निम्नतम और उच्चतम: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{short description|Greatest lower bound and least upper bound}}
{{short description|Greatest lower bound and least upper bound}}
[[Image:Infimum illustration.svg|thumb|upright=1.2|एक समुच्चय <math>P</math> वास्तविक संख्या (खोखले और भरे हुए घेरे), एक सबसमुच्चय <math>S</math> का <math>P</math> (भरे घेरे), और की infumum <math>S.</math> ध्यान दें कि परिमित या पूरी तरह से क्रमबद्ध समुच्चय के लिए, [[न्यूनतम]] और न्यूनतम समान हैं।]]
[[Image:Infimum illustration.svg|thumb|upright=1.2|एक समुच्चय <math>P</math> वास्तविक संख्या (खोखले और भरे हुए घेरे), एक सबसमुच्चय <math>S</math> का <math>P</math> (भरे घेरे), और की infumum <math>S.</math> ध्यान दें कि परिमित या पूरी तरह से क्रमबद्ध समुच्चय के लिए, [[न्यूनतम]] और न्यूनतम समान हैं।]]
[[Image:Supremum illustration.svg|thumb|upright=1.2|एक समुच्चय <math>A</math> वास्तविक संख्याओं का (नीला वृत्त), की ऊपरी सीमा का एक समुच्चय <math>A</math> (लाल हीरा और वृत्त), और सबसे छोटी ऐसी ऊपरी सीमा, जो कि सुप्रीमम है <math>A</math> (लाल हीरा)।]]गणित में, एक उपसमुच्चय का निम्नतम संक्षिप्त रूप में; बहुवचन निम्नतम <math>S</math> [[आंशिक रूप से आदेशित सेट|आंशिक रूप से क्रमबद्ध समुच्चय]] का <math>P</math> [[सबसे बड़ा तत्व]] होता है, <math>P</math> जो कि प्रत्येक तत्व से कम या उसके बराबर है <math>S,</math> में यदि ऐसा कोई तत्व उपस्थित होता है।<ref name=BabyRudin>{{cite book|first=Walter|last=Rudin|author-link=Walter Rudin|title=गणितीय विश्लेषण के सिद्धांत|publisher=McGraw-Hill|edition=3rd|year=1976|isbn=0-07-054235-X|chapter="Chapter 1 The Real and Complex Number Systems"|format=print|page=[https://archive.org/details/principlesofmath00rudi/page/n15 4]|url=https://archive.org/details/principlesofmath00rudi|url-access=registration}}</ref> तो परिणामस्वरुप शब्द सबसे बड़ी निचली सीमा संक्षिप्त रूप में {{em|जीएलबी}} के रूप में प्रयोग किया जाता है।<ref name=BabyRudin /> एक उपसमुच्चय का सुप्रीमम संक्षिप्त सुपर; बहुवचन सुप्रीमा <math>S</math> आंशिक रूप से क्रमबद्ध समुच्चय का <math>P</math> में सबसे कम तत्व के रूप में होता है <math>P</math> के प्रत्येक तत्व से अधिक या उसके बराबर है यदि <math>S,</math>में ऐसा कोई तत्व उपस्थित होता है।<ref name=BabyRudin /> सुप्रीमम को कम से कम ऊपरी बाउंड या एलयूबी के रूप में भी जाना जाता है।.<ref name=BabyRudin />
[[Image:Supremum illustration.svg|thumb|upright=1.2|एक समुच्चय <math>A</math> वास्तविक संख्याओं का (नीला वृत्त), की ऊपरी सीमा का एक समुच्चय <math>A</math> (लाल हीरा और वृत्त), और सबसे छोटी ऐसी ऊपरी सीमा, जो कि सुप्रीमम है <math>A</math> (लाल हीरा)।]]गणित में, एक उपसमुच्चय का निम्नतम संक्षिप्त रूप में; बहुवचन निम्नतम <math>S</math> [[आंशिक रूप से आदेशित सेट|आंशिक रूप से क्रमबद्ध समुच्चय]] का <math>P</math> [[सबसे बड़ा तत्व]] होता है, <math>P</math> जो कि प्रत्येक तत्व से कम या उसके बराबर है <math>S,</math> में यदि ऐसा कोई तत्व उपस्थित होता है।<ref name=BabyRudin>{{cite book|first=Walter|last=Rudin|author-link=Walter Rudin|title=गणितीय विश्लेषण के सिद्धांत|publisher=McGraw-Hill|edition=3rd|year=1976|isbn=0-07-054235-X|chapter="Chapter 1 The Real and Complex Number Systems"|format=print|page=[https://archive.org/details/principlesofmath00rudi/page/n15 4]|url=https://archive.org/details/principlesofmath00rudi|url-access=registration}}</ref> तो परिणामस्वरुप शब्द सबसे बड़ी निचली सीमा संक्षिप्त रूप में {{em|जीएलबी}} के रूप में प्रयोग किया जाता है।<ref name=BabyRudin /> एक उपसमुच्चय का सुप्रीमम संक्षिप्त सुपर; बहुवचन सुप्रीमा <math>S</math> आंशिक रूप से क्रमबद्ध समुच्चय का <math>P</math> में सबसे कम तत्व के रूप में होता है <math>P</math> के प्रत्येक तत्व से अधिक या उसके बराबर है यदि <math>S,</math>में ऐसा कोई तत्व उपस्थित होता है।<ref name=BabyRudin /> सुप्रीमम को कम से कम ऊपरी बाउंड या एलयूबी के रूप में भी जाना जाता है।.<ref name=BabyRudin />


निम्नतम एक यथार्थ अर्थ में एक सुप्रीमा की अवधारणा के लिए दोहरी [[आदेश सिद्धांत|क्रमबद्ध सिद्धांत]] के रूप में है। निम्नतम और सुप्रीमा [[वास्तविक संख्याओं]] की विशेष स्थिति होती है, जो [[गणितीय विश्लेषण]] में महत्वपूर्ण रूप में होती है और विशेष रूप से लेबेसेग एकीकरण में महत्वपूर्ण हैं। चूंकि, सामान्य परिभाषाएं क्रमबद्ध सिद्धांत की अधिक अमूर्त सेटिंग में मान्य रहती हैं, जहां यादृच्छिक आंशिक रूप से क्रमबद्ध समुच्चय पर विचार किया जाता है।
निम्नतम एक यथार्थ अर्थ में एक सुप्रीमा की अवधारणा के लिए दोहरी [[आदेश सिद्धांत|क्रमबद्ध सिद्धांत]] के रूप में है। निम्नतम और सुप्रीमा [[वास्तविक संख्याओं]] की विशेष स्थिति होती है, जो [[गणितीय विश्लेषण]] में महत्वपूर्ण रूप में होती है और विशेष रूप से लेबेसेग एकीकरण में महत्वपूर्ण हैं। चूंकि, सामान्य परिभाषाएं क्रमबद्ध सिद्धांत की अधिक अमूर्त सेटिंग में मान्य रहती हैं, जहां यादृच्छिक आंशिक रूप से क्रमबद्ध समुच्चय पर विचार किया जाता है।


निम्नतम और सुप्रीमम की अवधारणा न्यूनतम और [[अधिकतम]] के करीब होती है, लेकिन विश्लेषण में अधिक उपयोगी रूप में होती है क्योंकि वे विशेष समुच्चय को बेहतर ढंग से चित्रित करते हैं जिनमें हो सकता है {{em|कोई न्यूनतम या अधिकतम नहीं}} हो जैसे, उदाहरण के लिए धनात्मक वास्तविक संख्याओं का समुच्चय <math>\R^+</math> (<math>0</math> सहित नहीं) में न्यूनतम के रूप में नहीं होते है, क्योंकि किसी दिए गए तत्व का <math>\R^+</math> केवल आधे में विभाजित किया जाता है जिसके परिणामस्वरूप एक छोटी संख्या होती है जो अभी भी <math>\R^+.</math>के अंदर है चूँकि, वास्तविक संख्या <math>0,</math> के सापेक्ष धनात्मक वास्तविक संख्याओं में से एक सबसे कम होती है जो सभी धनात्मक वास्तविक संख्याओं से छोटा है और किसी भी अन्य वास्तविक संख्या से बड़ा होता है जिसे निचली सीमा के रूप में उपयोग किया जा सकता है। प्रश्न में समुच्चय के एक सुपरसमुच्चय के सापेक्ष सदैव और केवल एक समुच्चय को निम्नतम रूप में परिभाषित किया गया है। उदाहरण के लिए, धनात्मक वास्तविक संख्याओं के अंदर धनात्मक वास्तविक संख्याओं में से कोई भी अपने स्वयं के सुपरसमुच्चय के रूप में नहीं होती है और न ही धनात्मक वास्तविक संख्याओं के अंदर धनात्मक वास्तविक संख्याओं में से कोई भी धनात्मक वास्तविक भाग के रूप में होता है।
निम्नतम और सुप्रीमम की अवधारणा न्यूनतम और [[अधिकतम]] के करीब होती है, लेकिन विश्लेषण में अधिक उपयोगी रूप में होती है क्योंकि वे विशेष समुच्चय को बेहतर ढंग से चित्रित करते हैं जिनमें हो सकता है {{em|कोई न्यूनतम या अधिकतम नहीं}} हो जैसे, उदाहरण के लिए धनात्मक वास्तविक संख्याओं का समुच्चय <math>\R^+</math> (<math>0</math> सहित नहीं) में न्यूनतम के रूप में नहीं होते है, क्योंकि किसी दिए गए तत्व का <math>\R^+</math> केवल आधे में विभाजित किया जाता है जिसके परिणामस्वरूप एक छोटी संख्या होती है जो अभी भी <math>\R^+.</math>के अंदर है चूँकि, वास्तविक संख्या <math>0,</math> के सापेक्ष धनात्मक वास्तविक संख्याओं में से एक सबसे कम होती है जो सभी धनात्मक वास्तविक संख्याओं से छोटा है और किसी भी अन्य वास्तविक संख्या से बड़ा होता है जिसे निचली सीमा के रूप में उपयोग किया जा सकता है। प्रश्न में समुच्चय के एक सुपरसमुच्चय के सापेक्ष सदैव और केवल एक समुच्चय को निम्नतम रूप में परिभाषित किया गया है। उदाहरण के लिए, धनात्मक वास्तविक संख्याओं के अंदर धनात्मक वास्तविक संख्याओं में से कोई भी अपने स्वयं के सुपरसमुच्चय के रूप में नहीं होती है और न ही धनात्मक वास्तविक संख्याओं के अंदर धनात्मक वास्तविक संख्याओं में से कोई भी धनात्मक वास्तविक भाग के रूप में होता है।


