हाइड्रोफॉर्मिलन: Difference between revisions

From Vigyanwiki
(text)
Line 118: Line 118:




==इस पृष्ठ में अनुपलब्ध आंतरिक कड़ियों की सूची==


*शराब (रसायन विज्ञान)
 
*रसायन उद्योग
[[Category:Addition reactions]]
*खुशबू
[[Category:Articles with invalid date parameter in template]]
*समावयवी
[[Category:CS1 maint]]
*चिरायता (रसायन विज्ञान)
[[Category:Created On 18/10/2022]]
*प्रवासी प्रविष्टि
[[Category:Machine Translated Page]]
*जल परिवर्तन प्रतिक्रिया
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Use dmy dates from June 2013]]
[[Category:Wikipedia articles needing clarification from December 2020]]
 
==अग्रिम पठन==
==अग्रिम पठन==
*“Applied Homogeneous Catalysis with Organometallic Compounds: A Comprehensive Handbook in Two Volumes (Paperback) by Boy Cornils (Editor), W. A. Herrmann (Editor). {{ISBN|3-527-29594-1}}
*“Applied Homogeneous Catalysis with Organometallic Compounds: A Comprehensive Handbook in Two Volumes (Paperback) by Boy Cornils (Editor), W. A. Herrmann (Editor). {{ISBN|3-527-29594-1}}

Revision as of 15:17, 7 March 2023

Hydroformylation
Reaction type Addition reaction
Identifiers
RSC ontology ID RXNO:0000272
एक एल्केन का हाइड्रोफॉर्मिलन (R1 से R3 ऑर्गेनी समूह (यानी एल्काइल- या एरिल समूह) या उदजन)

हाइड्रोफॉर्मिलन, जिसे ऑक्सो संश्लेषण या ऑक्सो प्रक्रिया के रूप में भी जाना जाता है, एल्केन (R2C=CR2) से एल्डिहाइड (R−CH=O) के उत्पादन के लिए एक औद्योगिक प्रक्रिया है।[1][2] इस रासायनिक प्रतिक्रिया में कार्बन-कार्बन द्विक् आबंध में एक फॉर्माइल ग्रुप (-CHO) और उदजन परमाणु का शुद्ध जोड़ होता है। आविष्कार के बाद से इस प्रक्रिया में निरंतर वृद्धि हुई है: 1995 में उत्पादन क्षमता 6.6×106 टन तक पहुंच गई है। यह महत्वपूर्ण है क्योंकि एल्डिहाइड आसानी से कई माध्यमिक उत्पादों में परिवर्तित हो जाते हैं। उदाहरण के लिए, परिणामी एल्डिहाइड मद्य (रसायन विज्ञान) में उदजनीकृत होते हैं जो अपमार्जक में परिवर्तित हो जाते हैं। सुगंध और औषधियों के कार्बनिक संश्लेषण के लिए प्रासंगिक विशेष रसायनों में हाइड्रोफॉर्मिलन का भी उपयोग किया जाता है। हाइड्रोफॉर्मिलन का विकास 20वीं सदी के रासायनिक उद्योग की प्रमुख उपलब्धियों में से एक है।

इस प्रक्रिया में सामान्यतः कार्बन मोनोआक्साइड के उच्च दबाव (10 और 100 वायुमंडल (इकाई) के बीच) और 40 और 200 डिग्री सेल्सियस के बीच के तापमान पर उदजन के साथ एक एल्केन का उपचार होता है।[3] एक रूपांतर में, संश्लेषण गैस के स्थान पर फॉर्मलडिहाइड का उपयोग किया जाता है।[4] संक्रमण धातु उद्दीपन की आवश्यकता है। अनिवार्य रूप से, उत्प्रेरक प्रतिक्रिया माध्यम में घुल जाता है, अर्थात हाइड्रोफॉर्मिलन सजातीय उत्प्रेरण का एक उदाहरण है।

