आघात केंद्र: Difference between revisions
(TEXT) |
(TEXT) |
||
Line 1: | Line 1: | ||
आघात का केंद्र धुरी से जुड़ी एक विस्तारित विशाल वस्तु पर वह बिंदु है जहां लंबवत प्रभाव धुरी पर कोई प्रतिक्रियाशील आघात नहीं देगा। आघात के केंद्र में एक आवेगी आघात लगने पर स्थानांतरीय और घूर्णी गतियां धुरी पर रद्द हो जाती हैं। आघात के केंद्र की चर्चा प्रायः एक छोर पर रखे बैट, [[ टेनिस का बल्ला |टेनिस का बैट]], दरवाजा, [[तलवार]] या अन्य विस्तारित वस्तु के संदर्भ में की जाती है। | आघात का केंद्र धुरी से जुड़ी एक विस्तारित विशाल वस्तु पर वह बिंदु है जहां लंबवत प्रभाव धुरी पर कोई प्रतिक्रियाशील आघात नहीं देगा। आघात के केंद्र में एक आवेगी आघात लगने पर स्थानांतरीय और घूर्णी गतियां धुरी पर रद्द हो जाती हैं। आघात के केंद्र की चर्चा प्रायः एक छोर पर रखे बैट, [[ टेनिस का बल्ला |टेनिस का बैट]], दरवाजा, [[तलवार]] या अन्य विस्तारित वस्तु के संदर्भ में की जाती है। | ||
उसी बिंदु को दोलक के रूप में धुरी से निलंबित वस्तु के लिए दोलन का केंद्र कहा जाता है, जिसका अर्थ है कि उस बिंदु पर केंद्रित अपने पूरे द्रव्यमान के साथ एक साधारण [[ लंगर |केन्द्रबिन्दु]] में यौगिक | उसी बिंदु को दोलक के रूप में धुरी से निलंबित वस्तु के लिए दोलन का केंद्र कहा जाता है, जिसका अर्थ है कि उस बिंदु पर केंद्रित अपने पूरे द्रव्यमान के साथ एक साधारण [[ लंगर |केन्द्रबिन्दु]] में यौगिक लोलक के समान दोलन की अवधि होगी। | ||
खेल में, बल्ले, रैकेट, या क्लब के टकराव का केंद्र तथाकथित [[स्वीट स्पॉट (खेल)]] से संबंधित होता है, लेकिन उत्तरार्द्ध भी वस्तु के कंपन झुकने से संबंधित है। | खेल में, बल्ले, रैकेट, या क्लब के टकराव का केंद्र तथाकथित [[स्वीट स्पॉट (खेल)|मिष्ट स्थान (खेल)]] से संबंधित होता है, लेकिन उत्तरार्द्ध भी वस्तु के कंपन झुकने से संबंधित है। | ||
== स्पष्टीकरण == | == स्पष्टीकरण == | ||
[[File:CenterOfPercussion2.svg|thumb|upright=2.0|विलम्बन धरणी पर आघात का प्रभाव। CP आघात का केंद्र है, और CM धरणी के द्रव्यमान का केंद्र है।]]चित्र में दिखाए गए अनुसार, एक दृढ़ धरणी को तार से एक स्थिरता से निलंबित कर दिया गया है जो बिंदु P पर तार के साथ स्वतंत्र रूप से सर्पण कर सकता है। बाईं ओर से एक आवेगी आघात लगाया जाता है। यदि यह द्रव्यमान के केंद्र (CM) से नीचे है तो यह धरणी को CM के चारों ओर वामावर्त घुमाएगा और CM को दाईं ओर ले जाने का कारण भी बनेगा। आघात का केंद्र (CP) CM के नीचे है। यदि आघात CP के ऊपर गिरता है, तो दाईं ओर की स्थानांतरीय गति P पर बाईं ओर की घूर्णी गति से बड़ी होगी, जिससे अनुबंध की शुद्ध प्रारंभिक गति दाईं ओर होगी। यदि आघात CP के नीचे गिरता है तो विपरीत घटित होगा, P पर घूर्णी गति स्थानांतरीय गति से बड़ी होगी और स्थिरता प्रारम्भ में बाईं ओर चलेगी। केवल अगर आघात CP पर पड़ता है तो गति के दो घटक बिंदु P पर शून्य शुद्ध प्रारंभिक गति उत्पन्न करने के लिए रद्द हो जाएंगे। | [[File:CenterOfPercussion2.svg|thumb|upright=2.0|विलम्बन धरणी पर आघात का प्रभाव। CP आघात का केंद्र है, और CM धरणी के द्रव्यमान का केंद्र है।]]