== औपचारिक परिभाषा ==
== औपचारिक परिभाषा ==


[[File:Illustration of supremum.svg|thumb|upright=1.2|सुप्रीमम = कम से कम ऊपरी बाउंड]]आंशिक रूप से क्रमित समुच्चय <math>(P, \leq)</math> के उपसमुच्चय <math>S</math> की निचली सीमा <math>P</math> का एक अवयव <math>a</math> के रूप में है जैसे कि,
[[File:Illustration of supremum.svg|thumb|upright=1.2|सुप्रीमम = कम से कम ऊपरी बाउंड]]आंशिक रूप से क्रमित समुच्चय <math>(P, \leq)</math> के उपसमुच्चय <math>S</math> की निचली सीमा <math>P</math> का एक अवयव <math>a</math> के रूप में है जैसे कि,
* <math>a \leq x</math> सभी के लिए <math>x \in S.</math>  
* <math>a \leq x</math> सभी के लिए <math>x \in S.</math>  
<math>S</math> के एक निचले बाउंड <math>a</math> को एक कम या सबसे बड़ी निम्नतम सीमा कहा जाता है या <math>S</math> के रूप में यदि
<math>S</math> के एक निचले बाउंड <math>a</math> को एक कम या सबसे बड़ी निम्नतम सीमा कहा जाता है या <math>S</math> के रूप में यदि
* सभी निचली सीमाओं के लिए <math>y</math> का <math>S</math> में <math>P,</math> <math>y \leq a</math> , <math>a</math> किसी अन्य निचली सीमा से बड़ा या उसके बराबर होता है।
* सभी निचली सीमाओं के लिए <math>y</math> का <math>S</math> में <math>P,</math> <math>y \leq a</math> , <math>a</math> किसी अन्य निचली सीमा से बड़ा या उसके बराबर होता है।


इसी तरह,एक उपसमुच्चय की एक ऊपरी सीमा आंशिक रूप से क्रमबद्ध किए गए समुच्चय का <math>S</math> आंशिक रूप से क्रमबद्ध समुच्चय का <math>(P, \leq)</math> एक तत्व है <math>b</math> का <math>P</math> ऐसा तत्व है कि
इसी तरह,एक उपसमुच्चय की एक ऊपरी सीमा आंशिक रूप से क्रमबद्ध किए गए समुच्चय का <math>S</math> आंशिक रूप से क्रमबद्ध समुच्चय का <math>(P, \leq)</math> एक तत्व है <math>b</math> का <math>P</math> ऐसा तत्व है कि
* <math>b \geq x</math> सभी के लिए <math>x \in S.</math>  
* <math>b \geq x</math> सभी के लिए <math>x \in S.</math>  
एक ऊपरी सीमा <math>b</math> का <math>S</math> को सुप्रीमम या कम से कम ऊपरी बाउंड या ज्वाइन कहा जाता है <math>S</math> यदि,
एक ऊपरी सीमा <math>b</math> का <math>S</math> को सुप्रीमम या कम से कम ऊपरी बाउंड या ज्वाइन कहा जाता है <math>S</math> यदि,
Line 21: Line 21:
== अस्तित्व और विशिष्टता ==
== अस्तित्व और विशिष्टता ==


निम्नतम और सुप्रीमा आवश्यक नहीं है। एक कम से कम एक सबसमुच्चय का अस्तित्व यदि <math>S</math> की कोई निचली सीमा नहीं है या यदि निचली सीमा के समुच्चय में सबसे बड़ा तत्व नहीं है, तो <math>P</math> <math>S</math> विफल हो सकता है। चूंकि, यदि कोई निम्नतम या सुप्रीमा के रूप में उपस्थित होते है, तो यह अद्वितीय रूप में होते है।
निम्नतम और सुप्रीमा आवश्यक नहीं है। एक कम से कम एक सबसमुच्चय का अस्तित्व यदि <math>S</math> की कोई निचली सीमा नहीं है या यदि निचली सीमा के समुच्चय में सबसे बड़ा तत्व नहीं है, तो <math>P</math> <math>S</math> विफल हो सकता है। चूंकि, यदि कोई निम्नतम या सुप्रीमा के रूप में उपस्थित होते है, तो यह अद्वितीय रूप में होते है।


परिणामस्वरुप , आंशिक रूप से क्रमबद्ध समुच्चय जिसके लिए कुछ इन्फिमा उपस्थित होते है, विशेष रूप से रोचक रूप में हो जाते हैं। उदाहरण के लिए, एक [[जाली (आदेश)|जाली]] आंशिक रूप से क्रमबद्ध समुच्चय है जिसमें सभी {{em|अरिक्त परिमित}} उपसमुच्चय में सुप्रीमम और न्यूनतम दोनों होते हैं और एक [[पूर्ण जाली]] एक आंशिक रूप से क्रमबद्ध समुच्चय होता है जिसमें {{em|सभी}} उपसमुच्चय में सुप्रीमम और न्यूनतम दोनों होते हैं। इस तरह के विचारों से उत्पन्न होने वाले आंशिक रूप से क्रमबद्ध समुच्चयो के विभिन्न वर्गों के बारे में अधिक जानकारी [[पूर्णता (आदेश सिद्धांत)|पूर्णता (क्रमबद्ध सिद्धांत)]] के लेख में पाई जाती है।
परिणामस्वरुप , आंशिक रूप से क्रमबद्ध समुच्चय जिसके लिए कुछ इन्फिमा उपस्थित होते है, विशेष रूप से रोचक रूप में हो जाते हैं। उदाहरण के लिए, एक [[जाली (आदेश)|जाली]] आंशिक रूप से क्रमबद्ध समुच्चय है जिसमें सभी {{em|अरिक्त परिमित}} उपसमुच्चय में सुप्रीमम और न्यूनतम दोनों होते हैं और एक [[पूर्ण जाली]] एक आंशिक रूप से क्रमबद्ध समुच्चय होता है जिसमें {{em|सभी}} उपसमुच्चय में सुप्रीमम और न्यूनतम दोनों होते हैं। इस तरह के विचारों से उत्पन्न होने वाले आंशिक रूप से क्रमबद्ध समुच्चयो के विभिन्न वर्गों के बारे में अधिक जानकारी [[पूर्णता (आदेश सिद्धांत)|पूर्णता (क्रमबद्ध सिद्धांत)]] के लेख में पाई जाती है।


यदि एक उपसमुच्चय का सुप्रीमम <math>S</math> उपस्थित है और यह अद्वितीय है। यदि <math>S</math> सबसे बड़ा तत्व है, तो वह तत्व सुप्रीमम होता है, अन्यथा सुप्रीमम का संबंध <math>S</math> से संबंधित नहीं है। इसी तरह, यदि निम्‍नतम उपस्थित है, तो यह अद्वितीय है। यदि <math>S</math> में सबसे कम तत्व सम्मलि होते है, तो वह तत्व न्यूनतमरूप में होता है; अन्यथा, निम्नतम का संबंध <math>S</math> से नहीं है या उपस्थित नहीं है।
यदि एक उपसमुच्चय का सुप्रीमम <math>S</math> उपस्थित है और यह अद्वितीय है। यदि <math>S</math> सबसे बड़ा तत्व है, तो वह तत्व सुप्रीमम होता है, अन्यथा सुप्रीमम का संबंध <math>S</math> से संबंधित नहीं है। इसी तरह, यदि निम्‍नतम उपस्थित है, तो यह अद्वितीय है। यदि <math>S</math> में सबसे कम तत्व सम्मलि होते है, तो वह तत्व न्यूनतमरूप में होता है; अन्यथा, निम्नतम का संबंध <math>S</math> से नहीं है या उपस्थित नहीं है।