इतिहास

इस प्रक्रिया की खोज जर्मन रसायनज्ञ ओटो रोलेन ने 1938 में फिशर-ट्रॉप्स प्रक्रिया की जांच के दौरान की थी। F-T प्रतिघातक में एथिलीन मिलाने पर एल्डिहाइड और डायथाइलकेटोन प्राप्त किए गए थे। इन अध्ययनों के माध्यम से, रोलेन ने कोबाल्ट उत्प्रेरकों की उपयोगिता की खोज की। HCO (CO4, जिसे रोलेन के काम से कुछ साल पहले ही अलग कर दिया गया था, एक उत्कृष्ट उत्प्रेरक के रूप में दिखाया गया था।[5][6] ऑक्सो संश्लेषण शब्द को रुहरकेमी एकस्व अधिकार विभाग द्वारा गढ़ा गया था, जिसने उम्मीद की थी कि यह प्रक्रिया एल्डिहाइड और कीटोन दोनों की तैयारी के लिए लागू होगी। बाद के कार्य ने प्रदर्शित किया कि संलग्नी ट्रिब्यूटाइलफॉस्फीन (PBu .)3) कोबाल्ट-उत्प्रेरित प्रक्रिया की चयनात्मकता में सुधार हुआ। 1960 के दशक में रिचर्ड एफ. हेक और डेविड एस. ब्रेस्लो द्वारा सह-उत्प्रेरित हाइड्रोफॉर्मिलन के तंत्र को स्पष्ट किया गया था।[7]

एक सामान्य रोडियाम उत्प्रेरक, जहां PAR3 = ट्राइफेनिलफॉस्फीन या इसका सल्फोनेटेड एनालॉग टीपीपीटी ट्रिस (ट्राइफेनिलफॉस्फीन) रोडियम कार्बनमापी हाइड्राइड देखें।

1968 में, अत्यधिक सक्रिय रोडियम-आधारित उत्प्रेरक की सूचना मिली थी।[8] 1970 के दशक से, अधिकांश हाइड्रोफॉर्मिलन रोडियम पर आधारित उत्प्रेरकों पर निर्भर करता है।[9] पानी में घुलनशील उत्प्रेरक विकसित किए गए हैं। वे उत्प्रेरक से उत्पादों को अलग करने की सुविधा प्रदान करते हैं।[10]


तंत्र

कोबाल्ट-उत्प्रेरित हाइड्रोफॉर्मिलन का तंत्र। प्रक्रिया 16-इलेक्ट्रॉन प्रजातियों (चरण 1) को देने के लिए कोबाल्ट टेट्राकार्बनमापी हाइड्राइड से CO के पृथक्करण से प्रारम्भ होती है। एल्केन के बाद के बंधन से एक 18e प्रजाति मिलती है (चरण 2)। चरण 3 में, ओलेफिन 16e एल्काइल ट्राइकार्बनमापी देने के लिए सम्मिलित करता है। CO के एक अन्य समकक्ष का समन्वय एल्किल टेट्राकार्बनमापी (चरण 4) देता है।[7]CO का प्रवासी सम्मिलन चरण 5 में 16e अचक्रीय गति देता है। चरण 6 में, उदजन का ऑक्सीकृत जोड़ एक डायहाइड्रिडो संकुल देता है, जो चरण 7 में अपचायक निष्कासन द्वारा एल्डिहाइड जारी करता है।[11] चरण 8 अनुत्पादक और प्रतिवर्ती है।

चयनात्मकता

हाइड्रोफॉर्मिलन का एक प्रमुख विचार सामान्य बनाम ISO चयनात्मकता है। उदाहरण के लिए, प्रोपलीन का हाइड्रोफॉर्मलाइज़ेशन दो समावयवी उत्पाद, ब्यूटिराल्डिहाइड या आइसोब्यूटिरल्डिहाइड को वहन कर सकता है:

H2 + CO + CH3CH = CH2 → CH3CH2CH2CHO (सामान्य)
बनाम
H2 + CO + CH3CH = CH2 → (CH3)2CHCHO (ISO)

ये आइसोमर्स M-H संबंधन में एल्केन के सम्मिलन की रेजियोकेमिस्ट्री को दर्शाते हैं। चूंकि दोनों उत्पाद समान रूप से वांछनीय नहीं हैं (ISO की तुलना में सामान्य अधिक स्थिर है), बहुत से शोध उत्प्रेरक की खोज के लिए समर्पित थे जो सामान्य आइसोमर का पक्ष लेते थे।

