ऑपेराड: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
{{Short description|Generalization of associativity properties}} | {{Short description|Generalization of associativity properties}} | ||
गणित में, | गणित में, ऑपेराड एक संरचना है जिसमें एब्स्ट्रैक्ट (संक्षेप) [[ऑपरेशन (गणित)]] होते हैं, प्रत्येक में निश्चित परिमित संख्या में इनपुट और आउटपुट होता है, साथ ही इन ऑपरेशनों को बनाने के प्रकार का विनिर्देश होता है। ओपेरा '''''O''''' दिया गया है <math>O</math>इस सेट पर कंक्रीट ऑपरेशंस के साथ सेट होने के लिए बीजगणित को परिभाषित करता है जो कि संक्षेप [[ऑपरेशन (गणित)|ऑपरेशन]] की तरह ही व्यवहार करता है उदाहरण के लिए, ओपेरा '''''L''''' जैसे '''''L''''' के ऊपर बीजगणित लाई बीजगणित है; अर्थ में '''''L''''' संक्षेप प्रकार से उन ऑपरेशनों को स्कैनकोड करता है जो सभी लाई बीजगणित के लिए सामान्य है।ऑपेराड अपने बीजगणित के लिए [[समूह (गणित)]] के रूप में अपने समूह के प्रतिनिधित्व के लिए है। | ||
== इतिहास == | == इतिहास == | ||
ऑपरेशंस [[बीजगणितीय टोपोलॉजी]] में उत्पन्न होते हैं | ऑपरेशंस [[बीजगणितीय टोपोलॉजी]] में उत्पन्न होते हैं ऑपेराड; 1969 में जे माइकल बोर्डमैन और रेनर एम. वोग्ट<ref>{{Cite journal|last1=Boardman|first1=J. M.|author-link=Michael Boardman|last2=Vogt|first2=R. M.|date=1 November 1968|title=होमोटॉपी-सब कुछ $H$-स्पेस|url=https://www.ams.org/journals/bull/1968-74-06/S0002-9904-1968-12070-1/home.html|journal=Bulletin of the American Mathematical Society|language=en-US|volume=74|issue=6|pages=1117–1123|doi=10.1090/S0002-9904-1968-12070-1|issn=0002-9904|doi-access=free}}</ref><ref>{{Cite book|last1=Boardman|first1=J. M.|author-link=Michael Boardman|last2=Vogt|first2=R. M.|date=1973|title=टोपोलॉजिकल स्पेस पर होमोटॉपी इनवेरिएंट बीजगणितीय संरचनाएं|series=Lecture Notes in Mathematics|language=en-gb|volume=347|doi=10.1007/bfb0068547|issn=0075-8434|isbn=978-3-540-06479-4}}</ref> और 1970 मई जे. पीटर मे द्वारा प्रस्तुत लिया गया था।<ref>{{Cite book|last=May|first=J. P.|author-link=J. Peter May|date=1972|title=पुनरावृत्त लूप रिक्त स्थान की ज्यामिति|series=Lecture Notes in Mathematics|language=en-gb|volume=271|doi=10.1007/bfb0067491|issn=0075-8434|isbn=978-3-540-05904-2|citeseerx=10.1.1.146.3172}}</ref> ऑपेराड शब्द मई द्वारा संचालन और मोनड (श्रेणी सिद्धांत) के पोर्टमंतेऊ के रूप में बनाया गया था (और इसलिए भी कि उनकी मां एक ऑपेरा गायक थीं)।<ref>{{Cite web|url=https://www.math.uchicago.edu/~may/PAPERS/mayi.pdf|title=संचालन, बीजगणित और मॉड्यूल|last=May|first=J. Peter|author-link=J. Peter May|website=math.uchicago.edu|page=2|access-date=28 September 2018}}</ref> 90 के दशक की प्रारम्भ में ऑपेराड में रुचि काफी सीमा तक नवीनीकृत हो गई थी, जब [[मैक्सिम कोंटेसेविच]], [[विक्टर गिन्ज़बर्ग]] और [[मिखाइल कापरानोव]] की प्रारंभिक अंतर्दृष्टि के आधार पर पता चला कि तर्कसंगत होमोटोपी सिद्धांत में कुछ द्वंद [[द्वैत (गणित)|(गणित)]] घटनाओं को ऑपेराड के कोज़ुल द्वंद का उपयोग करके समझाया जा सकता है।<ref>{{Cite journal|last1=Ginzburg|first1=Victor|author-link=Victor Ginzburg|last2=Kapranov|first2=Mikhail|date=1994|title=ओपेरा के लिए द्वंद्व शर्ट|url=https://projecteuclid.org/euclid.dmj/1077286744|journal=Duke Mathematical Journal|language=en|volume=76|issue=1|pages=203–272|doi=10.1215/S0012-7094-94-07608-4|issn=0012-7094|mr=1301191|zbl=0855.18006|s2cid=115166937|via=[[Project Euclid]]}}</ref><ref>{{Cite web|url=http://www.numdam.org/item/SB_1994-1995__37__47_0|title=La renaissance des opérades|last=Loday|first=Jean-Louis|author-link=Jean-Louis Loday|year=1996|website=www.numdam.org|series=[[Séminaire Nicolas Bourbaki]]|language=en|mr=1423619|zbl=0866.18007|access-date=27 September 2018}}</ref> इसके बाद से ऑपरेड्स ने कई अनुप्रयोगों को पाया है, जैसे [[जहर कई गुना]] के [[विरूपण परिमाणीकरण]] में, डेलिग्ने अनुमान,<ref name="Deligne">{{cite arXiv|last1=Kontsevich|first1=Maxim|last2=Soibelman|first2=Yan|date=26 January 2000|title=ऑपरेड्स और डेलिग्ने के अनुमान पर बीजगणित की विकृति|eprint=math/0001151}}</ref> या मैक्सिम कोंटसेविच और [[ थॉमस विलवाकर |थॉमस विलवाकर]] के कार्य में [[ग्राफ (असतत गणित)]] होमोलॉजी (गणित) में किया गया है। | ||
== अंतर्ज्ञान == | == अंतर्ज्ञान == | ||
Line 26: | Line 26: | ||
=== गैर-सममित संक्रिया === | === गैर-सममित संक्रिया === | ||