चित्र में दिखाए गए अनुसार, एक दृढ़ धरणी को तार से एक स्थिरता से निलंबित कर दिया गया है जो बिंदु P पर तार के साथ स्वतंत्र रूप से सर्पण कर सकता है। बाईं ओर से एक आवेगी आघात लगाया जाता है। यदि यह द्रव्यमान के केंद्र (CM) से नीचे है तो यह धरणी को CM के चारों ओर वामावर्त घुमाएगा और CM को दाईं ओर ले जाने का कारण भी बनेगा। आघात का केंद्र (CP) CM के नीचे है। यदि आघात CP के ऊपर गिरता है, तो दाईं ओर की स्थानांतरीय गति P पर बाईं ओर की घूर्णी गति से बड़ी होगी, जिससे अनुबंध की शुद्ध प्रारंभिक गति दाईं ओर होगी। यदि आघात CP के नीचे गिरता है तो विपरीत घटित होगा, P पर घूर्णी गति स्थानांतरीय गति से बड़ी होगी और स्थिरता प्रारम्भ में बाईं ओर चलेगी। केवल अगर आघात CP पर पड़ता है तो गति के दो घटक बिंदु P पर शून्य शुद्ध प्रारंभिक गति उत्पन्न करने के लिए रद्द हो जाएंगे। | ||
जब | जब सर्पण स्थिरता को एक धुरी के साथ बदल दिया जाता है जो बाएं या दाएं स्थानांतरित नहीं हो सकता है, तो CP पर कहीं भी एक आवेगपूर्ण आघात धुरी पर प्रारंभिक प्रतिक्रियाशील बल में परिणाम देता है। | ||
== आघात के केंद्र की गणना == | == आघात के केंद्र की गणना == | ||
Line 30: | Line 30: | ||
ध्यान दें कि P, क्रमावर्तन अक्ष, धरणी के अंत में नहीं होना चाहिए, लेकिन किसी भी दूरी <math>p</math> पर चुना जा सकता है . | ध्यान दें कि P, क्रमावर्तन अक्ष, धरणी के अंत में नहीं होना चाहिए, लेकिन किसी भी दूरी <math>p</math> पर चुना जा सकता है . | ||
लंबाई <math>b + p</math> एक [[भौतिक पेंडुलम]] के दोलन के केंद्र को भी परिभाषित करता है, अर्थात, एक साधारण | लंबाई <math>b + p</math> एक [[भौतिक पेंडुलम|भौतिक लोलक]] के दोलन के केंद्र को भी परिभाषित करता है, अर्थात, एक साधारण लोलक के द्रव्यमान की स्थिति जिसकी भौतिक लोलक के समान अवधि होती है।<ref>{{cite web |url=http://www.kettering.edu/~drussell/bats-new/cop.html |title=What is the COP and does it matter? |website=Physics and Acoustics of Baseball & Softball Bats |first=Daniel A. |last=Russell |publisher=[[Pennsylvania State University]] |accessdate=May 24, 2012 |date=June 16, 2005 |url-status=dead |archiveurl=https://web.archive.org/web/20090405195740/http://www.kettering.edu/~drussell/bats-new/cop.html |archivedate=April 5, 2009 }}</ref> | ||
Line 51: | Line 51: | ||
== कुछ अनुप्रयोग == | == कुछ अनुप्रयोग == | ||
उदाहरण के लिए, एक | उदाहरण के लिए, एक दोलायमान किवाड़ जिसे किवाड़ की चौड़ाई का 2/3 रखा जाता है, वह किवाड़ को कम से कम हिलाने के साथ काम करेगा क्योंकि टिका हुआ सिरा किसी शुद्ध प्रतिक्रियाशील बल के अधीन नहीं है। (यह बिंदु दूसरे कंपन प्रसंवादी में भी पर्णग्रंथि है, जो कंपन को भी कम करता है।) | ||