== अधिकतम और न्यूनतम तत्वों से संबंध ==
== अधिकतम और न्यूनतम तत्वों से संबंध ==


आंशिक रूप से क्रमबद्ध किए गए समुच्चय <math>P,</math> के उपसमुच्चय <math>S</math> का सबसे कम होता है। यह मानते हुए कि यह उपस्थित है, <math>S.</math>आवश्यक नहीं है, यदि ऐसा होता है, तो यह [[न्यूनतम तत्व|न्यूनतम]] या कम से कम <math>S.</math>तत्व के रूप में होता है। इसी प्रकार यदि <math>S</math> का सुप्रीमम <math>S,</math> से संबंधित है, तो यह <math>S.</math> का [[अधिकतम]] या सबसे बड़ा तत्व होता है।
आंशिक रूप से क्रमबद्ध किए गए समुच्चय <math>P,</math> के उपसमुच्चय <math>S</math> का सबसे कम होता है। यह मानते हुए कि यह उपस्थित है, <math>S.</math>आवश्यक नहीं है, यदि ऐसा होता है, तो यह [[न्यूनतम तत्व|न्यूनतम]] या कम से कम <math>S.</math>तत्व के रूप में होता है। इसी प्रकार यदि <math>S</math> का सुप्रीमम <math>S,</math> से संबंधित है, तो यह <math>S.</math> का [[अधिकतम]] या सबसे बड़ा तत्व होता है।


उदाहरण के लिए, ऋणात्मक वास्तविक संख्याओं के समुच्चय पर विचार करते है शून्य को छोड़कर, इस समुच्चय का कोई सबसे बड़ा तत्व नहीं होता है, क्योंकि समुच्चय के प्रत्येक तत्व के लिए एक और बड़ा तत्व होता है। उदाहरण के लिए, किसी भी नकारात्मक वास्तविक संख्या के लिए <math>x,</math> एक अन्य ऋणात्मक वास्तविक संख्या <math>\tfrac{x}{2},</math> के रूप में होती है, जो अधिक है। दूसरी ओर प्रत्येक वास्तविक संख्या शून्य से अधिक या उसके बराबर निश्चित रूप से इस समुच्चय पर एक ऊपरी सीमा के रूप में होती है। इस तरह, <math>0</math> ऋणात्मक वास्तविकों की सबसे छोटी ऊपरी सीमा है, इसलिए सुप्रीमम 0 इस समुच्चय में एक उच्चतम है लेकिन कोई सबसे बड़ा तत्व नहीं है।
उदाहरण के लिए, ऋणात्मक वास्तविक संख्याओं के समुच्चय पर विचार करते है शून्य को छोड़कर, इस समुच्चय का कोई सबसे बड़ा तत्व नहीं होता है, क्योंकि समुच्चय के प्रत्येक तत्व के लिए एक और बड़ा तत्व होता है। उदाहरण के लिए, किसी भी नकारात्मक वास्तविक संख्या के लिए <math>x,</math> एक अन्य ऋणात्मक वास्तविक संख्या <math>\tfrac{x}{2},</math> के रूप में होती है, जो अधिक है। दूसरी ओर प्रत्येक वास्तविक संख्या शून्य से अधिक या उसके बराबर निश्चित रूप से इस समुच्चय पर एक ऊपरी सीमा के रूप में होती है। इस तरह, <math>0</math> ऋणात्मक वास्तविकों की सबसे छोटी ऊपरी सीमा है, इसलिए सुप्रीमम 0 इस समुच्चय में एक उच्चतम है लेकिन कोई सबसे बड़ा तत्व नहीं है।


चूँकि, अधिकतम तत्व की परिभाषा अधिक सामान्य होती है। विशेष रूप से, एक समुच्चय में कई अधिकतम और न्यूनतम तत्व हो सकते हैं, जबकि इन्फिमा और सुप्रीमा अद्वितीय रूप में होते है।
चूँकि, अधिकतम तत्व की परिभाषा अधिक सामान्य होती है। विशेष रूप से, एक समुच्चय में कई अधिकतम और न्यूनतम तत्व हो सकते हैं, जबकि इन्फिमा और सुप्रीमा अद्वितीय रूप में होते है।


जबकि मैक्सिमा और मिनिमा उस उपसमुच्चय के सदस्य होने चाहिए जो कि विचाराधीन है, किसी उपसमुच्चय के न्यूनतम और उच्चतम उस उपसमुच्चय के सदस्य होने की आवश्यकता नहीं होती है।
जबकि मैक्सिमा और मिनिमा उस उपसमुच्चय के सदस्य होने चाहिए जो कि विचाराधीन है, किसी उपसमुच्चय के न्यूनतम और उच्चतम उस उपसमुच्चय के सदस्य होने की आवश्यकता नहीं होती है।


=== न्यूनतम ऊपरी सीमा ===
=== न्यूनतम ऊपरी सीमा ===
अंत में, आंशिक रूप से क्रमबद्ध किये गये समुच्चय पर कम से कम ऊपरी सीमा हो सकती है। न्यूनतम ऊपरी सीमा वे ऊपरी सीमाएं होती है, जिनके लिए कोई भी सख्त से छोटा तत्व नहीं है और जो ऊपरी सीमा के रूप में होती है। इससे यह नहीं कहा जाता कि प्रत्येक न्यूनतम उच्चतम सीमा अन्य सभी ऊपरी सीमाओं से छोटी होती है परंतु यह मात्र बड़ी नहीं है.न्यूनतम और कम से कम के बीच का अंतर केवल तभी संभव है जब दिया गया क्रम पूरी तरह से व्यवस्थित समुच्चय नहीं है। पूरी तरह से क्रमबद्ध समुच्चय में वास्तविक संख्याओं की तरह अवधारणाएं में समानता होती हैं।
अंत में, आंशिक रूप से क्रमबद्ध किये गये समुच्चय पर कम से कम ऊपरी सीमा हो सकती है। न्यूनतम ऊपरी सीमा वे ऊपरी सीमाएं होती है, जिनके लिए कोई भी सख्त से छोटा तत्व नहीं है और जो ऊपरी सीमा के रूप में होती है। इससे यह नहीं कहा जाता कि प्रत्येक न्यूनतम उच्चतम सीमा अन्य सभी ऊपरी सीमाओं से छोटी होती है परंतु यह मात्र बड़ी नहीं है.न्यूनतम और कम से कम के बीच का अंतर केवल तभी संभव है जब दिया गया क्रम पूरी तरह से व्यवस्थित समुच्चय नहीं है। पूरी तरह से क्रमबद्ध समुच्चय में वास्तविक संख्याओं की तरह अवधारणाएं में समानता होती हैं।


एक उदाहरण के रूप में, माना <math>S</math> को प्राकृतिक संख्याओं के सभी परिमित उपसमुच्चयों का समुच्चय है और <math>S</math> सभी समुच्चयों को लेकर प्राप्त आंशिक रूप से क्रमबद्ध समुच्चय पर विचार करते है और <math>\Z</math> [[पूर्णांक]] के समुच्चय के साथ और धनात्मक वास्तविक संख्याओं का समुच्चय <math>\R^+,</math> ऊपर के रूप में सबसमुच्चय समावेशन द्वारा क्रमबद्ध किया गया है। फिर स्पष्ट रूप से दोनों <math>\Z</math> और <math>\R^+</math> प्राकृतिक संख्याओं के सभी परिमित समुच्चय से अधिक हैं। तथा फिर भी, न तो है <math>\R^+</math> <math>\Z</math> से छोटा है और न ही इसका विलोम सत्य है, दोनों समुच्चय न्यूनतम ऊपरी सीमाएँ के रूप में होती है, लेकिन कोई भी सुप्रीमम नहीं होती है।
एक उदाहरण के रूप में, माना <math>S</math> को प्राकृतिक संख्याओं के सभी परिमित उपसमुच्चयों का समुच्चय है और <math>S</math> सभी समुच्चयों को लेकर प्राप्त आंशिक रूप से क्रमबद्ध समुच्चय पर विचार करते है और <math>\Z</math> [[पूर्णांक]] के समुच्चय के साथ और धनात्मक वास्तविक संख्याओं का समुच्चय <math>\R^+,</math> ऊपर के रूप में सबसमुच्चय समावेशन द्वारा क्रमबद्ध किया गया है। फिर स्पष्ट रूप से दोनों <math>\Z</math> और <math>\R^+</math> प्राकृतिक संख्याओं के सभी परिमित समुच्चय से अधिक हैं। तथा फिर भी, न तो है <math>\R^+</math> <math>\Z</math> से छोटा है और न ही इसका विलोम सत्य है, दोनों समुच्चय न्यूनतम ऊपरी सीमाएँ के रूप में होती है, लेकिन कोई भी सुप्रीमम नहीं होती है।


=== कम से कम ऊपरी बाध्य गुण धर्म  ===
=== कम से कम ऊपरी बाध्य गुण धर्म  ===
{{main|कम से कम ऊपरी बाध्य गुण धर्म }}
{{main|कम से कम ऊपरी बाध्य गुण धर्म }}