एक गैर-सीमेट्रिक ऑपेराड (कभी-कभी क्रमपरिवर्तन के बिना ऑपेराड कहा जाता है, या गैर-<math>\Sigma</math>या प्लेन | एक गैर-सीमेट्रिक ऑपेराड (कभी-कभी क्रमपरिवर्तन के बिना ऑपेराड कहा जाता है, या गैर-<math>\Sigma</math>या प्लेन ऑपेराड) में निम्नलिखित सम्मिलित हैं: | ||
* क्रम <math>(P(n))_{n\in\mathbb{N}}</math> समूह के, जिनके तत्व कहलाते हैं<math>n</math>-एरी ऑपरेशन , | * क्रम <math>(P(n))_{n\in\mathbb{N}}</math> समूह के, जिनके तत्व कहलाते हैं<math>n</math>-एरी ऑपरेशन , | ||
* तत्व <math>1</math> में <math>P(1)</math> पहचान कहते हैं, | * तत्व <math>1</math> में <math>P(1)</math> पहचान कहते हैं, | ||
Line 49: | Line 49: | ||
=== सममित ऑपरैड === | === सममित ऑपरैड === | ||
सीमेट्रिक | सीमेट्रिक ऑपेराड (अधिकांशतः ऑपरैड कहा जाता है) गैर-सीमेट्रिक ऑपेराड है <math>P</math> ऊपर के रूप में, एक साथ सीमेट्रिक समूह <math>S_n</math>पर <math>P(n)</math> के एक समान क्रिया के लिए <math>n\in\N</math>, द्वारा चिह्नित <math>*</math> और संतुष्ट करना है | ||
*समतुल्यता: क्रमचय दिया गया <math>t\in S_n</math>, | *समतुल्यता: क्रमचय दिया गया <math>t\in S_n</math>, | ||
Line 75: | Line 75: | ||
</math> | </math> | ||
* क्रमचय क्रियाओं को संरक्षित करता है: <math>f(x*s)=f(x)*s</math>. | * क्रमचय क्रियाओं को संरक्षित करता है: <math>f(x*s)=f(x)*s</math>. | ||
*ऑपेराड इसलिए एक [[श्रेणी (गणित)]] बनाते हैं जिसे निरूपित किया जाता है <math>\mathsf{Oper}</math>. | |||
=== अन्य श्रेणियों में === | === अन्य श्रेणियों में === | ||
अब तक | अब तक ऑपेराड को केवल सेट के [[श्रेणी सिद्धांत]] में ही माना जाता है। अधिक सामान्यतः, किसी भी [[सममित मोनोइडल श्रेणी]] सी में ऑपेराड को परिभाषित करना संभव है। ऐसे में प्रत्येक <math>P(n)</math> सी की एक वस्तु है, रचना <math>\circ</math> एक रूपवाद है <math>P(n)\otimes P(k_1)\otimes\cdots\otimes P(k_n) \to P(k_1+\cdots+k_n)</math> सी में (जहां <math>\otimes</math> मोनोइडल श्रेणी के टेंसर उत्पाद को दर्शाता है), और सममित समूह तत्वों की क्रियाएं सी में आइसोमोर्फिज्म द्वारा दी जाती हैं। | ||
कार्टेशियन उत्पाद द्वारा दिए गए मोनोइडल उत्पाद के साथ एक सामान्य उदाहरण [[टोपोलॉजिकल रिक्त स्थान]] और निरंतर मानचित्र की श्रेणी है। इस मामले में, एक टोपोलॉजिकल | कार्टेशियन उत्पाद द्वारा दिए गए मोनोइडल उत्पाद के साथ एक सामान्य उदाहरण [[टोपोलॉजिकल रिक्त स्थान]] और निरंतर मानचित्र की श्रेणी है। इस मामले में, एक टोपोलॉजिकल ऑपेराड ''रिक्त स्थान'' (सेट के बजाय) के अनुक्रम द्वारा दिया जाता है <math>\{ P(n) \}_{n \ge 0}</math>. ऑपेराड के संरचना मानचित्र (सममित समूहों की रचना और क्रियाएं) को तब निरंतर माना जाता है। परिणाम को एक टोपोलॉजिकल ऑपेराड कहा जाता है। इसी तरह,ऑपेराड के आकारिकी की परिभाषा में, यह मान लेना आवश्यक होगा कि इसमें शामिल मानचित्र निरंतर हैं। | ||
ऑपेराड को परिभाषित करने के लिए अन्य सामान्य सेटिंग्स में शामिल हैं, उदाहरण के लिए, एक [[ क्रमविनिमेय अंगूठी ]], [[चेन कॉम्प्लेक्स]], ग्रुपोइड्स (या यहां तक कि श्रेणियों की श्रेणी), [[कोलजेब्रा]], आदि पर [[मॉड्यूल (गणित)]]। | |||
=== बीजगणित की परिभाषा === | === बीजगणित की परिभाषा === | ||
क्रमविनिमेय वलय R को देखते हुए हम श्रेणी पर विचार करते हैं <math>R\text{-}\mathsf{Mod}</math> आर पर मॉड्यूल का। आर पर एक | क्रमविनिमेय वलय R को देखते हुए हम श्रेणी पर विचार करते हैं <math>R\text{-}\mathsf{Mod}</math> आर पर मॉड्यूल का। आर पर एक ऑपेराड को एक [[ मोनॉइड वस्तु ]] के रूप में परिभाषित किया जा सकता है <math>(T, \gamma, \eta)</math> [[एंडोफंक्टर्स की मोनोइडल श्रेणी]] में <math>R\text{-}\mathsf{Mod}</math> (यह एक मोनाड (श्रेणी सिद्धांत) है) कुछ परिमित स्थिति को संतुष्ट करता है।<ref group="note">”finiteness" refers to the fact that only a finite number of inputs are allowed in the definition of an operad. For example, the condition is satisfied if one can write | ||
:<math>T(V) = \bigoplus_{n=1}^{\infty} T_n \otimes V^{\otimes n}</math>, | :<math>T(V) = \bigoplus_{n=1}^{\infty} T_n \otimes V^{\otimes n}</math>, | ||
:<math>\gamma(V): T_n \otimes T_{i_1} \otimes \cdots \otimes T_{i_n} \to T_{i_1 + \dots + i_n}</math>.</ref> | :<math>\gamma(V): T_n \otimes T_{i_1} \otimes \cdots \otimes T_{i_n} \to T_{i_1 + \dots + i_n}</math>.</ref> | ||