बेसबॉल बल्ले पर | बेसबॉल बल्ले पर मिष्ट स्थान (खेल) को सामान्यतः उस बिंदु के रूप में परिभाषित किया जाता है जिस पर प्रभाव बल्लेबाज को सबसे अच्छा लगता है। आघात का केंद्र एक ऐसी जगह को परिभाषित करता है, जहां अगर बल्ला गेंद से टकराता है और बल्लेबाज के हाथ धुरी बिंदु पर होते हैं, तो बल्लेबाज को कोई अचानक प्रतिक्रियात्मक बल का आभास नहीं होता है। हालाँकि, चूंकि बल्ला कठोर वस्तु नहीं है, इसलिए प्रभाव से उत्पन्न होने वाले कंपन भी एक भूमिका निभाते हैं। साथ ही, प्रदोलन का धुरी बिंदु उस स्थान पर नहीं हो सकता है जहां बल्लेबाज के हाथ रखे जाते हैं। <ref>{{cite journal |first=Rod |last=Cross |year=2004 |title=हाथ से पकड़े जाने वाले औजारों की टक्कर का केंद्र|journal=[[American Journal of Physics]] |volume=72 |issue=5 |pages=622–630 |url=http://www.physics.usyd.edu.au/~cross/PUBLICATIONS/26.%20COPHandHeld.PDF |doi=10.1119/1.1634965 |bibcode=2004AmJPh..72..622C}}</ref> | ||
आघात सिद्धांत का केंद्र तलवारों पर लागू किया जा सकता है। लचीली वस्तुएं होने के नाते, ऐसे काटने वाले हथियारों के लिए मधुर स्थान न केवल आघात के केंद्र पर निर्भर करता है, बल्कि नम्य और कंपन संबंधी विशेषताओं पर भी निर्भर करता है।<ref name="Turner">{{cite web |first=George |last=Turner |url=http://www.thearma.org/spotlight/GTA/motions_and_impacts.htm |title=Sword Motions and Impacts: An Investigation and Analysis |publisher=Association for Renaissance Martial Arts |date=1999 |accessdate=May 24, 2012}}</ref><ref>{{cite web|last=Geißler|first=Robert|authorlink=|year=2014|title=तलवारों की गतिशीलता के बारे में|url=https://hroarr.com/article/concerning-the-dynamics-of-swords/|url-status=live|accessdate=March 30, 2021|website=|publisher=HROARR|doi=|archive-url=https://web.archive.org/web/20210305162644/https://hroarr.com/article/concerning-the-dynamics-of-swords/ |archive-date=2021-03-05 }}</ref> | आघात सिद्धांत का केंद्र तलवारों पर लागू किया जा सकता है। लचीली वस्तुएं होने के नाते, ऐसे काटने वाले हथियारों के लिए मधुर स्थान न केवल आघात के केंद्र पर निर्भर करता है, बल्कि नम्य और कंपन संबंधी विशेषताओं पर भी निर्भर करता है।<ref name="Turner">{{cite web |first=George |last=Turner |url=http://www.thearma.org/spotlight/GTA/motions_and_impacts.htm |title=Sword Motions and Impacts: An Investigation and Analysis |publisher=Association for Renaissance Martial Arts |date=1999 |accessdate=May 24, 2012}}</ref><ref>{{cite web|last=Geißler|first=Robert|authorlink=|year=2014|title=तलवारों की गतिशीलता के बारे में|url=https://hroarr.com/article/concerning-the-dynamics-of-swords/|url-status=live|accessdate=March 30, 2021|website=|publisher=HROARR|doi=|archive-url=https://web.archive.org/web/20210305162644/https://hroarr.com/article/concerning-the-dynamics-of-swords/ |archive-date=2021-03-05 }}</ref> |