कम से कम ऊपरी बाध्य गुण धर्म   उपरोक्त पूर्णता गुणों का एक उदाहरण के रूप में है, जो वास्तविक संख्याओं के समुच्चय के लिए विशिष्ट होते है। इस गुण धर्म को कभी-कभी डेडेकाइंड पूर्णता कहा जाता है।
कम से कम ऊपरी बाध्य गुण धर्म उपरोक्त पूर्णता गुणों का एक उदाहरण के रूप में है, जो वास्तविक संख्याओं के समुच्चय के लिए विशिष्ट होते है। इस गुण धर्म को कभी-कभी डेडेकाइंड पूर्णता कहा जाता है।


यदि एक क्रमबद्ध दिया गया समुच्चय <math>S</math> गुण धर्म है कि हर गैर-खाली उपसमुच्चय <math>S</math> ऊपरी बाउंड होने पर भी कम से कम ऊपरी बाउंड होता है <math>S</math> कहा जाता है कि सबसे कम-ऊपरी-बाध्य गुण धर्म   है। जैसा कि ऊपर उल्लेख किया गया है, समुच्चय <math>\R</math> सभी वास्तविक संख्याओं में सबसे कम-ऊपरी-बाध्य गुण धर्म   है। इसी तरह, समुच्चय <math>\Z</math> पूर्णांकों में सबसे कम-ऊपरी-बाध्य गुण धर्म   है; यदि <math>S</math> का एक अरिक्त उपसमुच्चय है <math>\Z</math> और कुछ संख्या है <math>n</math> ऐसा है कि हर तत्व <math>s</math> का <math>S</math> से कम या बराबर है <math>n,</math> तो वहाँ एक कम से कम ऊपरी सीमा है <math>u</math> के लिए <math>S,</math> एक पूर्णांक जिसके लिए ऊपरी सीमा <math>S</math> है और के लिए हर दूसरे ऊपरी बाउंड से कम या बराबर है <math>S.</math> एक सुव्यवस्थित समुच्चय में कम से कम ऊपरी बाध्य गुण धर्म होता है और खाली उपसमुच्चय में भी कम से कम ऊपरी सीमा पूरे समुच्चय की न्यूनतम रूप में होती है।
यदि एक क्रमबद्ध दिया गया समुच्चय <math>S</math> गुण धर्म है कि हर गैर-खाली उपसमुच्चय <math>S</math> ऊपरी बाउंड होने पर भी कम से कम ऊपरी बाउंड होता है <math>S</math> कहा जाता है कि सबसे कम-ऊपरी-बाध्य गुण धर्म है। जैसा कि ऊपर उल्लेख किया गया है, समुच्चय <math>\R</math> सभी वास्तविक संख्याओं में सबसे कम-ऊपरी-बाध्य गुण धर्म है। इसी तरह, समुच्चय <math>\Z</math> पूर्णांकों में सबसे कम-ऊपरी-बाध्य गुण धर्म है; यदि <math>S</math> का एक अरिक्त उपसमुच्चय है <math>\Z</math> और कुछ संख्या है <math>n</math> ऐसा है कि हर तत्व <math>s</math> का <math>S</math> से कम या बराबर है <math>n,</math> तो वहाँ एक कम से कम ऊपरी सीमा है <math>u</math> के लिए <math>S,</math> एक पूर्णांक जिसके लिए ऊपरी सीमा <math>S</math> है और के लिए हर दूसरे ऊपरी बाउंड से कम या बराबर है <math>S.</math> एक सुव्यवस्थित समुच्चय में कम से कम ऊपरी बाध्य गुण धर्म होता है और खाली उपसमुच्चय में भी कम से कम ऊपरी सीमा पूरे समुच्चय की न्यूनतम रूप में होती है।


एक समुच्चय का एक उदाहरण है कि {{em|lacks}} सबसे कम-ऊपरी-बाध्य गुण धर्म है <math>\Q,</math> परिमेय संख्याओं का समुच्चय होता है। <math>S</math> सभी परिमेय संख्याओं का समुच्चय होता है <math>q</math> ऐसा है कि <math>q^2 < 2.</math> तब <math>S</math> एक ऊपरी सीमा है <math>1000,</math> उदाहरण के लिए,या <math>6</math> लेकिन कम से कम ऊपरी सीमा में नहीं <math>\Q</math>: यदि हम मान लें <math>p \in \Q</math> कम से कम ऊपरी सीमा है, एक विरोधाभास तुरंत निकाला जाता है क्योंकि किसी भी दो वास्तविक के बीच <math>x</math> और <math>y</math> (2| के वर्गमूल सहित)<math>\sqrt{2}</math>और <math>p</math>) कुछ तर्कसंगत उपस्थित है <math>r,</math> जो स्वयं कम से कम ऊपरी सीमा होनी चाहिए (यदि <math>p > \sqrt{2}</math>) या का सदस्य <math>S</math> से अधिक <math>p</math> (यदि <math>p < \sqrt{2}</math>). एक अन्य उदाहरण [[hyperreal|अतिवास्तविक]] रूप में है; धनात्मक अतिसूक्ष्मों के समुच्चय की कम से कम ऊपरी सीमा नहीं होती है।
एक समुच्चय का एक उदाहरण है कि {{em|lacks}} सबसे कम-ऊपरी-बाध्य गुण धर्म है <math>\Q,</math> परिमेय संख्याओं का समुच्चय होता है। <math>S</math> सभी परिमेय संख्याओं का समुच्चय होता है <math>q</math> ऐसा है कि <math>q^2 < 2.</math> तब <math>S</math> एक ऊपरी सीमा है <math>1000,</math> उदाहरण के लिए,या <math>6</math> लेकिन कम से कम ऊपरी सीमा में नहीं <math>\Q</math>: यदि हम मान लें <math>p \in \Q</math> कम से कम ऊपरी सीमा है, एक विरोधाभास तुरंत निकाला जाता है क्योंकि किसी भी दो वास्तविक के बीच <math>x</math> और <math>y</math> (2| के वर्गमूल सहित)<math>\sqrt{2}</math>और <math>p</math>) कुछ तर्कसंगत उपस्थित है <math>r,</math> जो स्वयं कम से कम ऊपरी सीमा होनी चाहिए (यदि <math>p > \sqrt{2}</math>) या का सदस्य <math>S</math> से अधिक <math>p</math> (यदि <math>p < \sqrt{2}</math>). एक अन्य उदाहरण [[hyperreal|अतिवास्तविक]] रूप में है; धनात्मक अतिसूक्ष्मों के समुच्चय की कम से कम ऊपरी सीमा नहीं होती है।


एक संगत सबसे बड़ी बाध्य गुण धर्म के रूप में होती है; क्रमबद्ध समुच्चय पर निम्नतम गुण धर्म होती है, यदि और केवल यदि यह कम से कम-ऊपरी-बाध्य गुण धर्म   भी रखती है; एक समुच्चय की निचली सीमा के समुच्चय की सबसे कम-ऊपरी सीमा सबसे बड़ी निचली सीमा के रूप में होती है और एक समुच्चय की ऊपरी सीमा के समुच्चय की सबसे बड़ी-निचली सीमा समुच्चय की सबसे कम-ऊपरी सीमा है।
एक संगत सबसे बड़ी बाध्य गुण धर्म के रूप में होती है; क्रमबद्ध समुच्चय पर निम्नतम गुण धर्म होती है, यदि और केवल यदि यह कम से कम-ऊपरी-बाध्य गुण धर्म भी रखती है; एक समुच्चय की निचली सीमा के समुच्चय की सबसे कम-ऊपरी सीमा सबसे बड़ी निचली सीमा के रूप में होती है और एक समुच्चय की ऊपरी सीमा के समुच्चय की सबसे बड़ी-निचली सीमा समुच्चय की सबसे कम-ऊपरी सीमा है।


यदि आंशिक रूप से क्रमबद्ध किए गए समुच्चय में <math>P</math> प्रत्येक परिबद्ध उपसमुच्चय का एक सुप्रीमम होता है, यह किसी भी समुच्चय के लिए भी लागू होता है <math>X,</math> फलन क्षेत्र में जिसमें से सभी फलन होते हैं <math>X</math> को <math>P,</math> जहाँ <math>f \leq g</math> यदि और केवल यदि <math>f(x) \leq g(x)</math> सभी के लिए <math>x \in X.</math> है, उदाहरण के लिए, यह वास्तविक फंक्षन के लिए लागू होता है, और चूंकि यह प्रकार्यों के विशेष स्थिति के बारे में माना जा सकता है, इन्हें वास्तविक <math>n</math> टुपल्स और वास्तविक संख्या के अनुक्रमों के लिए. होता है।
यदि आंशिक रूप से क्रमबद्ध किए गए समुच्चय में <math>P</math> प्रत्येक परिबद्ध उपसमुच्चय का एक सुप्रीमम होता है, यह किसी भी समुच्चय के लिए भी लागू होता है <math>X,</math> फलन क्षेत्र में जिसमें से सभी फलन होते हैं <math>X</math> को <math>P,</math> जहाँ <math>f \leq g</math> यदि और केवल यदि <math>f(x) \leq g(x)</math> सभी के लिए <math>x \in X.</math> है, उदाहरण के लिए, यह वास्तविक फंक्षन के लिए लागू होता है, और चूंकि यह प्रकार्यों के विशेष स्थिति के बारे में माना जा सकता है, इन्हें वास्तविक <math>n</math> टुपल्स और वास्तविक संख्या के अनुक्रमों के लिए. होता है।