उदाहरण के लिए, बहुपद एंडोफंक्टर्स की श्रेणी में एक मोनोइड वस्तु <math>R\text{-}\mathsf{Mod}</math> | उदाहरण के लिए, बहुपद एंडोफंक्टर्स की श्रेणी में एक मोनोइड वस्तु <math>R\text{-}\mathsf{Mod}</math> एकऑपेराड है।<ref name=Deligne />इसी तरह, एक सममित ऑपेराड को एस-ऑब्जेक्ट की श्रेणी में एक मोनोइड ऑब्जेक्ट के रूप में परिभाषित किया जा सकता है<math>\mathbb{S}</math>-ऑब्जेक्ट्स, जहां <math>\mathbb{S}</math> मतलब एक सममित समूह।<ref>{{cite arXiv|last1=Jones|first1=J. D. S.|last2=Getzler|first2=Ezra|date=8 March 1994|title=डबल लूप स्पेस के लिए ऑपरेड्स, होमोटॉपी बीजगणित और पुनरावृत्त इंटीग्रल|eprint=hep-th/9403055|language=en}}</ref> संयोजी प्रजातियों की श्रेणी में एक मोनोइड वस्तु परिमित सेटों में एक ऑपेराड है। | ||
उपरोक्त अर्थ में एक | उपरोक्त अर्थ में एक ऑपेराड को कभी-कभी सामान्यीकृत रिंग के रूप में माना जाता है। उदाहरण के लिए, निकोलाई ड्यूरोव अपने सामान्यीकृत रिंगों को एंडोफंक्टर्स की मोनोइडल श्रेणी में मोनोइड ऑब्जेक्ट्स के रूप में परिभाषित करता है। <math>\textbf{Set}</math> जो फ़िल्टर्ड कोलिमिट्स के साथ यात्रा करता है।<ref>N. Durov, New approach to Arakelov geometry, University of Bonn, PhD thesis, 2007; [http://www.arxiv.org/abs/0704.2030 arXiv:0704.2030].</ref> यह एक वलय का सामान्यीकरण है क्योंकि प्रत्येक साधारण वलय R एक सन्यासी को परिभाषित करता है <math>\Sigma_R: \textbf{Set} \to \textbf{Set}</math> जो फ्री मॉड्यूल | फ्री आर-मॉड्यूल के अंतर्निहित सेट को एक सेट एक्स भेजता है <math>R^{(X)}</math>X द्वारा उत्पन्न। | ||
== स्वयंसिद्धों को समझना == | == स्वयंसिद्धों को समझना == | ||
Line 100: | Line 99: | ||
नीचे #एसोसिएटिव ओपेरा के साथ तुलना करें। | नीचे #एसोसिएटिव ओपेरा के साथ तुलना करें। | ||
ऑपेराड सिद्धांत में सहयोगीता का मतलब है कि [[अभिव्यक्ति (गणित)]] को छोड़े गए रचनाओं से अस्पष्टता के बिना संचालन शामिल किया जा सकता है, जैसे संचालन के लिए सहयोगीता उत्पादों को छोड़े गए कोष्ठकों से अस्पष्टता के बिना लिखे जाने की अनुमति देती है। | |||
उदाहरण के लिए, अगर <math>\theta</math> एक बाइनरी ऑपरेशन है, जिसे लिखा जाता है <math>\theta(a,b)</math> या <math>(ab)</math>. ताकि <math>\theta</math> सहयोगी हो सकता है या नहीं भी हो सकता है। | उदाहरण के लिए, अगर <math>\theta</math> एक बाइनरी ऑपरेशन है, जिसे लिखा जाता है <math>\theta(a,b)</math> या <math>(ab)</math>. ताकि <math>\theta</math> सहयोगी हो सकता है या नहीं भी हो सकता है। |
Revision as of 09:13, 7 March 2023
गणित में, ऑपेराड एक संरचना है जिसमें एब्स्ट्रैक्ट (संक्षेप) ऑपरेशन (गणित) होते हैं, प्रत्येक में निश्चित परिमित संख्या में इनपुट और आउटपुट होता है, साथ ही इन ऑपरेशनों को बनाने के प्रकार का विनिर्देश होता है। ओपेरा O दिया गया है इस सेट पर कंक्रीट ऑपरेशंस के साथ सेट होने के लिए बीजगणित को परिभाषित करता है जो कि संक्षेप ऑपरेशन की तरह ही व्यवहार करता है उदाहरण के लिए, ओपेरा L जैसे L के ऊपर बीजगणित लाई बीजगणित है; अर्थ में L संक्षेप प्रकार से उन ऑपरेशनों को स्कैनकोड करता है जो सभी लाई बीजगणित के लिए सामान्य है।ऑपेराड अपने बीजगणित के लिए समूह (गणित) के रूप में अपने समूह के प्रतिनिधित्व के लिए है।
इतिहास
ऑपरेशंस बीजगणितीय टोपोलॉजी में उत्पन्न होते हैं ऑपेराड; 1969 में जे माइकल बोर्डमैन और रेनर एम. वोग्ट[1][2] और 1970 मई जे. पीटर मे द्वारा प्रस्तुत लिया गया था।[3] ऑपेराड शब्द मई द्वारा संचालन और मोनड (श्रेणी सिद्धांत) के पोर्टमंतेऊ के रूप में बनाया गया था (और इसलिए भी कि उनकी मां एक ऑपेरा गायक थीं)।[4] 90 के दशक की प्रारम्भ में ऑपेराड में रुचि काफी सीमा तक नवीनीकृत हो गई थी, जब मैक्सिम कोंटेसेविच, विक्टर गिन्ज़बर्ग और मिखाइल कापरानोव की प्रारंभिक अंतर्दृष्टि के आधार पर पता चला कि तर्कसंगत होमोटोपी सिद्धांत में कुछ द्वंद (गणित) घटनाओं को ऑपेराड के कोज़ुल द्वंद का उपयोग करके समझाया जा सकता है।[5][6] इसके बाद से ऑपरेड्स ने कई अनुप्रयोगों को पाया है, जैसे जहर कई गुना के विरूपण परिमाणीकरण में, डेलिग्ने अनुमान,[7] या मैक्सिम कोंटसेविच और थॉमस विलवाकर के कार्य में ग्राफ (असतत गणित) होमोलॉजी (गणित) में किया गया है।
अंतर्ज्ञान
- माना X एक समूह है और को परिभाषित करता है
- और ,
कार्टेशियन प्रोडक्ट से सभी कार्यों का समूह की प्रतिरूप को है।
हम इन कार्यों की रचना कर सकते हैं: दिया गया , , फंक्शन
निम्नानुसार परिभाषित किया गया है: दिया गया से तर्क , हम उन्हें विभाजित करते हैं ब्लॉक, पहले वाला तर्क, दूसरा तर्क, इत्यादि , और फिर क्रियान्वित करें पहले ब्लॉक के लिए, दूसरे ब्लॉक इत्यादि के लिए है। फिर हम मान X से प्राप्त n मानों की सूचि में f को इस प्रकार क्रियान्वित करते हैं |
हम तर्कों को भी अनुमति दे सकते हैं, अर्थात हमारे पास समूह क्रिया है सीमेट्रिक समूह का पर , द्वारा परिभाषित
के लिए , और .