स्टेरिक प्रभाव

कोबाल्ट हाइड्राइड के प्राथमिक एल्केन्स में मार्कोवनिकोव के नियम के स्थान पर कोबाल्ट केंद्र और द्वितीयक एल्काइल संलग्नी के बीच स्टेरिक बाधा से प्रतिकूल है। स्थूल संलग्नी इस स्थैतिक बाधा को बढ़ा देते हैं। इसलिए, मिश्रित कार्बनमापी / फॉस्फीन संकुल प्रति-मार्कोवनिकोव जोड़ के लिए अधिक चयनात्मकता प्रदान करते हैं, इस प्रकार सीधी श्रृंखला उत्पादों (n-) एल्डिहाइड का पक्ष लेते हैं। आधुनिक उत्प्रेरक तीव्री से कीलेटन संलग्नी, विशेष रूप से डिफोस्फाइट्स पर निर्भर करते हैं।[12]

n (शीर्ष) बनाम ISO (नीचे) -चयनात्मकता।

इलेक्ट्रॉनिक प्रभाव

इसके अतिरिक्त, इलेक्ट्रॉन-समृद्ध हाइड्राइड संकुल कम प्रोटॉन-जैसे होते हैं। इस प्रकार, एक परिणाम के रूप में, इलेक्ट्रॉनिक प्रभाव जो सामान्यतः एक एल्केन के अलावा मार्कोवनिकोव के पक्ष में हैं, कम लागू होते हैं। इस प्रकार, इलेक्ट्रॉन-समृद्ध हाइड्राइड अधिक चयनात्मक होते हैं।

अचक्रीय गति गठन

एल्केन के प्रतिस्पर्धी समावयवन को दबाने के लिए, एल्काइल के कार्बन-मेटल संबंधन में कार्बनमापी के प्रवासी सम्मिलन की दर अपेक्षाकृत तीव्र होनी चाहिए। C-M संबंधन में कार्बनमापी कार्बन के सम्मिलन की दर बीटा-हाइड्राइड उन्मूलन की दर से अधिक होने की संभावना है।[13]

oct-2-ene . का हाइड्रोफॉर्मिलन

असममित हाइड्रोफॉर्मिलन

प्रोचिरालाइट्स अल्केन्स का हाइड्रोफॉर्मिलन नए स्टीरियोसेंटर बनाता है। चिरलिटी (रसायन विज्ञान) फॉस्फीन संलग्नी का उपयोग करके, हाइड्रोफॉर्मिलन को एक प्रतिबिंब रूपी के पक्ष में बनाया जा सकता है।[14] इस प्रकार, उदाहरण के लिए, डेक्सीबुप्रोफेन, (+)-(S)-आइबुप्रोफ़ेन का प्रतिबिंब रूपी समावयव, ऑक्सीकरण के बाद एनेंटियोसेलेक्टिव हाइड्रोफॉर्मिलन द्वारा उत्पादित किया जा सकता है।

प्रक्रियाएं

ओलेफिन की श्रृंखला लंबाई के आधार पर हाइड्रोफॉर्माइलेटेड, उत्प्रेरक धातु और संलग्नी, और उत्प्रेरक की वसूली के आधार पर औद्योगिक प्रक्रियाएं भिन्न होती हैं। मूल रुहरकेमी प्रक्रिया ने कोबाल्ट टेट्राकार्बनमापी हाइड्राइड का उपयोग करके एथीन और सिनगैस से प्रोपीन का उत्पादन किया जाता है। आज, कोबाल्ट उत्प्रेरक पर आधारित औद्योगिक प्रक्रियाओं का उपयोग मुख्य रूप से मध्यम से लंबी श्रृंखला वाले ओलेफिन के उत्पादन के लिए किया जाता है, जबकि रोडियम-आधारित उत्प्रेरक सामान्यतः प्रोपेन के हाइड्रोफॉर्मिलन के लिए उपयोग किए जाते हैं। रोडियम उत्प्रेरक कोबाल्ट उत्प्रेरक की तुलना में काफी अधिक महंगे हैं। उच्च आणविक भार ओलेफिन के हाइड्रोफॉर्मिलन में उत्प्रेरक को उत्पादित एल्डिहाइड से अलग करना कठिन है।

