पर्याप्तता: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
पर्याप्तता तकनीक है जिसे [[पियरे डी फर्मेट]] ने अपने ग्रंथ "अधिकतम और न्यूनतम खोजने की विधि" में विकसित किया है।<ref name="FermatTreatise">[http://science.larouchepac.com/fermat/fermat-maxmin.pdf ''METHOD FOR THE STUDY OF MAXIMA AND MINIMA''], English translation of Fermat's treatise ''Methodus ad disquirendam maximam et minimam''. [https://fr.wikisource.org/wiki/%C5%92uvres_de_Fermat/I/Maxima_et_Minima wikisource]</ref> (फ्रांस में परिचालित [[लैटिन]] ग्रंथ c. 1636) कार्यों के [[मैक्सिमा और मिनिमा]] की [[गणना]] करने के लिए, वक्रों की [[स्पर्शरेखा]], [[क्षेत्र]]फल, द्रव्यमान का केंद्र, कम से कम क्रिया, और कलन में अन्य समस्याएं। एंड्रे वेइल के अनुसार, फर्मेट ने तकनीकी शब्द ऐडेक्वालिटास, एडएक्वेर आदि का परिचय दिया, जो उन्होंने कहा कि उन्होंने [[डायोफैंटस]] से उधार लिया है। जैसा कि डायोफैंटस V.11 दिखाता है, इसका मतलब अनुमानित समानता है, और यह वास्तव में है कि फर्मेट ने अपने बाद के लेखों में से में इस शब्द की व्याख्या कैसे की। (वील 1973)।<ref>See also {{Citation
पर्याप्तता विधि है जिसे [[पियरे डी फर्मेट]] ने अपने ग्रंथ "अधिकतम और न्यूनतम खोजने की विधि" में विकसित किया है।<ref name="FermatTreatise">[http://science.larouchepac.com/fermat/fermat-maxmin.pdf ''METHOD FOR THE STUDY OF MAXIMA AND MINIMA''], English translation of Fermat's treatise ''Methodus ad disquirendam maximam et minimam''. [https://fr.wikisource.org/wiki/%C5%92uvres_de_Fermat/I/Maxima_et_Minima wikisource]</ref> (फ्रांस में परिचालित [[लैटिन]] ग्रंथ c. 1636) कार्यों के [[मैक्सिमा और मिनिमा]] की [[गणना]] करने के लिए, वक्रों की [[स्पर्शरेखा]], [[क्षेत्र]]फल, द्रव्यमान का केंद्र, कम से कम क्रिया, और कलन में अन्य समस्याएं। एंड्रे वेइल के अनुसार, फर्मेट ने तकनीकी शब्द ऐडेक्वालिटास, एडएक्वेर आदि का परिचय दिया, जो उन्होंने कहा कि उन्होंने [[डायोफैंटस]] से उधार लिया है। जैसा कि डायोफैंटस V.11 दिखाता है, इसका मतलब अनुमानित समानता है, और यह वास्तव में है कि फर्मेट ने अपने बाद के लेखों में से में इस शब्द की व्याख्या कैसे की। (वील 1973)।<ref>See also {{Citation
  | first=A. | last=Weil
  | first=A. | last=Weil
  | title=Number Theory: An Approach through History from Hammurapi to Legendre
  | title=Number Theory: An Approach through History from Hammurapi to Legendre
Line 18: Line 18:
  | title = Almost Equal: The Method of Adequality from Diophantus to Fermat and Beyond
  | title = Almost Equal: The Method of Adequality from Diophantus to Fermat and Beyond
  | date = 2013| bibcode = 2012arXiv1210.7750K| s2cid = 57569974
  | date = 2013| bibcode = 2012arXiv1210.7750K| s2cid = 57569974
  }}</ref> क्लॉड गैसपार्ड बाचेत डी मेजिरियाक ने डायोफैंटस के ग्रीक शब्द का लैटिन में एडैक्वैलिटस के रूप में अनुवाद किया। मैक्सिमा और मिनिमा पर फ़र्मेट के लैटिन ग्रंथों के [[पॉल टेनरी]] के फ्रेंच अनुवाद में एडेकेशन और एडेगलर शब्दों का इस्तेमाल किया गया है।
  }}</ref> क्लॉड गैसपार्ड बाचेत डी मेजिरियाक ने डायोफैंटस के ग्रीक शब्द का लैटिन में एडैक्वैलिटस के रूप में अनुवाद किया। मैक्सिमा और मिनिमा पर फ़र्मेट के लैटिन ग्रंथों के [[पॉल टेनरी]] के फ्रेंच अनुवाद में एडेकेशन और एडेगलर शब्दों का उपयोग किया गया है।


== फर्मेट की विधि ==
== फर्मेट की विधि ==
Line 24: Line 24:
फर्मेट ने पहले कार्यों की अधिकतमता खोजने के लिए पर्याप्तता का उपयोग किया, और फिर वक्रों को स्पर्शरेखा रेखाओं को खोजने के लिए इसे अनुकूलित किया।
फर्मेट ने पहले कार्यों की अधिकतमता खोजने के लिए पर्याप्तता का उपयोग किया, और फिर वक्रों को स्पर्शरेखा रेखाओं को खोजने के लिए इसे अनुकूलित किया।