नीचे दी गई सीमेट्रिक ऑपेराड की परिभाषा इन दो आपरेशनों के आवश्यक गुणों को पकड़ती है और .
परिभाषा
गैर-सममित संक्रिया
एक गैर-सीमेट्रिक ऑपेराड (कभी-कभी क्रमपरिवर्तन के बिना ऑपेराड कहा जाता है, या गैर-या प्लेन ऑपेराड) में निम्नलिखित सम्मिलित हैं:
- क्रम समूह के, जिनके तत्व कहलाते हैं-एरी ऑपरेशन ,
- तत्व में पहचान कहते हैं,
- सभी सकारात्मक पूर्णांकों के लिए , , संघटन फंक्शन
निम्नलिखित सुसंगतता सिद्धांतों को संतुष्ट करना:
- पहचान:
- साहचर्य:
सममित ऑपरैड
सीमेट्रिक ऑपेराड (अधिकांशतः ऑपरैड कहा जाता है) गैर-सीमेट्रिक ऑपेराड है ऊपर के रूप में, एक साथ सीमेट्रिक समूह पर के एक समान क्रिया के लिए , द्वारा चिह्नित और संतुष्ट करना है
- समतुल्यता: क्रमचय दिया गया ,
- (जहाँ दाहिने पक्ष की ओर के अवयव को संदर्भित करता है जो समूह पर कार्य करता है इसे तोड़कर ब्लॉक, आकार का पहला , आकार का दूसरा , के माध्यम से वें आकार का ब्लॉक , और फिर इन्हें परमिट करता है द्वारा ब्लॉक करता है , प्रत्येक ब्लॉक को जोड़े रखते) |
- और दिया क्रमचय ,
- ( जहाँ के अवयव को दर्शाता है जो इन ब्लॉकों में से पहले परमिट करता है, दूसरा द्वारा, इत्यादि, और उनके सभी क्रम को उपस्थित रखता है)।
इस परिभाषा में क्रमपरिवर्तन क्रियाएं अधिकांश अनुप्रयोगों के लिए महत्वपूर्ण हैं, जिनमें मूल अनुप्रयोग से लेकर लूप स्पेस तक सम्मिलित हैं।
आकारिकी
ओपेरा का एक रूपवाद एक क्रम के होते हैं
वह:
- पहचान रखता है:
- संरचना को संरक्षित करता है: प्रत्येक एन-आरी ऑपरेशन के लिए और संचालन ,
- क्रमचय क्रियाओं को संरक्षित करता है: .
- ऑपेराड इसलिए एक श्रेणी (गणित) बनाते हैं जिसे निरूपित किया जाता है .
अन्य श्रेणियों में
अब तक ऑपेराड को केवल सेट के श्रेणी सिद्धांत में ही माना जाता है। अधिक सामान्यतः, किसी भी सममित मोनोइडल श्रेणी सी में ऑपेराड को परिभाषित करना संभव है। ऐसे में प्रत्येक सी की एक वस्तु है, रचना एक रूपवाद है सी में (जहां मोनोइडल श्रेणी के टेंसर उत्पाद को दर्शाता है), और सममित समूह तत्वों की क्रियाएं सी में आइसोमोर्फिज्म द्वारा दी जाती हैं।
कार्टेशियन उत्पाद द्वारा दिए गए मोनोइडल उत्पाद के साथ एक सामान्य उदाहरण टोपोलॉजिकल रिक्त स्थान और निरंतर मानचित्र की श्रेणी है। इस मामले में, एक टोपोलॉजिकल ऑपेराड रिक्त स्थान (सेट के बजाय) के अनुक्रम द्वारा दिया जाता है . ऑपेराड के संरचना मानचित्र (सममित समूहों की रचना और क्रियाएं) को तब निरंतर माना जाता है। परिणाम को एक टोपोलॉजिकल ऑपेराड कहा जाता है। इसी तरह,ऑपेराड के आकारिकी की परिभाषा में, यह मान लेना आवश्यक होगा कि इसमें शामिल मानचित्र निरंतर हैं।
ऑपेराड को परिभाषित करने के लिए अन्य सामान्य सेटिंग्स में शामिल हैं, उदाहरण के लिए, एक क्रमविनिमेय अंगूठी , चेन कॉम्प्लेक्स, ग्रुपोइड्स (या यहां तक कि श्रेणियों की श्रेणी), कोलजेब्रा, आदि पर मॉड्यूल (गणित)।
बीजगणित की परिभाषा
क्रमविनिमेय वलय R को देखते हुए हम श्रेणी पर विचार करते हैं आर पर मॉड्यूल का। आर पर एक ऑपेराड को एक मोनॉइड वस्तु के रूप में परिभाषित किया जा सकता है एंडोफंक्टर्स की मोनोइडल श्रेणी में (यह एक मोनाड (श्रेणी सिद्धांत) है) कुछ परिमित स्थिति को संतुष्ट करता है।[note 1] उदाहरण के लिए, बहुपद एंडोफंक्टर्स की श्रेणी में एक मोनोइड वस्तु एकऑपेराड है।[7]इसी तरह, एक सममित ऑपेराड को एस-ऑब्जेक्ट की श्रेणी में एक मोनोइड ऑब्जेक्ट के रूप में परिभाषित किया जा सकता है-ऑब्जेक्ट्स, जहां मतलब एक सममित समूह।[8] संयोजी प्रजातियों की श्रेणी में एक मोनोइड वस्तु परिमित सेटों में एक ऑपेराड है।
उपरोक्त अर्थ में एक ऑपेराड को कभी-कभी सामान्यीकृत रिंग के रूप में माना जाता है। उदाहरण के लिए, निकोलाई ड्यूरोव अपने सामान्यीकृत रिंगों को एंडोफंक्टर्स की मोनोइडल श्रेणी में मोनोइड ऑब्जेक्ट्स के रूप में परिभाषित करता है। जो फ़िल्टर्ड कोलिमिट्स के साथ यात्रा करता है।[9] यह एक वलय का सामान्यीकरण है क्योंकि प्रत्येक साधारण वलय R एक सन्यासी को परिभाषित करता है जो फ्री मॉड्यूल | फ्री आर-मॉड्यूल के अंतर्निहित सेट को एक सेट एक्स भेजता है X द्वारा उत्पन्न।
स्वयंसिद्धों को समझना
साहचर्य स्वयंसिद्ध