सबसे कम-ऊपरी-बाध्य गुण धर्म   सर्वोच्चता का सूचक है।
सबसे कम-ऊपरी-बाध्य गुण धर्म सर्वोच्चता का सूचक है।


== वास्तविक संख्याओं की अनंतता और सर्वोच्चता ==
== वास्तविक संख्याओं की अनंतता और सर्वोच्चता ==


गणितीय विश्लेषण में, उपसमुच्चय की infima और सुप्रीमा <math>S</math> [[वास्तविक संख्या]]एँ विशेष रूप से महत्वपूर्ण हैं। उदाहरण के लिए, ऋणात्मक वास्तविक संख्याओं में सबसे बड़ा अवयव नहीं होता है, और उनकी सर्वोच्चता होती है <math>0</math> (जो ऋणात्मक वास्तविक संख्या नहीं है)।<ref name=BabyRudin />वास्तविक संख्याओं की पूर्णता का अर्थ है (और इसके समतुल्य है) कि कोई भी परिबद्ध गैररिक्त उपसमुच्चय <math>S</math> वास्तविक संख्या के एक निम्नतम और एक supremum है। यदि <math>S</math> नीचे बाध्य नहीं है, एक अधिकांशतः औपचारिक रूप से लिखता है <math>\inf_{} S = -\infty.</math> यदि <math>S</math> [[खाली सेट|खाली समुच्चय]] है, एक लिखता है <math>\inf_{} S = +\infty.</math>
गणितीय विश्लेषण में, उपसमुच्चय की निम्नतम और सुप्रीमा <math>S</math> [[वास्तविक संख्या]]एँ विशेष रूप से महत्वपूर्ण होती है। उदाहरण के लिए, ऋणात्मक वास्तविक संख्याओं में सबसे बड़ा अवयव नहीं होता है और उनकी सर्वोच्चता होती है <math>0</math> जो ऋणात्मक वास्तविक संख्या नहीं है।<ref name=BabyRudin /> वास्तविक संख्याओं की पूर्णता का अर्थ है कि कोई भी परिबद्ध गैररिक्त उपसमुच्चय <math>S</math> वास्तविक संख्या के एक निम्नतम और एक सुप्रीमा है और इसके समतुल्य है, यदि <math>S</math> नीचे बाध्य नहीं है, तो अधिकांशतः औपचारिक रूप से लिखता है <math>\inf_{} S = -\infty.</math> यदि <math>S</math> [[खाली सेट|खाली समुच्चय]] है तथा औपचारिक रूप से लिखता है <math>\inf_{} S = +\infty.</math>
 
 
=== गुण ===
=== गुण ===


यदि <math>A</math> तब वास्तविक संख्याओं का कोई समुच्चय होता है <math>A \neq \varnothing</math> यदि और केवल यदि <math>\sup A \geq \inf A,</math> और अन्यथा <math>-\infty = \sup \varnothing < \inf \varnothing = \infty.</math>{{sfn|Rockafellar|Wets|2009|pp=1-2}}
यदि <math>A</math> तब वास्तविक संख्याओं का कोई समुच्चय होता है <math>A \neq \varnothing</math> यदि और केवल यदि <math>\sup A \geq \inf A,</math> और अन्यथा <math>-\infty = \sup \varnothing < \inf \varnothing = \infty.</math>{{sfn|Rockafellar|Wets|2009|pp=1-2}}


यदि <math>A \subseteq B</math> तब वास्तविक संख्या के समुच्चय हैं <math>\inf A \geq \inf B</math> (जब तक <math>A = \varnothing \neq B</math>) और <math>\sup A \leq \sup B.</math>
यदि <math>A \subseteq B</math> तब वास्तविक संख्या के समुच्चय <math>\inf A \geq \inf B</math> (जब तक <math>A = \varnothing \neq B</math>) और <math>\sup A \leq \sup B.</math> के रूप में होते है
इन्फर्मा और सुप्रीमा की पहचान करना


यदि की अनंतिम <math>A</math> उपस्थित है (अर्थात, <math>\inf A</math> एक वास्तविक संख्या है) और यदि <math>p</math> तब कोई वास्तविक संख्या है <math>p = \inf A</math> यदि और केवल यदि <math>p</math> एक निचली सीमा है और हर के लिए <math>\epsilon > 0</math> वहाँ है एक <math>a_\epsilon \in A</math> साथ <math>a_\epsilon < p + \epsilon.</math> इसी प्रकार यदि <math>\sup A</math> एक वास्तविक संख्या है और यदि <math>p</math> तब कोई वास्तविक संख्या है <math>p = \sup A</math> यदि और केवल यदि <math>p</math> एक ऊपरी सीमा है और यदि प्रत्येक के लिए <math>\epsilon > 0</math> वहाँ है एक <math>a_\epsilon \in A</math> साथ <math>a_\epsilon > p - \epsilon.</math>
=== इन्फर्मा और सुप्रीमा की पहचान करना ===
अनुक्रमों की सीमा से संबंध
यदि की अनंतिम <math>A</math> उपस्थित है अर्थात, <math>\inf A</math> एक वास्तविक संख्या है और यदि <math>p</math> तब कोई वास्तविक संख्या <math>p = \inf A</math> है यदि और केवल यदि <math>p</math> एक निचली सीमा है और हर के लिए <math>\epsilon > 0</math> वहाँ है एक <math>a_\epsilon \in A</math> साथ <math>a_\epsilon < p + \epsilon.</math> इसी प्रकार यदि <math>\sup A</math> एक वास्तविक संख्या है और यदि <math>p</math> तब कोई वास्तविक संख्या है <math>p = \sup A</math> यदि और केवल यदि <math>p</math> एक ऊपरी सीमा है और यदि प्रत्येक के लिए <math>\epsilon > 0</math> है एक <math>a_\epsilon \in A</math> साथ <math>a_\epsilon > p - \epsilon.</math> है