एक शब्द का अधिकतम पता लगाने के लिए <math>p(x)</math>, फर्मेट बराबर (या अधिक सटीक रूप से पर्याप्त) <math>p(x)</math> और <math>p(x+e)</math> और बीजगणित करने के बाद वह के कारक को रद्द कर सकता है <math>e,</math> और फिर शामिल किसी भी शेष शर्तों को छोड़ दें <math>e.</math> फर्मेट के अपने उदाहरण द्वारा विधि को स्पष्ट करने के लिए, अधिकतम ज्ञात करने की समस्या पर विचार करें <math>p(x)=bx-x^2</math> (फर्मेट के शब्दों में, यह लंबाई की रेखा को विभाजित करना है <math>b</math> बिंदु पर <math>x</math>, जैसे कि दो परिणामी भागों का उत्पाद अधिकतम हो।<ref name="FermatTreatise" /> फ़र्मेट पर्याप्त <math>bx-x^2</math> साथ <math>b(x+e)-(x+e)^2=bx-x^2+be-2ex-e^2</math>. यानी (नोटेशन का उपयोग करके <math>\backsim</math> पॉल टेनरी द्वारा पेश की गई पर्याप्तता को दर्शाने के लिए):
एक शब्द का अधिकतम पता लगाने के लिए <math>p(x)</math>, फर्मेट बराबर (या अधिक सटीक रूप से पर्याप्त) <math>p(x)</math> और <math>p(x+e)</math> और बीजगणित करने के बाद वह के कारक को रद्द कर सकता है <math>e,</math> और फिर सम्मिलित किसी भी शेष शर्तों को छोड़ दें <math>e.</math> फर्मेट के अपने उदाहरण द्वारा विधि को स्पष्ट करने के लिए, अधिकतम ज्ञात करने की समस्या पर विचार करें <math>p(x)=bx-x^2</math> (फर्मेट के शब्दों में, यह लंबाई की रेखा को विभाजित करना है <math>b</math> बिंदु पर <math>x</math>, जैसे कि दो परिणामी भागों का उत्पाद अधिकतम हो।<ref name="FermatTreatise" /> फ़र्मेट पर्याप्त <math>bx-x^2</math> साथ <math>b(x+e)-(x+e)^2=bx-x^2+be-2ex-e^2</math>. यानी (नोटेशन का उपयोग करके <math>\backsim</math> पॉल टेनरी द्वारा पेश की गई पर्याप्तता को दर्शाने के लिए):
:<math>bx-x^2\backsim bx-x^2+be-2ex-e^2.</math>
:<math>bx-x^2\backsim bx-x^2+be-2ex-e^2.</math>
रद्द करने की शर्तें और इसके द्वारा विभाजित करना <math>e</math> फर्मेट पहुंचे
रद्द करने की शर्तें और इसके द्वारा विभाजित करना <math>e</math> फर्मेट पहुंचे
Line 50: Line 50:
<br>
<br>


पीर स्ट्रोमहोम (1968)<ref>{{cite journal |doi=10.1007/BF00328112|title=मैक्सिमा और मिनिमा और स्पर्शरेखा की फर्मेट की विधियाँ। एक पुनर्निर्माण|year=1968 |last1=Strømholm |first1=Per |journal=Archive for History of Exact Sciences |volume=5 |pages=47–69 |s2cid=118454253}}</ref> लिखा:<blockquote>फर्मेट के दृष्टिकोण का आधार दो अभिव्यक्तियों की तुलना थी, हालांकि उनका रूप समान था, लेकिन वे बिल्कुल समान नहीं थे। इस प्रक्रिया के इस हिस्से को उन्होंने ''तुलना पार ऐडेक्वालिटेटेम'' या ''तुलनात्मक प्रति एडीईक्वालिटेटेम'' कहा, और इसमें निहित है कि समीकरण के दोनों पक्षों के बीच अन्यथा सख्त पहचान चर के संशोधन द्वारा ''द्वारा नष्ट कर दी गई थी। छोटी राशि:''
पीर स्ट्रोमहोम (1968)<ref>{{cite journal |doi=10.1007/BF00328112|title=मैक्सिमा और मिनिमा और स्पर्शरेखा की फर्मेट की विधियाँ। एक पुनर्निर्माण|year=1968 |last1=Strømholm |first1=Per |journal=Archive for History of Exact Sciences |volume=5 |pages=47–69 |s2cid=118454253}}</ref> लिखा:<blockquote>फर्मेट के दृष्टिकोण का आधार दो अभिव्यक्तियों की तुलना थी, चूंकि उनका रूप समान था, किन्तु वे बिल्कुल समान नहीं थे। इस प्रक्रिया के इस हिस्से को उन्होंने ''तुलना पार ऐडेक्वालिटेटेम'' या ''तुलनात्मक प्रति एडीईक्वालिटेटेम'' कहा, और इसमें निहित है कि समीकरण के दोनों पक्षों के बीच अन्यथा सख्त पहचान चर के संशोधन द्वारा ''द्वारा नष्ट कर दी गई थी। छोटी राशि:''


<math>\scriptstyle f(A){\sim}f(A+E)</math>.
<math>\scriptstyle f(A){\sim}f(A+E)</math>.


मेरा मानना ​​है कि यह डायोफैंटस के πἀρισον के उनके उपयोग का वास्तविक महत्व था, जो भिन्नता की लघुता पर बल देता है। 'adaequalitas' का सामान्य अनुवाद 'अनुमानित समानता' प्रतीत होता है, लेकिन मैं इस बिंदु पर फ़र्मेट के विचार को प्रस्तुत करने के लिए 'छद्म-समानता' को अधिक पसंद करता हूँ।</blockquote>उन्होंने आगे कहा कि M1 (विधि 1) में कभी भी कोई भिन्नता का प्रश्न E को शून्य के बराबर रखा जा रहा है। ई युक्त शब्दों को दबाने की प्रक्रिया को व्यक्त करने के लिए फर्मेट शब्द 'एलिडो', 'डेलियो' और 'एक्सुंगो' थे, और फ्रेंच में 'आई'फेस' और 'आई'ओटे' थे। हम शायद ही विश्वास कर सकते हैं कि समझदार व्यक्ति जो अपने अर्थ को व्यक्त करना चाहता है और शब्दों की खोज कर रहा है, वह लगातार सरल तथ्य प्रदान करने के ऐसे कुटिल तरीकों से टकराएगा कि ई शून्य होने के कारण शब्द गायब हो गए। (पृष्ठ 51)
मेरा मानना ​​है कि यह डायोफैंटस के πἀρισον के उनके उपयोग का वास्तविक महत्व था, जो भिन्नता की लघुता पर बल देता है। 'adaequalitas' का सामान्य अनुवाद 'अनुमानित समानता' प्रतीत होता है, किन्तु मैं इस बिंदु पर फ़र्मेट के विचार को प्रस्तुत करने के लिए 'छद्म-समानता' को अधिक पसंद करता हूँ।</blockquote>उन्होंने आगे कहा कि M1 (विधि 1) में कभी भी कोई भिन्नता का प्रश्न E को शून्य के बराबर रखा जा रहा है। ई युक्त शब्दों को दबाने की प्रक्रिया को व्यक्त करने के लिए फर्मेट शब्द 'एलिडो', 'डेलियो' और 'एक्सुंगो' थे, और फ्रेंच में 'आई'फेस' और 'आई'ओटे' थे। हम संभवतः ही विश्वास कर सकते हैं कि समझदार व्यक्ति जो अपने अर्थ को व्यक्त करना चाहता है और शब्दों की खोज कर रहा है, वह लगातार सरल तथ्य प्रदान करने के ऐसे कुटिल तरीकों से टकराएगा कि ई शून्य होने के कारण शब्द गायब हो गए। (पृष्ठ 51)