साहचर्य का अर्थ है कि संक्रियाओं का संयोजन साहचर्य है
(कार्यक्रम साहचर्य है), श्रेणी सिद्धांत में स्वयंसिद्ध के अनुरूप है ; इसका अर्थ यह नहीं है कि संक्रियाएँ स्वयं संक्रियाओं के रूप में साहचर्य हैं। नीचे #एसोसिएटिव ओपेरा के साथ तुलना करें।
ऑपेराड सिद्धांत में सहयोगीता का मतलब है कि अभिव्यक्ति (गणित) को छोड़े गए रचनाओं से अस्पष्टता के बिना संचालन शामिल किया जा सकता है, जैसे संचालन के लिए सहयोगीता उत्पादों को छोड़े गए कोष्ठकों से अस्पष्टता के बिना लिखे जाने की अनुमति देती है।
उदाहरण के लिए, अगर एक बाइनरी ऑपरेशन है, जिसे लिखा जाता है या . ताकि सहयोगी हो सकता है या नहीं भी हो सकता है।
फिर जो आमतौर पर लिखा जाता है के रूप में स्पष्ट रूप से लिखा गया है . यह भेजता है को (आवेदन करना पहले दो पर, और तीसरे पर पहचान), और फिर बाईं ओर गुणा करता है द्वारा . एक पेड़ के रूप में चित्रित करने पर यह स्पष्ट हो जाता है:
हालाँकि, अभिव्यक्ति एक प्राथमिक अस्पष्ट है: इसका मतलब हो सकता है , अगर आंतरिक रचनाएँ पहले की जाती हैं, या इसका मतलब हो सकता है , यदि बाहरी रचनाएँ पहले की जाती हैं (संचालन दाएं से बाएं पढ़े जाते हैं)। लिखना , यह है बनाम . यही है, पेड़ में लंबवत कोष्ठक गायब हैं:
यदि संचालन की शीर्ष दो पंक्तियों को पहले बनाया जाता है (पर ऊपर की ओर कोष्ठक लगाता है पंक्ति; आंतरिक रचना पहले करता है), निम्नलिखित परिणाम:
जो तब 4-एरी ऑपरेशन के लिए स्पष्ट रूप से मूल्यांकन करता है। एक एनोटेटेड अभिव्यक्ति के रूप में:
यदि संचालन की निचली दो पंक्तियों को पहले बनाया जाता है (नीचे की ओर एक कोष्ठक डालता है पंक्ति; पहले बाहरी रचना करता है), निम्नलिखित परिणाम:
जो तब 4-एरी ऑपरेशन उत्पन्न करने के लिए स्पष्ट रूप से मूल्यांकन करता है:
साहचर्य का संक्रियात्मक अभिगृहीत यह है कि ये एक ही परिणाम देते हैं, और इस प्रकार यह अभिव्यक्ति असंदिग्ध है।
पहचान स्वयंसिद्ध
पहचान स्वयंसिद्ध (बाइनरी ऑपरेशन के लिए) एक पेड़ में कल्पना की जा सकती है:
जिसका अर्थ है कि प्राप्त तीन ऑपरेशन समान हैं: पहचान के साथ पूर्व या बाद की रचना से कोई फर्क नहीं पड़ता। श्रेणियों के लिए, पहचान स्वयंसिद्ध का एक परिणाम है।
उदाहरण
=== एंडोमोर्फिज्म सेट और ऑपरैड बीजगणित === में संचालित होता है ऊपर दिए गए अंतर्ज्ञान पर अनुभाग में दिए गए सबसे बुनियादी ओपेरा हैं। किसी भी सेट के लिए , हम एंडोमोर्फिज्म ऑपरैड प्राप्त करते हैं सभी कार्यों से मिलकर . ये ओपेरा महत्वपूर्ण हैं क्योंकि वे ओपेरा बीजगणित को परिभाषित करने के लिए काम करते हैं। अगर एक ओपेरा है, एक ओपेरा बीजगणित है सेट द्वारा दिया जाता है और एक ऑपेरड मोर्फिज़्म . सहज रूप से, इस तरह की आकृतिवाद के प्रत्येक अमूर्त संचालन को बदल देता है एक ठोस में सेट पर -एरी ऑपरेशन . एक ओपेरा बीजगणित खत्म इस प्रकार एक सेट होता है साथ में ठोस संचालन के साथ जो ओपेरा द्वारा संक्षेप में निर्दिष्ट नियमों का पालन करते हैं .
वेक्टर रिक्त स्थान में एंडोमोर्फिज्म ऑपरैड और ऑपरैड अलजेब्रा
यदि k एक क्षेत्र (गणित) है, तो हम k पर परिमित-विम सदिश समष्टियों की श्रेणी पर विचार कर सकते हैं; यह k पर साधारण टेंसर उत्पाद का उपयोग करके एक मोनोइडल श्रेणी बन जाती है। हम इस श्रेणी में एंडोमोर्फिज्म ऑपरेशंस को निम्नानुसार परिभाषित कर सकते हैं। चलो वी एक परिमित-आयामी वेक्टर अंतरिक्ष हो एंडोमोर्फिज्म ऑपराड वी के होते हैं[10]
- = रैखिक मानचित्रों का स्थान ,
- (रचना) दिया गया , , ..., , उनकी रचना मानचित्र द्वारा दी गई है ,
- (पहचान) में पहचान तत्व पहचान मानचित्र है ,
- (सममित समूह क्रिया) संचालित होता है टेंसर के घटकों को अंदर की अनुमति देकर .
अगर एक ऑपरैड है, एक के-रैखिक ऑपरैड अलजेब्रा ओवर एक परिमित-आयामी वेक्टर स्पेस वी ओवर के और एक ऑपेरड मोर्फिज्म द्वारा दिया जाता है ; यह V पर ठोस बहुरेखीय संक्रियाओं को निर्दिष्ट करने की मात्रा है जो कि के संक्रियाओं की तरह व्यवहार करती है . (ओपेराड्स और ऑपरैड बीजगणित और रिंग्स और मॉड्यूल के बीच समानता पर ध्यान दें: एक अंगूठी आर पर एक मॉड्यूल एक एबेलियन समूह एम द्वारा एक अंगूठी होमोमोर्फिज्म के साथ दिया जाता है .)