यदि <math>S \neq \varnothing</math> वास्तविक संख्याओं का कोई गैर-खाली समुच्चय है तो हमेशा एक गैर-घटता अनुक्रम उपस्थित होता है <math>s_1 \leq s_2 \leq \cdots</math> में <math>S</math> ऐसा है कि <math>\lim_{n \to \infty} s_n = \sup S.</math> इसी तरह, एक (संभवतः अलग) गैर-बढ़ती अनुक्रम उपस्थित होगा <math>s_1 \geq s_2 \geq \cdots</math> में <math>S</math> ऐसा है कि <math>\lim_{n \to \infty} s_n = \inf S.</math> ऐसे क्रम की सीमा के रूप में न्यूनतम और उच्चतम को व्यक्त करने से गणित की विभिन्न शाखाओं के प्रमेयों को लागू करने की अनुमति मिलती है। उदाहरण के लिए [[टोपोलॉजी]] से प्रसिद्ध तथ्य पर विचार करें कि यदि <math>f</math> एक सतत कार्य (टोपोलॉजी) है और <math>s_1, s_2, \ldots</math> अपने डोमेन में बिंदुओं का एक क्रम है जो एक बिंदु पर अभिसरण करता है <math>p,</math> तब <math>f\left(s_1\right), f\left(s_2\right), \ldots</math> अनिवार्य रूप से अभिसरण करता है <math>f(p).</math> तात्पर्य यह है कि यदि <math>\lim_{n \to \infty} s_n = \sup S</math> एक वास्तविक संख्या है (जहाँ सभी <math>s_1, s_2, \ldots</math> में हैं <math>S</math>) और यदि <math>f</math> एक सतत कार्य है जिसका डोमेन सम्मलित है <math>S</math> और <math>\sup S,</math> तब
=== अनुक्रमों की सीमा से संबंध ===
<math display=block>f(\sup S) = f\left(\lim_{n \to \infty} s_n\right) = \lim_{n \to \infty} f\left(s_n\right),</math>
यदि <math>S \neq \varnothing</math> वास्तविक संख्याओं का कोई गैर-खाली समुच्चय है तो सदैव एक गैर-घटता अनुक्रम उपस्थित होता है <math>s_1 \leq s_2 \leq \cdots</math> में <math>S</math> ऐसा है कि <math>\lim_{n \to \infty} s_n = \sup S.</math> इसी तरह, एक संभवतः अलग गैर-बढ़ती अनुक्रम उपस्थित होता है <math>s_1 \geq s_2 \geq \cdots</math> में <math>S</math> ऐसा है कि <math>\lim_{n \to \infty} s_n = \inf S.</math> ऐसे क्रम की सीमा के रूप में न्यूनतम और उच्चतम को व्यक्त करने से गणित की विभिन्न शाखाओं के प्रमेयों को लागू करने की अनुमति मिलती है। उदाहरण के लिए [[टोपोलॉजी]] से प्रसिद्ध तथ्य पर विचार करते है कि यदि <math>f</math> एक सतत कार्य (टोपोलॉजी) के रूप में है और <math>s_1, s_2, \ldots</math> अपने डोमेन में बिंदुओं का एक क्रम है, जो एक बिंदु पर अभिसरण करता है <math>p,</math> तब <math>f\left(s_1\right), f\left(s_2\right), \ldots</math> अनिवार्य रूप से अभिसरण करता है <math>f(p).</math> तात्पर्य यह है कि यदि <math>\lim_{n \to \infty} s_n = \sup S</math> एक वास्तविक संख्या है जहाँ सभी <math>s_1, s_2, \ldots</math> में हैं <math>S</math> और यदि <math>f</math> एक सतत कार्य है जिसका डोमेन सम्मलित है <math>S</math> और <math>\sup S,</math> तब
जो (उदाहरण के लिए) गारंटी देता है<ref group="note">Since <math>f\left(s_1\right), f\left(s_2\right), \ldots</math> is a sequence in <math>f(S)</math> that converges to <math>f(\sup S),</math> this guarantees that <math>f(\sup S)</math> belongs to the [[Closure (topology)|closure]] of <math>f(S).</math></ref> वह <math>f(\sup S)</math> समुच्चय का [[अनुगामी बिंदु]] है <math>f(S) \,\stackrel{\scriptscriptstyle\text{def}}{=}\, \{f(s) : s \in S\}.</math>
<math display="block">f(\sup S) = f\left(\lim_{n \to \infty} s_n\right) = \lim_{n \to \infty} f\left(s_n\right),</math>
यदि इसके अतिरिक्त जो ग्रहण किया गया है, वह निरंतर कार्य करता है <math>f</math> एक बढ़ता या गैर-घटता कार्य भी है, तो यह निष्कर्ष निकालना भी संभव है <math>\sup f(S) = f(\sup S).</math> यह, उदाहरण के लिए, यह निष्कर्ष निकालने के लिए लागू किया जा सकता है कि जब भी <math>g</math> डोमेन के साथ एक वास्तविक (या [[जटिल संख्या]]) मूल्यवान कार्य है <math>\Omega \neq \varnothing</math> जिसका आदर्श है <math>\|g\|_\infty \,\stackrel{\scriptscriptstyle\text{def}}{=}\, \sup_{x \in \Omega} |g(x)|</math> परिमित है, तो प्रत्येक गैर-ऋणात्मक वास्तविक संख्या के लिए <math>q,</math>
जो उदाहरण के लिए गारंटी देता है<ref group="note">Since <math>f\left(s_1\right), f\left(s_2\right), \ldots</math> is a sequence in <math>f(S)</math> that converges to <math>f(\sup S),</math> this guarantees that <math>f(\sup S)</math> belongs to the [[Closure (topology)|closure]] of <math>f(S).</math></ref> वह <math>f(\sup S)</math> समुच्चय का [[अनुगामी बिंदु]] के रूप में होता है <math>f(S) \,\stackrel{\scriptscriptstyle\text{def}}{=}\, \{f(s) : s \in S\}.</math>यदि इसके अतिरिक्त जो ग्रहण किया गया है, वह निरंतर कार्य करता है <math>f</math> एक बढ़ता या गैर-घटता कार्य है, तो यह निष्कर्ष निकालना भी संभव है <math>\sup f(S) = f(\sup S).</math> यह, उदाहरण के लिए, यह निष्कर्ष निकालने के लिए लागू किया जाता है कि जब भी <math>g</math> डोमेन के साथ एक वास्तविक या [[जटिल संख्या]] मूल्यवान कार्य है <math>\Omega \neq \varnothing</math> जिसका आदर्श है <math>\|g\|_\infty \,\stackrel{\scriptscriptstyle\text{def}}{=}\, \sup_{x \in \Omega} |g(x)|</math> परिमित है, तो प्रत्येक गैर-ऋणात्मक वास्तविक संख्या के लिए <math>q,</math>
<math display=block>\|g\|_\infty^q ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \left(\sup_{x \in \Omega} |g(x)|\right)^q = \sup_{x \in \Omega} \left(|g(x)|^q\right)</math>
<math display="block">\|g\|_\infty^q ~\stackrel{\scriptscriptstyle\text{def}}{=}~ \left(\sup_{x \in \Omega} |g(x)|\right)^q = \sup_{x \in \Omega} \left(|g(x)|^q\right)</math>
मानचित्र के बाद से <math>f : [0, \infty) \to \R</math> द्वारा परिभाषित <math>f(x) = x^q</math> एक निरंतर गैर-घटता कार्य है जिसका डोमेन <math>[0, \infty)</math> हमेशा सम्मलित है <math>S := \{|g(x)| : x \in \Omega\}</math> और <math>\sup S \,\stackrel{\scriptscriptstyle\text{def}}{=}\, \|g\|_\infty.</math>
मानचित्र के बाद से <math>f : [0, \infty) \to \R</math> द्वारा परिभाषित <math>f(x) = x^q</math> एक निरंतर गैर-घटता कार्य है जिसका डोमेन <math>[0, \infty)</math> सदैव सम्मलित रूप में होता है। <math>S := \{|g(x)| : x \in \Omega\}</math> और <math>\sup S \,\stackrel{\scriptscriptstyle\text{def}}{=}\, \|g\|_\infty.</math>
चूंकि  यह चर्चा <math>\sup,</math> के लिए इसी तरह के निष्कर्ष निकाले जा सकते हैं <math>\inf</math> उचित परिवर्तनों के साथ (जैसे कि इसकी आवश्यकता है <math>f</math> गैर-घटने के अतिरिक्त  गैर-बढ़ती हो)। अन्य मानदंड (गणित) के संदर्भ में परिभाषित <math>\sup</math> या <math>\inf</math> कमजोर एलपी क्षेत्र | कमजोर सम्मलित  करें <math>L^{p,w}</math> अंतरिक्ष मानदंड (के लिए <math>1 \leq p < \infty</math>), [[एलपी स्पेस|एलपी]] क्षेत्र पर मानदंड <math>L^\infty(\Omega, \mu),</math> और [[ऑपरेटर मानदंड]]। मोनोटोन सीक्वेंस में <math>S</math> जो अभिसरण करता है <math>\sup S</math> (या करने के लिए <math>\inf S</math>) का उपयोग नीचे दिए गए कई फार्मूले को सिद्ध करना  करने में मदद के लिए भी किया जा सकता है, क्योंकि वास्तविक संख्याओं का जोड़ और गुणा निरंतर संक्रियाएं हैं।


=== समुच्चय  पर अंकगणितीय संचालन ===
चूंकि यह चर्चा <math>\sup,</math> के लिए इसी तरह के निष्कर्ष निकाले जा सकते हैं <math>\inf</math> उचित परिवर्तनों के साथ (जैसे कि इसकी आवश्यकता है <math>f</math> गैर-घटने के अतिरिक्त गैर-बढ़ती हो)। अन्य मानदंड (गणित) के संदर्भ में परिभाषित <math>\sup</math> या <math>\inf</math> कमजोर एलपी क्षेत्र | कमजोर सम्मलित करें <math>L^{p,w}</math> अंतरिक्ष मानदंड (के लिए <math>1 \leq p < \infty</math>), [[एलपी स्पेस|एलपी]] क्षेत्र पर मानदंड <math>L^\infty(\Omega, \mu),</math> और [[ऑपरेटर मानदंड]] के रूप में होते है, मोनोटोन सीक्वेंस में <math>S</math> जो अभिसरण करता है <math>\sup S</math> या करने के लिए <math>\inf S</math> का उपयोग नीचे दिए गए कई फार्मूले को सिद्ध करने में मदद के लिए भी किया जा सकता है, क्योंकि वास्तविक संख्याओं का जोड़ और गुणा निरंतर संक्रियाएं के रूप में होती है।


निम्नलिखित सूत्र एक अंकन पर निर्भर करते हैं जो समुच्चय पर अंकगणितीय संचालन को आसानी से सामान्यीकृत करता है।
=== समुच्चय पर अंकगणितीय संचालन ===
लगातार, <math>A, B \subseteq \R</math> वास्तविक संख्याओं के समुच्चय हैं।


समुच्चय का योग
निम्नलिखित सूत्र एक अंकन पर निर्भर करते हैं, जो समुच्चय पर अंकगणितीय संचालन को आसानी से सामान्यीकृत करता है। लगातार, <math>A, B \subseteq \R</math> वास्तविक संख्याओं के समुच्चय हैं।