'क्लॉस जेन्सेन' (1969)<ref>{{cite journal |doi=10.1111/j.1600-0498.1969.tb00137.x|title=वक्र की स्पर्शज्या निर्धारित करने की पियरे फर्मेट की विधि और शंकुवृक्ष और चतुर्भुज के लिए इसका अनुप्रयोग|year=1969 |last1=Jensen |first1=Claus |journal=Centaurus |volume=14 |issue=1 |pages=72–85 |bibcode=1969Cent...14...72J }}</ref> लिखा है:<blockquote>इसके अलावा, adégalité की धारणा को लागू करने में - जो फ़र्मेट की स्पर्शरेखा बनाने की सामान्य विधि का आधार है, और जिसका अर्थ है दो परिमाणों की तुलना 'जैसे कि वे बराबर थे, हालांकि वे वास्तव में नहीं हैं' (तमक्वाम एसेन्ट इक्वेलिया, लिसेट रेवेरा इक्वेलिया नॉन सिंट) - मैं आजकल अधिक सामान्य प्रतीक का उपयोग करूंगा <math>\scriptstyle \approx</math>। </blockquote> लैटिन उद्धरण टैनरी के 1891 संस्करण फ़र्मेट, खंड 1, पृष्ठ 140 से आता है।
'क्लॉस जेन्सेन' (1969)<ref>{{cite journal |doi=10.1111/j.1600-0498.1969.tb00137.x|title=वक्र की स्पर्शज्या निर्धारित करने की पियरे फर्मेट की विधि और शंकुवृक्ष और चतुर्भुज के लिए इसका अनुप्रयोग|year=1969 |last1=Jensen |first1=Claus |journal=Centaurus |volume=14 |issue=1 |pages=72–85 |bibcode=1969Cent...14...72J }}</ref> लिखा है:<blockquote>इसके अतिरिक्त, adégalité की धारणा को लागू करने में - जो फ़र्मेट की स्पर्शरेखा बनाने की सामान्य विधि का आधार है, और जिसका अर्थ है दो परिमाणों की तुलना 'जैसे कि वे बराबर थे, चूंकि वे वास्तव में नहीं हैं' (तमक्वाम एसेन्ट इक्वेलिया, लिसेट रेवेरा इक्वेलिया नॉन सिंट) - मैं आजकल अधिक सामान्य प्रतीक का उपयोग करूंगा <math>\scriptstyle \approx</math>। </blockquote> लैटिन उद्धरण टैनरी के 1891 संस्करण फ़र्मेट, खंड 1, पृष्ठ 140 से आता है।


[[माइकल सीन महोनी]] (1971)<ref>Mahoney, M.S.: ''Fermat, Pierre de.'' Dictionary of Scientific Biography, vol. IV, Charles Scribner's Sons, New York (1971), p.569.</ref> ने लिखा है:<blockquote>मैक्सिमा और मिनिमा की फर्मेट की विधि, जो स्पष्ट रूप से किसी भी बहुपद P(x) पर लागू होती है, मूल रूप से विशुद्ध रूप से सीमित बीजगणितीय नींव पर आधारित है। विएत के समीकरणों के सिद्धांत, उन जड़ों और बहुपद के गुणांकों में से के बीच संबंध, जो पूरी तरह से सामान्य था, को निर्धारित करने के लिए, 'प्रतितथ्यात्मक रूप से', दो समान जड़ों की असमानता को मान लिया। इस संबंध ने तब चरम-मूल्य समाधान का नेतृत्व किया जब फर्मेट ने अपनी 'प्रतितथ्यात्मक धारणा' को हटा दिया और जड़ों को बराबर कर दिया। डायोफैंटस से शब्द उधार लेते हुए, फ़र्मेट ने इसे 'प्रतितथ्यात्मक समानता' 'पर्याप्तता' कहा।</blockquote>(महोनी प्रतीक का उपयोग करता है <math>\scriptstyle\approx</math>।) पी पर। 164, फुटनोट 46 के अंत में, महोनी नोट करते हैं कि पर्याप्तता के अर्थों में से सीमित मामले में समानता या समानता है।
[[माइकल सीन महोनी]] (1971)<ref>Mahoney, M.S.: ''Fermat, Pierre de.'' Dictionary of Scientific Biography, vol. IV, Charles Scribner's Sons, New York (1971), p.569.</ref> ने लिखा है:<blockquote>मैक्सिमा और मिनिमा की फर्मेट की विधि, जो स्पष्ट रूप से किसी भी बहुपद P(x) पर लागू होती है, मूल रूप से विशुद्ध रूप से सीमित बीजगणितीय नींव पर आधारित है। विएत के समीकरणों के सिद्धांत, उन जड़ों और बहुपद के गुणांकों में से के बीच संबंध, जो पूरी तरह से सामान्य था, को निर्धारित करने के लिए, 'प्रतितथ्यात्मक रूप से', दो समान जड़ों की असमानता को मान लिया। इस संबंध ने तब चरम-मूल्य समाधान का नेतृत्व किया जब फर्मेट ने अपनी 'प्रतितथ्यात्मक धारणा' को हटा दिया और जड़ों को बराबर कर दिया। डायोफैंटस से शब्द उधार लेते हुए, फ़र्मेट ने इसे 'प्रतितथ्यात्मक समानता' 'पर्याप्तता' कहा।</blockquote>(महोनी प्रतीक का उपयोग करता है <math>\scriptstyle\approx</math>।) पी पर। 164, फुटनोट 46 के अंत में, महोनी नोट करते हैं कि पर्याप्तता के अर्थों में से सीमित मामले में समानता या समानता है।