अनुप्रयोगों के आधार पर, उपरोक्त की विविधताएं संभव हैं: उदाहरण के लिए, बीजगणितीय टोपोलॉजी में, उनके बीच वेक्टर रिक्त स्थान और टेंसर उत्पादों के बजाय, उचित सामयिक स्थान का उपयोग करता है|(उचित) टोपोलॉजिकल रिक्त स्थान और कार्टेशियन उत्पाद।
थोड़ा कुछ ओपेरा
छोटा 2-डिस्क ओपेरा एक सामयिक ओपेरा है जहां की यूनिट डिस्क के अंदर n डिसजॉइंट डिस्क (गणित) की ऑर्डर की गई सूचियाँ शामिल हैं मूल पर केन्द्रित है। सममित समूह छोटे डिस्क की सूची को क्रमपरिवर्तन करके ऐसे विन्यास पर कार्य करता है। छोटी डिस्क के लिए ऑपेरैडिक रचना को साथ में दाईं ओर दिए गए चित्र में दिखाया गया है, जहां एक तत्व है तत्व से बना है तत्व की प्राप्ति के लिए के विन्यास को सिकोड़ कर प्राप्त किया और इसे की i-th डिस्क में इन्सर्ट करना , के लिए .
समान रूप से, यूनिट बॉल के अंदर असम्बद्ध एन-बॉल्स के कॉन्फ़िगरेशन पर विचार करके कोई भी छोटे एन-डिस्क ऑपरैड को परिभाषित कर सकता है .[11] मूल रूप से छोटे एन-क्यूब्स ऑपेरड या छोटे अंतराल ऑपराड (शुरुआत में छोटे एन-क्यूब्स पीआरओ (श्रेणी सिद्धांत) कहा जाता है) को माइकल बोर्डमैन और रेनर वोग्ट द्वारा इसी तरह परिभाषित किया गया था, असम्बद्ध अक्ष-संरेखित एन- के विन्यास के संदर्भ में। यूनिट अतिविम के अंदर डायमेंशनल हाइपरक्यूब्स (एन-डायमेंशनल इंटरवल (गणित))।[12] बाद में इसे मई तक सामान्य कर दिया गया[13] छोटे उत्तल निकायों के लिए ओपेराड, और छोटी डिस्क छोटे उत्तल निकायों से प्राप्त लोककथाओं का मामला है।[14]
जड़ वाले पेड़
ग्राफ थ्योरी में, जड़ वाले पेड़ एक प्राकृतिक ओपेरा बनाते हैं। यहाँ, n पत्तों वाले सभी जड़ वाले वृक्षों का समुच्चय है, जहाँ पत्तियाँ 1 से n तक क्रमांकित हैं। समूह लीफ लेबल्स को परमिट करके इस सेट पर काम करता है। ऑपरेटिव रचना के i-वें पत्ते को बदलकर दिया जाता है i-वें पेड़ की जड़ से , के लिए , इस प्रकार n पेड़ों को संलग्न करना और एक बड़ा पेड़ बनाते हैं, जिसकी जड़ को जड़ के समान ही लिया जाता है और जिनकी पत्तियाँ क्रम से क्रमांकित हैं।
स्विस-पनीर ओपेरा
छवि: स्विस-पनीर-ऑपराड.pdf|थंब|स्विस-चीज़ ओपेरा।
स्विस-चीज़ ऑपराड एक दो-रंग का टोपोलॉजिकल ऑपेरड है, जो एक इकाई n-semidisk और n के अंदर डिसजॉइंट n-डायमेंशनल डिस्क (गणित) के कॉन्फिगरेशन के संदर्भ में परिभाषित किया गया है। '-डायमेंशनल सेमीडिस्क, यूनिट सेमीडिस्क के आधार पर केंद्रित है और इसके अंदर बैठा है। ऑपेरैडिक रचना यूनिट डिस्क के अंदर छोटी डिस्क के ग्लूइंग कॉन्फ़िगरेशन से दूसरी यूनिट सेमीडिस्क में छोटी डिस्क में और यूनिट सेमीडिस्क के अंदर छोटी डिस्क और सेमीडिस्क के कॉन्फ़िगरेशन से दूसरी यूनिट सेमीडिस्क में आती है।
स्विस-पनीर ओपेरा को अलेक्जेंडर ए वोरोनोव द्वारा परिभाषित किया गया था।[15] इसका उपयोग मैक्सिम कोंटेसेविच द्वारा डेलिग्ने अनुमान के स्विस-पनीर संस्करण को तैयार करने के लिए किया गया था। होशचाइल्ड कोहोलॉजी पर डेलिग्ने का अनुमान।[16] Kontsevich का अनुमान पो मैं , इगोर क्रिज़ और अलेक्जेंडर ए वोरोनोव द्वारा आंशिक रूप से सिद्ध किया गया था[17] और फिर पूरी तरह से जस्टिन थॉमस (गणितज्ञ) द्वारा।[18]
साहचर्य संक्रिया
ऑपरैड्स के उदाहरणों का एक अन्य वर्ग बीजगणितीय संरचनाओं की संरचनाओं पर कब्जा कर रहा है, जैसे सहयोगी बीजगणित, कम्यूटेटिव बीजगणित और झूठ बीजगणित। इनमें से प्रत्येक को बाइनरी ऑपरेशंस द्वारा उत्पन्न इन तीनों में से प्रत्येक में एक सूक्ष्म रूप से प्रस्तुत ओपेरा के रूप में प्रदर्शित किया जा सकता है।
उदाहरण के लिए, साहचर्य संक्रिया एक द्विआधारी संक्रिया द्वारा उत्पन्न एक सममित संक्रिया है , केवल इस शर्त के अधीन है कि
यह स्थिति बाइनरी ऑपरेशन की साहचर्यता से मेल खाती है ; लिखना गुणात्मक रूप से, उपरोक्त स्थिति है . संक्रिया की इस साहचर्यता को संघटन की साहचर्यता के साथ भ्रमित नहीं किया जाना चाहिए जो किसी संक्रिया में धारण करती है; ऊपर साहचर्य का #Axiom देखें।
सहयोगी ओपेरा में, प्रत्येक सममित समूह द्वारा दिया गया है , जिस पर सही गुणन द्वारा कार्य करता है। समग्र के अनुसार ब्लॉक में इसके इनपुट की अनुमति देता है , और उपयुक्त के अनुसार ब्लॉकों के भीतर .