Revision as of 04:49, 9 March 2023
आघात का केंद्र धुरी से जुड़ी एक विस्तारित विशाल वस्तु पर वह बिंदु है जहां लंबवत प्रभाव धुरी पर कोई प्रतिक्रियाशील आघात नहीं देगा। आघात के केंद्र में एक आवेगी आघात लगने पर स्थानांतरीय और घूर्णी गतियां धुरी पर रद्द हो जाती हैं। आघात के केंद्र की चर्चा प्रायः एक छोर पर रखे बैट, टेनिस का बैट, दरवाजा, तलवार या अन्य विस्तारित वस्तु के संदर्भ में की जाती है।
उसी बिंदु को दोलक के रूप में धुरी से निलंबित वस्तु के लिए दोलन का केंद्र कहा जाता है, जिसका अर्थ है कि उस बिंदु पर केंद्रित अपने पूरे द्रव्यमान के साथ एक साधारण केन्द्रबिन्दु में यौगिक लोलक के समान दोलन की अवधि होगी।
खेल में, बल्ले, रैकेट, या क्लब के टकराव का केंद्र तथाकथित मिष्ट स्थान (खेल) से संबंधित होता है, लेकिन उत्तरार्द्ध भी वस्तु के कंपन झुकने से संबंधित है।
स्पष्टीकरण
चित्र में दिखाए गए अनुसार, एक दृढ़ धरणी को तार से एक स्थिरता से निलंबित कर दिया गया है जो बिंदु P पर तार के साथ स्वतंत्र रूप से सर्पण कर सकता है। बाईं ओर से एक आवेगी आघात लगाया जाता है। यदि यह द्रव्यमान के केंद्र (CM) से नीचे है तो यह धरणी को CM के चारों ओर वामावर्त घुमाएगा और CM को दाईं ओर ले जाने का कारण भी बनेगा। आघात का केंद्र (CP) CM के नीचे है। यदि आघात CP के ऊपर गिरता है, तो दाईं ओर की स्थानांतरीय गति P पर बाईं ओर की घूर्णी गति से बड़ी होगी, जिससे अनुबंध की शुद्ध प्रारंभिक गति दाईं ओर होगी। यदि आघात CP के नीचे गिरता है तो विपरीत घटित होगा, P पर घूर्णी गति स्थानांतरीय गति से बड़ी होगी और स्थिरता प्रारम्भ में बाईं ओर चलेगी। केवल अगर आघात CP पर पड़ता है तो गति के दो घटक बिंदु P पर शून्य शुद्ध प्रारंभिक गति उत्पन्न करने के लिए रद्द हो जाएंगे।
जब सर्पण स्थिरता को एक धुरी के साथ बदल दिया जाता है जो बाएं या दाएं स्थानांतरित नहीं हो सकता है, तो CP पर कहीं भी एक आवेगपूर्ण आघात धुरी पर प्रारंभिक प्रतिक्रियाशील बल में परिणाम देता है।
आघात के केंद्र की गणना
एक मुक्त, कठोर धरणी के लिए, एक आवेग द्रव्यमान के केंद्र (CM) से दूरी पर समकोण पर लगाया जाता है, जिसके परिणामस्वरूप संबंध के अनुसार CM परिवर्तनशील वेग होगा:
जहाँ धरणी का द्रव्यमान है। इसी तरह, CM के बारे में टोक़ कोणीय वेग को के अनुसार बदल देगा:
जहाँ CM के चारों ओर जड़त्व आघूर्ण का क्षण है।
किसी बिंदु P के लिए दूरी प्रभाव के बिंदु से CM के विपरीत दिशा में, बिंदु P के वेग में परिवर्तन होता है
जहाँ CM से P की दूरी है। इसलिए आवेगी आघात के कारण P पर त्वरण है:
जब यह त्वरण शून्य होता है, आघात के केंद्र को परिभाषित करता है। इसलिए, CP दूरी, , CM द्वारा दिया गया है
ध्यान दें कि P, क्रमावर्तन अक्ष, धरणी के अंत में नहीं होना चाहिए, लेकिन किसी भी दूरी पर चुना जा सकता है .