'चार्ल्स हेनरी एडवर्ड्स, जूनियर' (1979)<ref>Edwards, C.H., Jr.:''The historical Development of the Calculus.'' Springer, New York 1979, p.122f</ref> लिखा:<blockquote>उदाहरण के लिए, यह निर्धारित करने के लिए कि लंबाई के खंड को कैसे विभाजित किया जाए <math>\scriptstyle b</math> दो खंडों में <math>\scriptstyle x</math> और <math>\scriptstyle b-x</math> जिसका उत्पाद <math>\scriptstyle x(b-x)=bx-x^2</math> अधिकतम है, अर्थात परिमाप के साथ आयत ज्ञात करना है <math>\scriptstyle 2b</math> जिसका अधिकतम क्षेत्र है, वह [फर्मेट] निम्नानुसार आगे बढ़ता है। पहले उन्होंने स्थानापन्न किया <math>\scriptstyle x+e</math></blockquote> (उसने एक्स, ई के बजाय ए, ई का इस्तेमाल किया) अज्ञात एक्स के लिए, और फिर परिणामी अभिव्यक्ति की मूल अभिव्यक्ति के साथ तुलना करने के लिए निम्नलिखित 'छद्म-समानता' लिखा:
'चार्ल्स हेनरी एडवर्ड्स, जूनियर' (1979)<ref>Edwards, C.H., Jr.:''The historical Development of the Calculus.'' Springer, New York 1979, p.122f</ref> लिखा:<blockquote>उदाहरण के लिए, यह निर्धारित करने के लिए कि लंबाई के खंड को कैसे विभाजित किया जाए <math>\scriptstyle b</math> दो खंडों में <math>\scriptstyle x</math> और <math>\scriptstyle b-x</math> जिसका उत्पाद <math>\scriptstyle x(b-x)=bx-x^2</math> अधिकतम है, अर्थात परिमाप के साथ आयत ज्ञात करना है <math>\scriptstyle 2b</math> जिसका अधिकतम क्षेत्र है, वह [फर्मेट] निम्नानुसार आगे बढ़ता है। पहले उन्होंने स्थानापन्न किया <math>\scriptstyle x+e</math></blockquote> (उसने एक्स, ई के अतिरिक्त ए, ई का उपयोग किया) अज्ञात एक्स के लिए, और फिर परिणामी अभिव्यक्ति की मूल अभिव्यक्ति के साथ तुलना करने के लिए निम्नलिखित 'छद्म-समानता' लिखा:


:<math> \scriptstyle b(x+e)-(x+e)^2=bx+be-x^2-2xe-e^2\; \sim\; bx-x^2. </math>
:<math> \scriptstyle b(x+e)-(x+e)^2=bx+be-x^2-2xe-e^2\; \sim\; bx-x^2. </math>
Line 69: Line 69:
हर्बर्ट ब्रेजर (1994)<ref>Breger, H.: ''The mysteries of adaequare: A vindication of Fermat.'' Arch. Hist. Exact Sci. '''46''' (1994), 193–219</ref> लिखा है:<blockquote>मैं अपनी परिकल्पना को सामने रखना चाहता हूं: फ़र्मेट ने शब्द adaequare का प्रयोग 'बराबर रखने के लिए' के ​​अर्थ में किया है ... गणितीय संदर्भ में, aequare और adaequare के बीच एकमात्र अंतर यह प्रतीत होता है कि उत्तरार्द्ध अधिक देता है इस तथ्य पर जोर दें कि समानता प्राप्त की जाती है।</blockquote>(पृष्ठ 197एफ।)
हर्बर्ट ब्रेजर (1994)<ref>Breger, H.: ''The mysteries of adaequare: A vindication of Fermat.'' Arch. Hist. Exact Sci. '''46''' (1994), 193–219</ref> लिखा है:<blockquote>मैं अपनी परिकल्पना को सामने रखना चाहता हूं: फ़र्मेट ने शब्द adaequare का प्रयोग 'बराबर रखने के लिए' के ​​अर्थ में किया है ... गणितीय संदर्भ में, aequare और adaequare के बीच एकमात्र अंतर यह प्रतीत होता है कि उत्तरार्द्ध अधिक देता है इस तथ्य पर जोर दें कि समानता प्राप्त की जाती है।</blockquote>(पृष्ठ 197एफ।)


'[[जॉन स्टिलवेल]]' (स्टिलवेल 2006 पृष्ठ. 91) ने लिखा:<ब्लॉककोट>फर्मेट ने 1630 के दशक में समानता का विचार पेश किया लेकिन वह अपने समय से आगे थे। उनके उत्तराधिकारी सामान्य समीकरणों की सुविधा को छोड़ने के लिए तैयार नहीं थे, समानता का सटीक उपयोग करने के बजाय समानता का उपयोग करना पसंद करते थे। तथाकथित गैर-मानक विश्लेषण में, केवल बीसवीं शताब्दी में पर्याप्तता के विचार को पुनर्जीवित किया गया था।</blockquote>
'[[जॉन स्टिलवेल]]' (स्टिलवेल 2006 पृष्ठ. 91) ने लिखा:<ब्लॉककोट>फर्मेट ने 1630 के दशक में समानता का विचार पेश किया किन्तु वह अपने समय से आगे थे। उनके उत्तराधिकारी सामान्य समीकरणों की सुविधा को छोड़ने के लिए तैयार नहीं थे, समानता का सटीक उपयोग करने के अतिरिक्त समानता का उपयोग करना पसंद करते थे। तथाकथित गैर-मानक विश्लेषण में, केवल बीसवीं शताब्दी में पर्याप्तता के विचार को पुनर्जीवित किया गया था।