साहचर्य संक्रिया पर बीजगणित सटीक रूप से अर्धसमूह होते हैं: एक एकल द्विआधारी साहचर्य संक्रिया के साथ सेट होते हैं। साहचर्य संक्रिया पर k-रैखिक बीजगणित वास्तव में साहचर्य बीजगणित हैं | साहचर्य k-अल्जेब्रा।
टर्मिनल सममित संक्रिया
टर्मिनल सिमेट्रिक ऑपरैड वह ऑपरैड है जिसमें प्रत्येक एन के लिए प्रत्येक एन-आरी ऑपरेशन होता है तुच्छ अभिनय। इस ऑपरैड पर बीजगणित क्रमविनिमेय अर्धसमूह हैं; k-रेखीय बीजगणित क्रमविनिमेय साहचर्य k-बीजगणित हैं।
ब्रेड समूहों से संचालित होता है
इसी प्रकार, एक गैर- संचालित जिसके लिए प्रत्येक आर्टिन ब्रेड समूह द्वारा दिया गया है . इसके अलावा, यह गैर- ऑपरैड में एक ब्रेडेड ऑपरैड की संरचना होती है, जो एक ऑपरैड की धारणा को सममित से ब्रेड समूहों तक सामान्यीकृत करती है।
रेखीय बीजगणित
रेखीय बीजगणित में, वास्तविक वेक्टर रिक्त स्थान को ओपेरा के ऊपर बीजगणित माना जा सकता है सभी रैखिक संयोजनों की[citation needed]. इस ऑपरैड द्वारा परिभाषित किया गया है के लिए , की स्पष्ट कार्रवाई के साथ क्रमपरिवर्तन घटकों, और संरचना वैक्टर के संयोजन द्वारा दिया गया , कहाँ . सदिश उदाहरण के लिए गुणांक 2,3,-5,0,... के साथ एक रैखिक संयोजन बनाने के संचालन का प्रतिनिधित्व करता है।
यह दृष्टिकोण इस धारणा को औपचारिक रूप देता है कि रैखिक संयोजन एक सदिश स्थान पर सबसे सामान्य प्रकार का ऑपरेशन है - यह कहना कि सदिश स्थान रैखिक संयोजनों के संचालन पर एक बीजगणित है, ठीक यही कथन है कि सदिश स्थान में सभी संभव बीजगणितीय संचालन हैं रैखिक संयोजन। सदिश जोड़ और अदिश गुणन के बुनियादी संचालन सभी रैखिक संयोजनों के संचालन के लिए एक जनरेटिंग सेट हैं, जबकि रैखिक संयोजन संक्रिया एक सदिश स्थान पर सभी संभावित संचालनों को सांकेतिक रूप से कूटबद्ध करता है।
इसी तरह, affine संयोजनों, शंक्वाकार संयोजनों और उत्तल संयोजनों को उप-संचालन के अनुरूप माना जा सकता है जहां वेक्टर की शर्तें 1 का योग, सभी पद क्रमशः गैर-ऋणात्मक, या दोनों हैं। आलेखीय रूप से, ये अनंत एफ़ाइन हाइपरप्लेन, अनंत हाइपर-ऑक्टेंट और अनंत सिम्प्लेक्स हैं। यह औपचारिकता करता है कि इसका क्या मतलब है होने के नाते या मानक सिंप्लेक्स मॉडल रिक्त स्थान होने के नाते, और इस तरह के अवलोकन जैसे कि प्रत्येक बाध्य उत्तल पॉलीटॉप एक सिंप्लेक्स की छवि है। यहां सबऑपराड्स अधिक प्रतिबंधित संचालन और इस प्रकार अधिक सामान्य सिद्धांतों के अनुरूप हैं।
क्रमविनिमेय-अंगूठी संकार्य और झूठ संकार्य
क्रमविनिमेय-अंगूठी संकार्य एक संकार्य संक्रिया बीजगणित क्रमविनिमेय छल्ले हैं। इसके द्वारा परिभाषित किया गया है , की स्पष्ट कार्रवाई के साथ और चर के लिए बहुपदों (पुनः क्रमांकित चर के साथ) को प्रतिस्थापित करके दी गई ऑपेरैडिक रचना। एक समान ऑपरैड को परिभाषित किया जा सकता है जिसका बीजगणित कुछ निश्चित आधार क्षेत्र पर साहचर्य, क्रमविनिमेय बीजगणित हैं। इस ऑपरैड का शर्ट-दोहरी लाइ ऑपरैड है (जिसका बीजगणित लाइ अलजेब्रस है), और इसके विपरीत।
फ्री ऑपरेशंस
विशिष्ट बीजगणितीय निर्माण (जैसे, मुक्त बीजगणित निर्माण) को ऑपरेड्स तक बढ़ाया जा सकता है। होने देना उस श्रेणी को निरूपित करें जिसकी वस्तुएं समूह पर सेट हैं कार्य करता है। फिर एक भुलक्कड़ कारक है , जो केवल ओपेरा रचना को भूल जाता है। एक सहायक फ़ैक्टर्स का निर्माण संभव है इस भुलक्कड़ फ़ंक्टर के लिए (यह मुक्त कारक की सामान्य परिभाषा है)। संचालन ई के संग्रह को देखते हुए, ई पर फ्री ऑपेरड है।
एक समूह या अंगूठी की तरह, नि: शुल्क निर्माण जनरेटर और संबंधों के संदर्भ में एक ओपेरा को व्यक्त करने की अनुमति देता है। एक ओपेरा के मुक्त प्रतिनिधित्व द्वारा , हमारा मतलब लिखना है एक मुफ्त ओपेरा के भागफल के रूप में जहां ई के जनरेटर का वर्णन करता है और एपिमोर्फिज्म की गिरी संबंधों का वर्णन करता है।
ए (सममित) ओपेरा द्विघात कहा जाता है यदि इसकी एक मुक्त प्रस्तुति है जैसे कि जनरेटर है और संबंध इसमें निहित है .[19]
होमोटॉपी थ्योरी में ऑपरेशंस
This section needs expansion. You can help by adding to it. (December 2018) |
में Stasheff (2004), स्टैशेफ़ लिखते हैं:
- ओपेराड होमोटॉपी की अच्छी धारणा वाली श्रेणियों में विशेष रूप से महत्वपूर्ण और उपयोगी होते हैं, जहां वे उच्च समरूपता के पदानुक्रम को व्यवस्थित करने में महत्वपूर्ण भूमिका निभाते हैं।
यह भी देखें
- प्रो (श्रेणी सिद्धांत)
- एक ओपेरा पर बीजगणित
- उच्च-क्रम संचालित
- ई∞-संचालन
- छद्म बीजगणित
- बहुश्रेणी
टिप्पणियाँ
- ↑ ”finiteness" refers to the fact that only a finite number of inputs are allowed in the definition of an operad. For example, the condition is satisfied if one can write
- ,
- .
उद्धरण
- ↑ Boardman, J. M.; Vogt, R. M. (1 November 1968). "होमोटॉपी-सब कुछ $H$-स्पेस". Bulletin of the American Mathematical Society (in English). 74 (6): 1117–1123. doi:10.1090/S0002-9904-1968-12070-1. ISSN 0002-9904.
