रतिरूप में विभिन्न यौगिकों की एकाग्रता को मापने के लिए कानून का व्यापक रूप से इन्फ्रा-रेड स्पेक्ट्रोस्कोपी और निकट-अवरक्त स्पेक्ट्रोस्कोपी में उपयोग किया जाता है। लगभग 6 माइक्रोमीटर पर कार्बोनिल समूह क्षीणन को सरलता से ज्ञात कर सकते है, और गणना की गई बहुलक के ऑक्सीकरण की डिग्री भी ज्ञात कर सकते है।

वातावरण के लिए आवेदन

यह कानून सौर या तारकीय विकिरण के क्षीणन का वर्णन करने के लिए भी प्रारम्भ होता है क्योंकि यह वायुमंडल के माध्यम से यात्रा करता है। इस स्थिति में, विकिरण के प्रसारण के साथ-साथ अवशोषण भी होता है। तिरछे पथ के लिए ऑप्टिकल गहराई τ′ = है, जहां τ ऊर्ध्वाधर पथ को संदर्भित करता है, m को सापेक्ष वायु द्रव्यमान कहा जाता है, और समतल-समानांतर वातावरण के लिए इसे m = sec θ के रूप में निर्धारित किया जाता है जहाँ θ दिए गए पथ के संगत शिखर कोण है। वातावरण के लिए बीयर-लैंबर्ट नियम सामान्यतः लिखा जाता है

जहां प्रत्येक τx ऑप्टिकल गहराई है जिसका सबस्क्रिप्ट अवशोषण या प्रसारण के स्रोत की पहचान करता है जो इसका वर्णन करता है:

m ऑप्टिकल द्रव्यमान या वायु द्रव्यमान कारक है, शब्द लगभग बराबर (θ के छोटे और मध्यम मूल्यों के लिए) से 1/cos θ के बराबर है, जहां θ प्रेक्षित वस्तु का शिखर कोण है (पृथ्वी की सतह पर लंबवत दिशा से मापा गया कोण)। इस समीकरण का उपयोग τa एयरोसोल ऑप्टिकल गहराई को पुनः प्राप्त करने के लिए किया जा सकता है, जो उपग्रह छवियों के सुधार के लिए आवश्यक है और जलवायु में एरोसोल की भूमिका के लिए लेखांकन में भी महत्वपूर्ण है।

यह भी देखें

संदर्भ

  1. Bouguer, Pierre (1729). Essai d'optique sur la gradation de la lumière [Optics essay on the attenuation of light] (in français). Paris, France: Claude Jombert. pp. 16–22.
  2. Lambert, J.H. (1760). Photometria sive de mensura et gradibus luminis, colorum et umbrae [Photometry, or, On the measure and gradations of light intensity, colors, and shade] (in Latina). Augsburg, (Germany): Eberhardt Klett.
  3. Beer (1852). "Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten" [Determination of the absorption of red light in colored liquids]. Annalen der Physik und Chemie (in Deutsch). 162 (5): 78–88. Bibcode:1852AnP...162...78B. doi:10.1002/andp.18521620505.
  4. Ingle, J. D. J.; Crouch, S. R. (1988). Spectrochemical Analysis. New Jersey: Prentice Hall.
  5. Mayerhöfer, Thomas G.; Pahlow, Susanne; Popp, Jürgen (2020). "The Bouguer-Beer-Lambert Law: Shining Light on the Obscure". ChemPhysChem. 21 (18): 2031. doi:10.1002/cphc.202000464. PMC 7540309. PMID 32662939.
  6. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "Beer–Lambert law". doi:10.1351/goldbook.B00626
  7. Fox, Mark (2010). Optical Properties of Solids (2 ed.). Oxford University Press. p. 3. ISBN 978-0199573370.
  8. Attard, Gary; Barnes, Colin (1998). Surfaces. Oxford Chemistry Primers. p. 26. ISBN 978-0198556862.


बाहरी संबंध