'[[एनरिको गिउस्टी]]' (2009)<ref>{{cite journal |doi=10.5802/afst.1229|title=Les méthodes des maxima et minima de Fermat |year=2009 |last1=Giusti |first1=Enrico |journal=Annales de la Faculté des Sciences de Toulouse: Mathématiques |volume=18 |pages=59–85 |url=http://www.numdam.org/item/AFST_2009_6_18_S2_59_0/ }}</ref> [[मारिन मेर्सेन]] को फर्मेट का पत्र उद्धृत करें जहां फर्मेट ने लिखा है: अंत में समानता उत्पन्न करें (मेरी पद्धति का अनुसरण करते हुए) जो हमें समस्या का समाधान देता है .. </ब्लॉककोट> गिउस्टी ने फुटनोट में लिखा है कि ऐसा लगता है कि यह पत्र ब्रेजर के नोटिस से बच गया है।
'[[एनरिको गिउस्टी]]' (2009)<ref>{{cite journal |doi=10.5802/afst.1229|title=Les méthodes des maxima et minima de Fermat |year=2009 |last1=Giusti |first1=Enrico |journal=Annales de la Faculté des Sciences de Toulouse: Mathématiques |volume=18 |pages=59–85 |url=http://www.numdam.org/item/AFST_2009_6_18_S2_59_0/ }}</ref> [[मारिन मेर्सेन]] को फर्मेट का पत्र उद्धृत करें जहां फर्मेट ने लिखा है: अंत में समानता उत्पन्न करें (मेरी पद्धति का अनुसरण करते हुए) जो हमें समस्या का समाधान देता है .. </ब्लॉककोट> गिउस्टी ने फुटनोट में लिखा है कि ऐसा लगता है कि यह पत्र ब्रेजर के नोटिस से बच गया है।
Line 77: Line 77:
'काट्ज़, शेप्स, श्नाइडर' (2013)<ref>{{citation
'काट्ज़, शेप्स, श्नाइडर' (2013)<ref>{{citation
  | last1 = Katz | first1 = Mikhail G. | author1-link = Mikhail Katz | last2 = Schaps | first2 = David | last3 = Shnider | first3 = Steve | author3-link = Steve Shnider | arxiv = 1210.7750  | doi = 10.1162/POSC_a_00101
  | last1 = Katz | first1 = Mikhail G. | author1-link = Mikhail Katz | last2 = Schaps | first2 = David | last3 = Shnider | first3 = Steve | author3-link = Steve Shnider | arxiv = 1210.7750  | doi = 10.1162/POSC_a_00101
  | issue = 3 | journal = [[Perspectives on Science]] | pages =  283–324| title = Almost Equal: The Method of Adequality from Diophantus to Fermat and Beyond | volume = 21 | year = 2013| bibcode = 2012arXiv1210.7750K | s2cid = 57569974 }}</ref> तर्क देते हैं कि साइक्लॉयड जैसे पारलौकिक वक्रों के लिए तकनीक के फ़र्मेट के अनुप्रयोग से पता चलता है कि फ़र्मेट की पर्याप्तता की तकनीक विशुद्ध रूप से बीजगणितीय एल्गोरिथम से परे है, और यह कि, ब्रेजर की व्याख्या के विपरीत, डायोफैंटस द्वारा उपयोग किए जाने वाले तकनीकी शब्द पैरिसोट्स और फर्मेट दोनों द्वारा उपयोग किए जाने वाले एडीएक्वालिटास मतलब अनुमानित समानता। वे आधुनिक गणित में फ़र्मेट की पर्याप्तता की तकनीक को मानक भाग फ़ंक्शन के रूप में विकसित करते हैं जो परिमित हाइपररियल संख्या को उसके निकटतम [[वास्तविक संख्या]] में बंद कर देता है।
  | issue = 3 | journal = [[Perspectives on Science]] | pages =  283–324| title = Almost Equal: The Method of Adequality from Diophantus to Fermat and Beyond | volume = 21 | year = 2013| bibcode = 2012arXiv1210.7750K | s2cid = 57569974 }}</ref> तर्क देते हैं कि साइक्लॉयड जैसे पारलौकिक वक्रों के लिए विधि के फ़र्मेट के अनुप्रयोग से पता चलता है कि फ़र्मेट की पर्याप्तता की विधि विशुद्ध रूप से बीजगणितीय एल्गोरिथम से परे है, और यह कि, ब्रेजर की व्याख्या के विपरीत, डायोफैंटस द्वारा उपयोग किए जाने वाले तकनीकी शब्द पैरिसोट्स और फर्मेट दोनों द्वारा उपयोग किए जाने वाले एडीएक्वालिटास मतलब अनुमानित समानता। वे आधुनिक गणित में फ़र्मेट की पर्याप्तता की विधि को मानक भाग फ़ंक्शन के रूप में विकसित करते हैं जो परिमित हाइपररियल संख्या को उसके निकटतम [[वास्तविक संख्या]] में बंद कर देता है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 22:43, 4 March 2023

पर्याप्तता विधि है जिसे पियरे डी फर्मेट ने अपने ग्रंथ "अधिकतम और न्यूनतम खोजने की विधि" में विकसित किया है।[1] (फ्रांस में परिचालित लैटिन ग्रंथ c. 1636) कार्यों के मैक्सिमा और मिनिमा की गणना करने के लिए, वक्रों की स्पर्शरेखा, क्षेत्रफल, द्रव्यमान का केंद्र, कम से कम क्रिया, और कलन में अन्य समस्याएं। एंड्रे वेइल के अनुसार, फर्मेट ने तकनीकी शब्द ऐडेक्वालिटास, एडएक्वेर आदि का परिचय दिया, जो उन्होंने कहा कि उन्होंने डायोफैंटस से उधार लिया है। जैसा कि डायोफैंटस V.11 दिखाता है, इसका मतलब अनुमानित समानता है, और यह वास्तव में है कि फर्मेट ने अपने बाद के लेखों में से में इस शब्द की व्याख्या कैसे की। (वील 1973)।[2] डायोफैंटस ने अनुमानित समानता को संदर्भित करने के लिए παρισότης (पैरिसोटेस) शब्द गढ़ा।[3] क्लॉड गैसपार्ड बाचेत डी मेजिरियाक ने डायोफैंटस के ग्रीक शब्द का लैटिन में एडैक्वैलिटस के रूप में अनुवाद किया। मैक्सिमा और मिनिमा पर फ़र्मेट के लैटिन ग्रंथों के पॉल टेनरी के फ्रेंच अनुवाद में एडेकेशन और एडेगलर शब्दों का उपयोग किया गया है।

फर्मेट की विधि

फर्मेट ने पहले कार्यों की अधिकतमता खोजने के लिए पर्याप्तता का उपयोग किया, और फिर वक्रों को स्पर्शरेखा रेखाओं को खोजने के लिए इसे अनुकूलित किया।