- ↑ Boardman, J. M.; Vogt, R. M. (1973). टोपोलॉजिकल स्पेस पर होमोटॉपी इनवेरिएंट बीजगणितीय संरचनाएं. Lecture Notes in Mathematics (in British English). Vol. 347. doi:10.1007/bfb0068547. ISBN 978-3-540-06479-4. ISSN 0075-8434.
- ↑ May, J. P. (1972). पुनरावृत्त लूप रिक्त स्थान की ज्यामिति. Lecture Notes in Mathematics (in British English). Vol. 271. CiteSeerX 10.1.1.146.3172. doi:10.1007/bfb0067491. ISBN 978-3-540-05904-2. ISSN 0075-8434.
- ↑ May, J. Peter. "संचालन, बीजगणित और मॉड्यूल" (PDF). math.uchicago.edu. p. 2. Retrieved 28 September 2018.
- ↑ Ginzburg, Victor; Kapranov, Mikhail (1994). "ओपेरा के लिए द्वंद्व शर्ट". Duke Mathematical Journal (in English). 76 (1): 203–272. doi:10.1215/S0012-7094-94-07608-4. ISSN 0012-7094. MR 1301191. S2CID 115166937. Zbl 0855.18006 – via Project Euclid.
- ↑ Loday, Jean-Louis (1996). "La renaissance des opérades". www.numdam.org. Séminaire Nicolas Bourbaki (in English). MR 1423619. Zbl 0866.18007. Retrieved 27 September 2018.
- ↑ 7.0 7.1 Kontsevich, Maxim; Soibelman, Yan (26 January 2000). "ऑपरेड्स और डेलिग्ने के अनुमान पर बीजगणित की विकृति". arXiv:math/0001151.
- ↑ Jones, J. D. S.; Getzler, Ezra (8 March 1994). "डबल लूप स्पेस के लिए ऑपरेड्स, होमोटॉपी बीजगणित और पुनरावृत्त इंटीग्रल" (in English). arXiv:hep-th/9403055.
- ↑ N. Durov, New approach to Arakelov geometry, University of Bonn, PhD thesis, 2007; arXiv:0704.2030.
- ↑ Markl, Martin (2006). "ऑपरेशंस और प्रोप". Handbook of Algebra. 5 (1): 87–140. arXiv:math/0601129. doi:10.1016/S1570-7954(07)05002-4. ISBN 9780444531018. S2CID 3239126. Example 2
- ↑ Giovanni Giachetta, Luigi Mangiarotti, Gennadi Sardanashvily (2005) Geometric and Algebraic Topological Methods in Quantum Mechanics, ISBN 981-256-129-3, pp. 474,475
- ↑ Greenlees, J. P. C. (2002). स्वयंसिद्ध, समृद्ध और प्रेरक समरूपता सिद्धांत. Proceedings of the NATO Advanced Study Institute on स्वयंसिद्ध, समृद्ध और प्रेरक समरूपता सिद्धांत. Cambridge, United Kingdom: Springer Science & Business Media. pp. 154–156. ISBN 978-1-4020-1834-3.
- ↑ May, J. P. (1977). "अनंत लूप अंतरिक्ष सिद्धांत". Bull. Amer. Math. Soc. 83 (4): 456–494. doi:10.1090/s0002-9904-1977-14318-8.
- ↑ Stasheff, Jim (1998). "ग्राफ्टिंग बोर्डमैन के चेरी के पेड़ क्वांटम फील्ड थ्योरी के लिए". arXiv:math/9803156.
- ↑ Voronov, Alexander A. (1999). स्विस-पनीर ओपेरा. Contemporary Mathematics. Baltimore, Maryland, United States: AMS. pp. 365–373. ISBN 978-0-8218-7829-3.
- ↑ Kontsevich, Maxim (1999). "विरूपण परिमाणीकरण में संचालन और मकसद". Lett. Math. Phys. 48: 35–72. arXiv:math/9904055. Bibcode:1999math......4055K. doi:10.1023/A:1007555725247. S2CID 16838440.
- ↑ Hu, Po; Kriz, Igor; Voronov, Alexander A. (2006). "कोंटसेविच के होशचाइल्ड कोहोलॉजी अनुमान पर". Compositio Mathematica. 142 (1): 143–168. doi:10.1112/S0010437X05001521.
- ↑ Thomas, Justin (2016). "Kontsevich का स्विस पनीर अनुमान". Geom. Topol. 20 (1): 1–48. arXiv:1011.1635. doi:10.2140/gt.2016.20.1. S2CID 119320246.
- ↑ Markl, Martin (2006). "Operads and PROPs". Handbook of Algebra. 5: 87–140. doi:10.1016/S1570-7954(07)05002-4. ISBN 9780444531018. S2CID 3239126. Definition 37
संदर्भ
- Tom Leinster (2004). Higher Operads, Higher Categories. Cambridge University Press. arXiv:math/0305049. Bibcode:2004hohc.book.....L. ISBN 978-0-521-53215-0.
- Martin Markl, Steve Shnider, Jim Stasheff (2002). Operads in Algebra, Topology and Physics. American Mathematical Society. ISBN 978-0-8218-4362-8.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - Markl, Martin (June 2006). "Operads and PROPs". arXiv:math/0601129.
- Stasheff, Jim (June–July 2004). "What Is...an Operad?" (PDF). Notices of the American Mathematical Society. 51 (6): 630–631. Retrieved 17 January 2008.
- Loday, Jean-Louis; Vallette, Bruno (2012), Algebraic Operads (PDF), Grundlehren der Mathematischen Wissenschaften, vol. 346, Berlin, New York: Springer-Verlag, ISBN 978-3-642-30361-6
- Zinbiel, Guillaume W. (2012), "Encyclopedia of types of algebras 2010", in Bai, Chengming; Guo, Li; Loday, Jean-Louis (eds.), Operads and universal algebra, Nankai Series in Pure, Applied Mathematics and Theoretical Physics, vol. 9, pp. 217–298, arXiv:1101.0267, Bibcode:2011arXiv1101.0267Z, ISBN 9789814365116
- Fresse, Benoit (17 May 2017), Homotopy of Operads and Grothendieck-Teichmüller Groups, Mathematical Surveys and Monographs, American Mathematical Society, ISBN 978-1-4704-3480-9, MR 3643404, Zbl 1373.55014
- Miguel A. Mendéz (2015). Set Operads in Combinatorics and Computer Science. SpringerBriefs in Mathematics. ISBN 978-3-319-11712-6.
- Samuele Giraudo (2018). Nonsymmetric Operads in Combinatorics. Springer International Publishing. ISBN 978-3-030-02073-6.