BASF-ऑक्सो प्रक्रिया

BASF-ऑक्सो प्रक्रिया अधिकतर उच्च ओलेफिन से प्रारम्भ होती है और कोबाल्ट कार्बनमापी-आधारित उत्प्रेरक पर निर्भर करती है।[15] कम तापमान पर प्रतिक्रिया का संचालन करके, एक रैखिक उत्पाद के पक्ष में बढ़ी हुई चयनात्मकता को देखता है। प्रक्रिया लगभग 30 MPa के दबाव में और 150 से 170 डिग्री सेल्सियस के ताप परिसर में की जाती है। कोबाल्ट को तरल उत्पाद से ऑक्सीकरण द्वारा पानी में घुलनशील Co2 + में पुनः प्राप्त किया जाता है, इसके बाद जलीय फार्मिइका या सिरका अम्ल मिलाया जाता है। यह प्रक्रिया कोबाल्ट का एक जलीय चरण देती है, जिसे बाद में पुनर्नवीनीकरण किया जा सकता है। हानि की भरपाई कोबाल्ट लवण मिलाकर की जाती है।[16]


एक्सॉन प्रक्रिया

एक्सॉन प्रक्रिया, कुहलमैन- या PCUK-ऑक्सो प्रक्रिया, का उपयोग C6-C12 ओलेफिन के हाइड्रोफॉर्मिलन के लिए किया जाता है। प्रक्रिया कोबाल्ट उत्प्रेरक पर निर्भर करती है। उत्प्रेरक को पुनः प्राप्त करने के लिए, कार्बनिक चरण में एक जलीय सोडियम हाइड्रॉक्साइड घोल या सोडियम कार्बोनेट मिलाया जाता है। ओलेफिन के साथ निष्कर्षण और कार्बन मोनोऑक्साइड दबाव के तहत सल्फ़्यूरिक अम्ल समाधान के अलावा निर्मूलीकरण द्वारा धातु कार्बनमापी हाइड्राइड को पुनर्प्राप्त किया जा सकता है। यह सिनगैस के साथ छीन लिया जाता है, ओलेफिन द्वारा अवशोषित किया जाता है, और प्रतिघातक में वापस आ जाता है। BASF प्रक्रिया के समान, एक्सॉन प्रक्रिया लगभग 30 MPa के दबाव और लगभग 160 से 180 डिग्री सेल्सियस के तापमान पर की जाती है।[16]


शेल प्रक्रिया

शेल प्रक्रिया C7-C14 ओलेफिन के हाइड्रोफॉर्मिलन के लिए फॉस्फीन संलग्नी के साथ संशोधित कोबाल्ट परिसरों का उपयोग करती है। परिणामी एल्डिहाइड सीधे वसायुक्त मद्य के लिए उदजनीकृत होते हैं, जो आसवन द्वारा अलग होते हैं, जो उत्प्रेरक को पुनर्नवीनीकरण करने की अनुमति देता है। इस प्रक्रिया में रैखिक उत्पादों के लिए अच्छी चयनात्मकता है, जो अपमार्जक के लिए फीडस्टॉक के रूप में उपयोग करते हैं। प्रक्रिया लगभग 4 से 8 MPa के दबाव और लगभग 150-190 डिग्री सेल्सियस के तापमान सीमा पर की जाती है।[16]


संयोजन कार्बाइड प्रक्रिया

संयोजन कार्बाइड प्रक्रिया (UCC), जिसे न्युन दाब ऑक्सो विधि (LPO) के रूप में भी जाना जाता है, प्रोपेन के हाइड्रोफॉर्मिलन के लिए उच्च-उबलते गाढ़े तेल, प्राथमिक एल्डिहाइड के एक उच्च आणविक भार संघनन उत्पाद में घुलने वाले रोडियम उत्प्रेरक पर निर्भर करता है। प्रतिक्रिया मिश्रण को वाष्पशील घटकों से गिरने वाली आवरण बाष्पीकरण में अलग किया जाता है। तरल चरण आसुत होता है और ब्यूटिराल्डिहाइड को मुख्य उत्पाद के रूप में हटा दिया जाता है जबकि नीचे के उत्पाद वाले उत्प्रेरक को प्रक्रिया में पुनर्नवीनीकरण किया जाता है। प्रक्रिया लगभग 1.8 MPa और 95-100 डिग्री सेल्सियस पर की जाती है।[16]