एक शब्द का अधिकतम पता लगाने के लिए , फर्मेट बराबर (या अधिक सटीक रूप से पर्याप्त) और और बीजगणित करने के बाद वह के कारक को रद्द कर सकता है और फिर सम्मिलित किसी भी शेष शर्तों को छोड़ दें फर्मेट के अपने उदाहरण द्वारा विधि को स्पष्ट करने के लिए, अधिकतम ज्ञात करने की समस्या पर विचार करें (फर्मेट के शब्दों में, यह लंबाई की रेखा को विभाजित करना है बिंदु पर , जैसे कि दो परिणामी भागों का उत्पाद अधिकतम हो।[1] फ़र्मेट पर्याप्त साथ . यानी (नोटेशन का उपयोग करके पॉल टेनरी द्वारा पेश की गई पर्याप्तता को दर्शाने के लिए):

रद्द करने की शर्तें और इसके द्वारा विभाजित करना फर्मेट पहुंचे

निहित शर्तों को हटाना फर्मेट वांछित परिणाम पर पहुंचे कि अधिकतम तब हुआ जब .

फर्मेट ने अपने सिद्धांत का उपयोग स्नेल के अपवर्तन के नियमों की गणितीय व्युत्पत्ति सीधे सिद्धांत से किया कि प्रकाश सबसे तेज पथ लेता है।[4]

डेसकार्टेस की आलोचना

फ़र्मेट की पद्धति की उनके समकालीनों, विशेष रूप से डेसकार्टेस द्वारा अत्यधिक आलोचना की गई थी। विक्टर जे. काट्ज़ का सुझाव है कि ऐसा इसलिए है क्योंकि डेसकार्टेस ने स्वतंत्र रूप से उसी नए गणित की खोज की थी, जिसे उनकी सामान्य पद्धति के रूप में जाना जाता था, और डेसकार्टेस को अपनी खोज पर काफी गर्व था। काट्ज़ ने यह भी नोट किया कि फ़र्मेट के तरीके कलन में भविष्य के विकास के करीब थे, डेसकार्टेस के तरीकों का विकास पर अधिक तत्काल प्रभाव पड़ा।[5]

विद्वतापूर्ण विवाद

न्यूटन और लाइबनिज दोनों ने फ़र्मेट के कार्य को अत्यल्प कैलकुलस के पूर्ववर्ती के रूप में संदर्भित किया। फिर भी, फ़र्मेट की पर्याप्तता के सटीक अर्थ के बारे में आधुनिक विद्वानों में असहमति है। फ़र्मेट की पर्याप्तता का कई विद्वानों के अध्ययनों में विश्लेषण किया गया था। 1896 में, पॉल टेनरी ने मैक्सिमा और मिनिमा पर फर्मेट के लैटिन ग्रंथों का फ्रांसीसी अनुवाद प्रकाशित किया (फर्मेट, ऑवरेस, वॉल्यूम III, पीपी। 121-156)। टेनरी ने फ़र्मेट के शब्द का अनुवाद "एडेगलर" के रूप में किया और फ़र्मेट के "एडेक्वेशन" को अपनाया। चमड़े का कारख़ाना भी प्रतीक पेश किया गणितीय सूत्रों में समानता के लिए।

हेनरिक विलेटनर (1929)[6] लिखा:

Fermat A को A+E से बदल देता है। फिर वह नई अभिव्यक्ति 'मोटे तौर पर बराबर' ('angenähert gleich') को पुराने वाले पर सेट करता है, दोनों पक्षों के समान पदों को रद्द करता है, और E की उच्चतम संभव शक्ति से विभाजित करता है। फिर वह उन सभी पदों को रद्द कर देता है जिनमें E होता है और उन्हें सेट करता है दूसरे के बराबर रहते हैं। उससे [आवश्यक] परिणाम। यह E जितना संभव हो उतना छोटा होना चाहिए, यह कहीं नहीं कहा गया है और यह शब्द adaequalitas द्वारा सर्वोत्तम रूप से व्यक्त किया गया है।

(Wieleitner प्रतीक का उपयोग करता है .)


मैक्स मिलर (1934)[7] लिखा:

उसके बाद दोनों शब्दों को रखना चाहिए, जो अधिकतम और न्यूनतम को व्यक्त करते हैं, लगभग बराबर (näherungsweise gleich), जैसा कि डायोफैंटस कहते हैं।

(मिलर प्रतीक का उपयोग करता है) .)


जीन इटार्ड (1948)[8] लिखा है:

कोई जानता है कि एक्सप्रेशन एडेगलर डायोफैंटस से फर्मेट द्वारा अपनाया गया है, जिसका अनुवाद ज़ाइलेंडर और बचे द्वारा किया गया है। यह अनुमानित समानता (égalité approximative) के बारे में है।

(Itard प्रतीक का उपयोग करता है .)


जोसेफ एरेनफ्राइड हॉफमैन (1963)[9] लिखा:

Fermat मात्रा h चुनता है, जिसे पर्याप्त रूप से छोटा माना जाता है, और f(x + h) 'मोटे तौर पर बराबर' ('ungefähr gleich') को f(x) में रखता है। उनका तकनीकी शब्द adaequare है।

(हॉफमैन प्रतीक का उपयोग करता है .)


पीर स्ट्रोमहोम (1968)[10] लिखा:

फर्मेट के दृष्टिकोण का आधार दो अभिव्यक्तियों की तुलना थी, चूंकि उनका रूप समान था, किन्तु वे बिल्कुल समान नहीं थे। इस प्रक्रिया के इस हिस्से को उन्होंने तुलना पार ऐडेक्वालिटेटेम या तुलनात्मक प्रति एडीईक्वालिटेटेम कहा, और इसमें निहित है कि समीकरण के दोनों पक्षों के बीच अन्यथा सख्त पहचान चर के संशोधन द्वारा द्वारा नष्ट कर दी गई थी। छोटी राशि:

.