लंबाई एक भौतिक लोलक के दोलन के केंद्र को भी परिभाषित करता है, अर्थात, एक साधारण लोलक के द्रव्यमान की स्थिति जिसकी भौतिक लोलक के समान अवधि होती है।[1]
एक समान धरणी के आघात का केंद्र
लंबाई के समान घनत्व के धरणी के विशेष स्तिथि के लिए CM के चारों ओर जड़ता का क्षण है:
- (प्रमाण के लिए जड़त्वाघूर्ण देखें),
और अंत में धुरी के चारों ओर घूमने के लिए,
- .
इससे ये होता है:
- .
यह इस प्रकार है कि CP धुरी के अंत से समान धरणी की लंबाई का 2/3 है।
कुछ अनुप्रयोग
उदाहरण के लिए, एक दोलायमान किवाड़ जिसे किवाड़ की चौड़ाई का 2/3 रखा जाता है, वह किवाड़ को कम से कम हिलाने के साथ काम करेगा क्योंकि टिका हुआ सिरा किसी शुद्ध प्रतिक्रियाशील बल के अधीन नहीं है। (यह बिंदु दूसरे कंपन प्रसंवादी में भी पर्णग्रंथि है, जो कंपन को भी कम करता है।)
बेसबॉल बल्ले पर मिष्ट स्थान (खेल) को सामान्यतः उस बिंदु के रूप में परिभाषित किया जाता है जिस पर प्रभाव बल्लेबाज को सबसे अच्छा लगता है। आघात का केंद्र एक ऐसी जगह को परिभाषित करता है, जहां अगर बल्ला गेंद से टकराता है और बल्लेबाज के हाथ धुरी बिंदु पर होते हैं, तो बल्लेबाज को कोई अचानक प्रतिक्रियात्मक बल का आभास नहीं होता है। हालाँकि, चूंकि बल्ला कठोर वस्तु नहीं है, इसलिए प्रभाव से उत्पन्न होने वाले कंपन भी एक भूमिका निभाते हैं। साथ ही, प्रदोलन का धुरी बिंदु उस स्थान पर नहीं हो सकता है जहां बल्लेबाज के हाथ रखे जाते हैं। [2]
आघात सिद्धांत का केंद्र तलवारों पर लागू किया जा सकता है। लचीली वस्तुएं होने के नाते, ऐसे काटने वाले हथियारों के लिए मधुर स्थान न केवल आघात के केंद्र पर निर्भर करता है, बल्कि नम्य और कंपन संबंधी विशेषताओं पर भी निर्भर करता है।[3][4]
संदर्भ
- ↑ Russell, Daniel A. (June 16, 2005). "What is the COP and does it matter?". Physics and Acoustics of Baseball & Softball Bats. Pennsylvania State University. Archived from the original on April 5, 2009. Retrieved May 24, 2012.
- ↑ Cross, Rod (2004). "हाथ से पकड़े जाने वाले औजारों की टक्कर का केंद्र" (PDF). American Journal of Physics. 72 (5): 622–630. Bibcode:2004AmJPh..72..622C. doi:10.1119/1.1634965.
- ↑ Turner, George (1999). "Sword Motions and Impacts: An Investigation and Analysis". Association for Renaissance Martial Arts. Retrieved May 24, 2012.
- ↑ Geißler, Robert (2014). "तलवारों की गतिशीलता के बारे में". HROARR. Archived from the original on 2021-03-05. Retrieved March 30, 2021.