दो समुच्चय ों का मिन्कोवस्की योग <math>A</math> और <math>B</math> वास्तविक संख्याओं का समुच्चय है
=== समुच्चय का योग ===
<math display=block>A + B ~:=~ \{a + b : a \in A, b \in B\}</math> संख्याओं के जोड़े के सभी संभव अंकगणितीय योगों से मिलकर, प्रत्येक समुच्चय से एक। मिन्कोव्स्की राशि का न्यूनतम और सुप्रीमम संतुष्ट करता है
दो समुच्चय का मिन्कोवस्की योग <math>A</math> और <math>B</math> वास्तविक संख्याओं का समुच्चय होता है।
<math display=block>\inf (A + B) = (\inf A) + (\inf B)</math> और
<math display="block">A + B ~:=~ \{a + b : a \in A, b \in B\}</math> संख्याओं के जोड़े के सभी संभव अंकगणितीय योगों से मिलकर, प्रत्येक समुच्चय से एक मिन्कोव्स्की राशि का न्यूनतम और सुप्रीमम संतुष्ट करता है
<math display="block">\inf (A + B) = (\inf A) + (\inf B)</math> और
  <math display=block>\sup (A + B) = (\sup A) + (\sup B).</math>
  <math display=block>\sup (A + B) = (\sup A) + (\sup B).</math>
समुच्चय का उत्पाद
समुच्चय का उत्पाद


दो समुच्चय ों का गुणन <math>A</math> और <math>B</math> वास्तविक संख्याओं की संख्या को उनके मिन्कोव्स्की योग के समान परिभाषित किया गया है:
दो समुच्चय का गुणन <math>A</math> और <math>B</math> वास्तविक संख्याओं की संख्या को उनके मिन्कोव्स्की योग के समान परिभाषित किया गया है
<math display=block>A \cdot B ~:=~ \{a \cdot b : a \in A, b \in B\}.</math>
<math display=block>A \cdot B ~:=~ \{a \cdot b : a \in A, b \in B\}.</math>
यदि <math>A</math> और <math>B</math> धनात्मक वास्तविक संख्याओं के अरिक्त समुच्चय हैं <math>\inf (A \cdot B) = (\inf A) \cdot (\inf B)</math> और इसी तरह सुप्रीमा के लिए <math>\sup (A \cdot B) = (\sup A) \cdot (\sup B).</math><ref name="zakon">{{cite book|title=गणितीय विश्लेषण मैं|first=Elias|last=Zakon|pages=39–42|publisher=Trillia Group|date=2004|url=http://www.trillia.com/zakon-analysisI.html}}</ref>
यदि <math>A</math> और <math>B</math> धनात्मक वास्तविक संख्याओं के अरिक्त समुच्चय हैं <math>\inf (A \cdot B) = (\inf A) \cdot (\inf B)</math> और इसी तरह सुप्रीमा के लिए <math>\sup (A \cdot B) = (\sup A) \cdot (\sup B).</math> है<ref name="zakon">{{cite book|title=गणितीय विश्लेषण मैं|first=Elias|last=Zakon|pages=39–42|publisher=Trillia Group|date=2004|url=http://www.trillia.com/zakon-analysisI.html}}</ref>  
एक समुच्चय  का स्केलर उत्पाद


एक वास्तविक संख्या का उत्पाद <math>r</math> और एक समुच्चय <math>B</math> वास्तविक संख्याओं का समुच्चय है
=== एक समुच्चय का स्केलर उत्पाद ===
<math display=block>r B ~:=~ \{r \cdot b : b \in B\}.</math>
एक वास्तविक संख्या का उत्पाद <math>r</math> और एक समुच्चय <math>B</math> वास्तविक संख्याओं का समुच्चय है
यदि <math>r \geq 0</math> तब
<math display="block">r B ~:=~ \{r \cdot b : b \in B\}.</math>
<math display=block>\inf (r \cdot A) = r (\inf A) \quad \text{ and } \quad \sup (r \cdot A) = r (\sup A),</math>
यदि <math>r \geq 0</math> तब
जबकि यदि <math>r \leq 0</math> तब
<math display="block">\inf (r \cdot A) = r (\inf A) \quad \text{ and } \quad \sup (r \cdot A) = r (\sup A),</math>
<math display=block>\inf (r \cdot A) = r (\sup A) \quad \text{ and } \quad \sup (r \cdot A) = r (\inf A).</math> का उपयोग करते हुए <math>r = -1</math> और अंकन <math display=inline>-A := (-1) A = \{- a : a \in A\},</math> यह इस प्रकार है कि
जबकि यदि <math>r \leq 0</math> तब
<math display=block>\inf (- A) = - \sup A \quad \text{ and } \quad \sup (- A) = - \inf A.</math>
<math display="block">\inf (r \cdot A) = r (\sup A) \quad \text{ and } \quad \sup (r \cdot A) = r (\inf A).</math> का उपयोग करते हुए <math>r = -1</math> और अंकन <math display="inline">-A := (-1) A = \{- a : a \in A\},</math> यह इस प्रकार है कि
<math display="block">\inf (- A) = - \sup A \quad \text{ and } \quad \sup (- A) = - \inf A.</math>
किसी समुच्चय का गुणक प्रतिलोम
किसी समुच्चय का गुणक प्रतिलोम


किसी भी समुच्चय के लिए <math>S</math> जिसमें सम्मलित नहीं है <math>0,</math> होने देना
किसी भी समुच्चय के लिए <math>S</math> जिसमें सम्मलित नहीं है <math>0,</math> के रूप में होते है,
<math display=block>\frac{1}{S} ~:=\; \left\{\tfrac{1}{s} : s \in S\right\}.</math>
<math display=block>\frac{1}{S} ~:=\; \left\{\tfrac{1}{s} : s \in S\right\}.</math>
यदि <math>S \subseteq (0, \infty)</math> तब खाली नहीं है
यदि <math>S \subseteq (0, \infty)</math> तब खाली नहीं है
<math display=block>\frac{1}{\sup_{} S} ~=~ \inf_{} \frac{1}{S}</math> जहां यह समीकरण कब भी होता है <math>\sup_{} S = \infty</math> यदि परिभाषा <math>\frac{1}{\infty} := 0</math> प्रयोग किया जाता है।<ref group="note" name="DivisionByInfinityOr0">The definition <math>\tfrac{1}{\infty} := 0</math> is commonly used with the [[extended real number]]s; in fact, with this definition the equality <math>\tfrac{1}{\sup_{} S} = \inf_{} \tfrac{1}{S}</math> will also hold for any non-empty subset <math>S \subseteq (0, \infty].</math> However, the notation <math>\tfrac{1}{0}</math> is usually left undefined, which is why the equality <math>\tfrac{1}{\inf_{} S} = \sup_{} \tfrac{1}{S}</math> is given only for when <math>\inf_{} S > 0.</math></ref> इस समानता को वैकल्पिक रूप से लिखा जा सकता है
<math display=block>\frac{1}{\sup_{} S} ~=~ \inf_{} \frac{1}{S}</math> जहां यह समीकरण कब भी होता है <math>\sup_{} S = \infty</math> यदि परिभाषा <math>\frac{1}{\infty} := 0</math> प्रयोग किया जाता है।<ref group="note" name="DivisionByInfinityOr0">The definition <math>\tfrac{1}{\infty} := 0</math> is commonly used with the [[extended real number]]s; in fact, with this definition the equality <math>\tfrac{1}{\sup_{} S} = \inf_{} \tfrac{1}{S}</math> will also hold for any non-empty subset <math>S \subseteq (0, \infty].</math> However, the notation <math>\tfrac{1}{0}</math> is usually left undefined, which is why the equality <math>\tfrac{1}{\inf_{} S} = \sup_{} \tfrac{1}{S}</math> is given only for when <math>\inf_{} S > 0.</math></ref> इस समानता को वैकल्पिक रूप से लिखा जा सकता है
  <math>\frac{1}{\displaystyle\sup_{s \in S} s} = \inf_{s \in S} \tfrac{1}{s}.</math> इसके अतिरिक्त, <math>\inf_{} S = 0</math> यदि और केवल यदि <math>\sup_{} \tfrac{1}{S} = \infty,</math> जहाँ यदि <ref group=note name="DivisionByInfinityOr0" /> <math>\inf_{} S > 0,</math> तब <math>\tfrac{1}{\inf_{} S} = \sup_{} \tfrac{1}{S}.</math>
  <math>\frac{1}{\displaystyle\sup_{s \in S} s} = \inf_{s \in S} \tfrac{1}{s}.</math> इसके अतिरिक्त, <math>\inf_{} S = 0</math> यदि और केवल यदि <math>\sup_{} \tfrac{1}{S} = \infty,</math> जहाँ यदि <ref group=note name="DivisionByInfinityOr0" /> <math>\inf_{} S > 0,</math> तब <math>\tfrac{1}{\inf_{} S} = \sup_{} \tfrac{1}{S}.</math>




== द्वैत ==
== डुअलिटी ==


यदि कोई दर्शाता है <math>P^{\operatorname{op}}</math> आंशिक रूप से क्रमबद्ध समुच्चय <math>P</math> [[विलोम संबंध]] के साथ; अर्थात सभी के लिए <math>x \text{ and } y,</math> घोषित करें:
यदि कोई दर्शाता है <math>P^{\operatorname{op}}</math> आंशिक रूप से क्रमबद्ध समुच्चय <math>P</math> [[विलोम संबंध]] के साथ; अर्थात सभी के लिए <math>x \text{ and } y,</math> घोषित करते है
<math display=block>x \leq y \text{ in } P^{\operatorname{op}} \quad \text{ if and only if } \quad x \geq y \text{ in } P,</math>
<math display=block>x \leq y \text{ in } P^{\operatorname{op}} \quad \text{ if and only if } \quad x \geq y \text{ in } P,</math>
फिर एक उपसमुच्चय का निम्नतम <math>S</math> में <math>P</math> के सुप्रीमम के बराबर है <math>S</math> में <math>P^{\operatorname{op}}</math> और इसके विपरीत।
फिर एक उपसमुच्चय का निम्नतम <math>S</math> में <math>P</math> के सुप्रीमम के बराबर है <math>S</math> में <math>P^{\operatorname{op}}</math> और इसके विपरीत होते है।