मेरा मानना ​​है कि यह डायोफैंटस के πἀρισον के उनके उपयोग का वास्तविक महत्व था, जो भिन्नता की लघुता पर बल देता है। 'adaequalitas' का सामान्य अनुवाद 'अनुमानित समानता' प्रतीत होता है, किन्तु मैं इस बिंदु पर फ़र्मेट के विचार को प्रस्तुत करने के लिए 'छद्म-समानता' को अधिक पसंद करता हूँ।

उन्होंने आगे कहा कि M1 (विधि 1) में कभी भी कोई भिन्नता का प्रश्न E को शून्य के बराबर रखा जा रहा है। ई युक्त शब्दों को दबाने की प्रक्रिया को व्यक्त करने के लिए फर्मेट शब्द 'एलिडो', 'डेलियो' और 'एक्सुंगो' थे, और फ्रेंच में 'आई'फेस' और 'आई'ओटे' थे। हम संभवतः ही विश्वास कर सकते हैं कि समझदार व्यक्ति जो अपने अर्थ को व्यक्त करना चाहता है और शब्दों की खोज कर रहा है, वह लगातार सरल तथ्य प्रदान करने के ऐसे कुटिल तरीकों से टकराएगा कि ई शून्य होने के कारण शब्द गायब हो गए। (पृष्ठ 51) 'क्लॉस जेन्सेन' (1969)[11] लिखा है:

इसके अतिरिक्त, adégalité की धारणा को लागू करने में - जो फ़र्मेट की स्पर्शरेखा बनाने की सामान्य विधि का आधार है, और जिसका अर्थ है दो परिमाणों की तुलना 'जैसे कि वे बराबर थे, चूंकि वे वास्तव में नहीं हैं' (तमक्वाम एसेन्ट इक्वेलिया, लिसेट रेवेरा इक्वेलिया नॉन सिंट) - मैं आजकल अधिक सामान्य प्रतीक का उपयोग करूंगा

लैटिन उद्धरण टैनरी के 1891 संस्करण फ़र्मेट, खंड 1, पृष्ठ 140 से आता है। माइकल सीन महोनी (1971)[12] ने लिखा है:

मैक्सिमा और मिनिमा की फर्मेट की विधि, जो स्पष्ट रूप से किसी भी बहुपद P(x) पर लागू होती है, मूल रूप से विशुद्ध रूप से सीमित बीजगणितीय नींव पर आधारित है। विएत के समीकरणों के सिद्धांत, उन जड़ों और बहुपद के गुणांकों में से के बीच संबंध, जो पूरी तरह से सामान्य था, को निर्धारित करने के लिए, 'प्रतितथ्यात्मक रूप से', दो समान जड़ों की असमानता को मान लिया। इस संबंध ने तब चरम-मूल्य समाधान का नेतृत्व किया जब फर्मेट ने अपनी 'प्रतितथ्यात्मक धारणा' को हटा दिया और जड़ों को बराबर कर दिया। डायोफैंटस से शब्द उधार लेते हुए, फ़र्मेट ने इसे 'प्रतितथ्यात्मक समानता' 'पर्याप्तता' कहा।

(महोनी प्रतीक का उपयोग करता है ।) पी पर। 164, फुटनोट 46 के अंत में, महोनी नोट करते हैं कि पर्याप्तता के अर्थों में से सीमित मामले में समानता या समानता है। 'चार्ल्स हेनरी एडवर्ड्स, जूनियर' (1979)[13] लिखा:

उदाहरण के लिए, यह निर्धारित करने के लिए कि लंबाई के खंड को कैसे विभाजित किया जाए दो खंडों में और जिसका उत्पाद अधिकतम है, अर्थात परिमाप के साथ आयत ज्ञात करना है जिसका अधिकतम क्षेत्र है, वह [फर्मेट] निम्नानुसार आगे बढ़ता है। पहले उन्होंने स्थानापन्न किया

(उसने एक्स, ई के अतिरिक्त ए, ई का उपयोग किया) अज्ञात एक्स के लिए, और फिर परिणामी अभिव्यक्ति की मूल अभिव्यक्ति के साथ तुलना करने के लिए निम्नलिखित 'छद्म-समानता' लिखा:

शर्तों को रद्द करने के बाद, उन्होंने प्राप्त करने के लिए ई से विभाजित किया अंत में उन्होंने 'छद्म-समानता' को वास्तविक समानता में परिवर्तित करते हुए ई युक्त शेष पद को त्याग दिया जो x का मान देता है जो बनाता है अधिकतम। दुर्भाग्य से, फर्मेट ने ऐतिहासिक विद्वानों के बीच असहमति को रोकने के लिए पर्याप्त स्पष्टता या पूर्णता के साथ इस पद्धति के तार्किक आधार की कभी व्याख्या नहीं की, जैसा कि उनका मतलब या इरादा था।

कर्स्टी एंडरसन (1980)[14] लिखा है:

अधिकतम या न्यूनतम के दो भावों को पर्याप्त बनाया गया है, जिसका अर्थ है 'यथासंभव लगभग समान'।

(एंडरसन प्रतीक का उपयोग करता है .) हर्बर्ट ब्रेजर (1994)[15] लिखा है:

मैं अपनी परिकल्पना को सामने रखना चाहता हूं: फ़र्मेट ने शब्द adaequare का प्रयोग 'बराबर रखने के लिए' के ​​अर्थ में किया है ... गणितीय संदर्भ में, aequare और adaequare के बीच एकमात्र अंतर यह प्रतीत होता है कि उत्तरार्द्ध अधिक देता है इस तथ्य पर जोर दें कि समानता प्राप्त की जाती है।

(पृष्ठ 197एफ।)

'जॉन स्टिलवेल' (स्टिलवेल 2006 पृष्ठ. 91) ने लिखा:<ब्लॉककोट>फर्मेट ने 1630 के दशक में समानता का विचार पेश किया किन्तु वह अपने समय से आगे थे। उनके उत्तराधिकारी सामान्य समीकरणों की सुविधा को छोड़ने के लिए तैयार नहीं थे, समानता का सटीक उपयोग करने के अतिरिक्त समानता का उपयोग करना पसंद करते थे। तथाकथित गैर-मानक विश्लेषण में, केवल बीसवीं शताब्दी में पर्याप्तता के विचार को पुनर्जीवित किया गया था।

'एनरिको गिउस्टी' (2009)[16] मारिन मेर्सेन को फर्मेट का पत्र उद्धृत करें जहां फर्मेट ने लिखा है: अंत में समानता उत्पन्न करें (मेरी पद्धति का अनुसरण करते हुए) जो हमें समस्या का समाधान देता है .. </ब्लॉककोट> गिउस्टी ने फुटनोट में लिखा है कि ऐसा लगता है कि यह पत्र ब्रेजर के नोटिस से बच गया है।

क्लाउस बार्नर (2011)[17] यह दावा करता है कि फ़र्मेट दो अलग-अलग लैटिन शब्दों (aequabitur और adaequabitur) का उपयोग आजकल के सामान्य समान चिह्न, aequabitur को बदलने के लिए करता है, जब समीकरण दो स्थिरांक, सार्वभौमिक रूप से मान्य (सिद्ध) सूत्र, या सशर्त समीकरण, adaequabitur, के बीच वैध पहचान की चिंता करता है। जब समीकरण दो चरों के बीच संबंध का वर्णन करता है, जो स्वतंत्र नहीं हैं (और समीकरण कोई मान्य सूत्र नहीं है)। पेज 36 पर, बार्नर लिखते हैं: फर्मेट ने स्पर्शरेखा की विधि के अपने सभी उदाहरणों के लिए अपनी असंगत प्रक्रिया को लगातार क्यों दोहराया? उसने कभी उस सेकेंट का जिक्र क्यों नहीं किया, जिसके साथ वह वास्तव में काम करता था? मुझे नहीं पता।

'काट्ज़, शेप्स, श्नाइडर' (2013)[18] तर्क देते हैं कि साइक्लॉयड जैसे पारलौकिक वक्रों के लिए विधि के फ़र्मेट के अनुप्रयोग से पता चलता है कि फ़र्मेट की पर्याप्तता की विधि विशुद्ध रूप से बीजगणितीय एल्गोरिथम से परे है, और यह कि, ब्रेजर की व्याख्या के विपरीत, डायोफैंटस द्वारा उपयोग किए जाने वाले तकनीकी शब्द पैरिसोट्स और फर्मेट दोनों द्वारा उपयोग किए जाने वाले एडीएक्वालिटास मतलब अनुमानित समानता। वे आधुनिक गणित में फ़र्मेट की पर्याप्तता की विधि को मानक भाग फ़ंक्शन के रूप में विकसित करते हैं जो परिमित हाइपररियल संख्या को उसके निकटतम वास्तविक संख्या में बंद कर देता है।

यह भी देखें

  • फर्मेट का सिद्धांत
  • समरूपता का भावातीत नियम

संदर्भ

  1. 1.0 1.1 METHOD FOR THE STUDY OF MAXIMA AND MINIMA, English translation of Fermat's treatise Methodus ad disquirendam maximam et minimam. wikisource
  2. See also Weil, A. (1984), Number Theory: An Approach through History from Hammurapi to Legendre, Boston: Birkhäuser, p. 28, ISBN 978-0-8176-4565-6
  3. Katz, Mikhail G.; Schaps, D.; Shnider, S. (2013), "Almost Equal: The Method of Adequality from Diophantus to Fermat and Beyond", Perspectives on Science, 21 (3): 283–324, arXiv:1210.7750, Bibcode:2012arXiv1210.7750K, doi:10.1162/POSC_a_00101, S2CID 57569974
  4. Grabiner 1983.
  5. Katz 2008.
  6. Wieleitner, H.:Bemerkungen zu Fermats Methode der Aufsuchung von Extremwerten und der Berechnung von Kurventangenten. Jahresbericht der Deutschen Mathematiker-Vereinigung 38 (1929)24–35, p. 25
  7. Miller, M.: Pierre de Fermats Abhandlungen über Maxima und Minima. Akademische Verlagsgesellschaft, Leipzig (1934), p.1
  8. Itard, J. (1948). "" Fermat précurseur du calcul différentiel "". Arch. Internat. Hist. Sci. 27: 589–610. MR 0026600.
  9. Hofmann, J.E.: Über ein Extremwertproblem des Apollonius und seine Behandlung bei Fermat. Nova Acta Leopoldina (2) 27 (167) (1963), 105–113, p.107
  10. Strømholm, Per (1968). "मैक्सिमा और मिनिमा और स्पर्शरेखा की फर्मेट की विधियाँ। एक पुनर्निर्माण". Archive for History of Exact Sciences. 5: 47–69. doi:10.1007/BF00328112. S2CID 118454253.
  11. Jensen, Claus (1969). "वक्र की स्पर्शज्या निर्धारित करने की पियरे फर्मेट की विधि और शंकुवृक्ष और चतुर्भुज के लिए इसका अनुप्रयोग". Centaurus. 14 (1): 72–85. Bibcode:1969Cent...14...72J. doi:10.1111/j.1600-0498.1969.tb00137.x.
  12. Mahoney, M.S.: Fermat, Pierre de. Dictionary of Scientific Biography, vol. IV, Charles Scribner's Sons, New York (1971), p.569.
  13. Edwards, C.H., Jr.:The historical Development of the Calculus. Springer, New York 1979, p.122f
  14. Andersen, K.: Techniques of the calculus 1630–1660. In: Grattan-Guinness, I. (ed): From the Calculus to Set Theory. An Introductory History. Duckworth, London 1980, 10–48, p.23
  15. Breger, H.: The mysteries of adaequare: A vindication of Fermat. Arch. Hist. Exact Sci. 46 (1994), 193–219
  16. Giusti, Enrico (2009). "Les méthodes des maxima et minima de Fermat". Annales de la Faculté des Sciences de Toulouse: Mathématiques. 18: 59–85. doi:10.5802/afst.1229.
  17. Barner, Klaus (2011). "Fermats «adæquare» – und kein Ende?". Mathematische Semesterberichte. 58: 13–45. doi:10.1007/s00591-010-0083-5. S2CID 115179952.
  18. Katz, Mikhail G.; Schaps, David; Shnider, Steve (2013), "Almost Equal: The Method of Adequality from Diophantus to Fermat and Beyond", Perspectives on Science, 21 (3): 283–324, arXiv:1210.7750, Bibcode:2012arXiv1210.7750K, doi:10.1162/POSC_a_00101, S2CID 57569974


ग्रन्थसूची