वास्तविक संख्याओं के सबसमुच्चय के लिए, एक अन्य प्रकार का द्वैत धारण करता है: <math>\inf S = - \sup (- S),</math> जहाँ <math>-S := \{ -s ~:~ s \in S \}.</math>
वास्तविक संख्याओं के सबसमुच्चय के लिए, एक अन्य प्रकार का डुअलिटी धारण करता है: <math>\inf S = - \sup (- S),</math> जहाँ <math>-S := \{ -s ~:~ s \in S \}.</math>




Line 128: Line 124:


* संख्याओं के समुच्चय का अनंत <math>\{2, 3, 4\}</math> है <math>2.</math> जो नंबर <math>1</math> निचली सीमा है, लेकिन सबसे बड़ी निचली सीमा नहीं है, और इसलिए न्यूनतम नहीं है।
* संख्याओं के समुच्चय का अनंत <math>\{2, 3, 4\}</math> है <math>2.</math> जो नंबर <math>1</math> निचली सीमा है, लेकिन सबसे बड़ी निचली सीमा नहीं है, और इसलिए न्यूनतम नहीं है।
* अधिक सामान्यतः , यदि एक समुच्चय में सबसे छोटा तत्व होता है, तो सबसे छोटा तत्व समुच्चय के लिए न्यूनतम होता है। इस स्थिति में, इसे समुच्चय का न्यूनतम भी कहा जाता है।
* अधिक सामान्यतः , यदि एक समुच्चय में सबसे छोटा तत्व होता है, तो सबसे छोटा तत्व समुच्चय के लिए न्यूनतम होता है। इस स्थिति में, इसे समुच्चय का न्यूनतम भी कहा जाता है।
* <math>\inf \{ 1, 2, 3, \ldots \} = 1.</math>
* <math>\inf \{ 1, 2, 3, \ldots \} = 1.</math>
* <math>\inf \{ x \in \R : 0 < x < 1 \} = 0.</math>
* <math>\inf \{ x \in \R : 0 < x < 1 \} = 0.</math>
* <math>\inf \left\{ x \in \Q : x^3 > 2 \right\} = \sqrt[3]{2}.</math>
* <math>\inf \left\{ x \in \Q : x^3 > 2 \right\} = \sqrt[3]{2}.</math>
* <math>\inf \left\{ (-1)^n + \tfrac{1}{n} : n = 1, 2, 3, \ldots \right\} = -1.</math>
* <math>\inf \left\{ (-1)^n + \tfrac{1}{n} : n = 1, 2, 3, \ldots \right\} = -1.</math>
* यदि <math>\left(x_n\right)_{n=1}^{\infty}</math> सीमा के साथ घटता क्रम है <math>x,</math> तब <math>\inf x_n = x.</math>
* यदि <math>\left(x_n\right)_{n=1}^{\infty}</math> सीमा के साथ घटता क्रम है <math>x,</math> तब <math>\inf x_n = x.</math>




Line 142: Line 138:
* <math>\sup \{ a + b : a \in A, b \in B \} = \sup A + \sup B.</math>
* <math>\sup \{ a + b : a \in A, b \in B \} = \sup A + \sup B.</math>
* <math>\sup \left\{ x \in \Q : x^2 < 2 \right\} = \sqrt{2}.</math>
* <math>\sup \left\{ x \in \Q : x^2 < 2 \right\} = \sqrt{2}.</math>
पिछले उदाहरण में, परिमेय संख्या के एक समुच्चय का सुप्रीमम [[अपरिमेय संख्या]] है, जिसका अर्थ है कि परिमेय पूर्ण स्थान हैं।
पिछले उदाहरण में, परिमेय संख्या के एक समुच्चय का सुप्रीमम [[अपरिमेय संख्या]] के रूप में है, जिसका अर्थ है कि परिमेय पूर्ण स्थान में होती है ।


सुप्रीमम की एक मूल गुण धर्म   है
सुप्रीमम एक मूल गुण धर्म के रूप में होती है
<math display=block>\sup \{ f(t) + g(t) : t \in A \} ~\leq~ \sup \{ f(t) : t \in A \} + \sup \{ g(t) : t \in A \}</math>
<math display=block>\sup \{ f(t) + g(t) : t \in A \} ~\leq~ \sup \{ f(t) : t \in A \} + \sup \{ g(t) : t \in A \}</math>
किसी भी [[कार्यात्मक (गणित)]] के लिए <math>f</math> और <math>g.</math>
किसी भी [[कार्यात्मक (गणित)]] के लिए <math>f</math> और <math>g.</math>
एक उपसमुच्चय का सुप्रीमम <math>S</math> का <math>(\N, \mid\,)</math> जहाँ <math>\,\mid\,</math> वि[[भाजक]] को दर्शाता है, के तत्वों का लघुत्तम समापवर्तक है <math>S.</math>
 
एक समुच्चय का सुप्रीमम <math>S</math> कुछ समुच्चय के सबसमुच्चय युक्त <math>X</math> आंशिक रूप से क्रमबद्ध समुच्चय पर विचार करते समय सबसमुच्चय का [[संघ (सेट सिद्धांत)|संघ (समुच्चय सिद्धांत)]] है <math>(P(X), \subseteq)</math>, जहाँ <math>P</math> का [[ सत्ता स्थापित ]] है <math>X</math> और <math>\,\subseteq\,</math> उपसमुच्चय है।
एक उपसमुच्चय का सुप्रीमम <math>S</math> का <math>(\N, \mid\,)</math> जहाँ <math>\,\mid\,</math> वि[[भाजक]] को दर्शाता है, तत्वों का लघुत्तम समापवर्तक <math>S.</math>है
 
एक समुच्चय का सुप्रीमम <math>S</math> कुछ समुच्चय के सबसमुच्चय युक्त <math>X</math> आंशिक रूप से क्रमबद्ध समुच्चय पर विचार करते समय सबसमुच्चय का [[संघ (सेट सिद्धांत)|संघ (समुच्चय सिद्धांत)]] <math>(P(X), \subseteq)</math>, है जहाँ <math>P</math> का [[ सत्ता स्थापित |सत्ता स्थापित]] है <math>X</math> और <math>\,\subseteq\,</math> उपसमुच्चय के रूप में है।


== यह भी देखें ==
== यह भी देखें ==
{{Commons category}}
{{Commons category}}


* {{annotated link|Essential supremum and essential infimum}}
* {{annotated link|आवश्यक सर्वोच्च और आवश्यक अल्प के रूप में होती है }}
* {{annotated link|Greatest element and least element}}
* {{annotated link|सबसे बड़ा तत्व और सबसे छोटा तत्व के रूप में होते है}}
* {{annotated link|Maximal and minimal elements}}
* {{annotated link|अधिकतम और न्यूनतम तत्व के रूप में होते है}}
* {{annotated link|Limit superior and limit inferior}} (न्यूनतम सीमा)
* {{annotated link|सीमा सुपीरियर और सीमा इन्फीरियर के रूप में होते है}} (न्यूनतम सीमा)
* {{annotated link|Upper and lower bounds}}
* {{annotated link|ऊपरी और निचली सीमाएं के रूप में होती है }}


== टिप्पणियाँ ==
== टिप्पणियाँ ==

Revision as of 00:37, 14 March 2023

एक समुच्चय वास्तविक संख्या (खोखले और भरे हुए घेरे), एक सबसमुच्चय का (भरे घेरे), और की infumum ध्यान दें कि परिमित या पूरी तरह से क्रमबद्ध समुच्चय के लिए, न्यूनतम और न्यूनतम समान हैं।
एक समुच्चय वास्तविक संख्याओं का (नीला वृत्त), की ऊपरी सीमा का एक समुच्चय (लाल हीरा और वृत्त), और सबसे छोटी ऐसी ऊपरी सीमा, जो कि सुप्रीमम है (लाल हीरा)।

गणित में, एक उपसमुच्चय का निम्नतम संक्षिप्त रूप में; बहुवचन निम्नतम आंशिक रूप से क्रमबद्ध समुच्चय का सबसे बड़ा तत्व होता है, जो कि प्रत्येक तत्व से कम या उसके बराबर है में यदि ऐसा कोई तत्व उपस्थित होता है।[1] तो परिणामस्वरुप शब्द सबसे बड़ी निचली सीमा संक्षिप्त रूप में जीएलबी के रूप में प्रयोग किया जाता है।[1] एक उपसमुच्चय का सुप्रीमम संक्षिप्त सुपर; बहुवचन सुप्रीमा आंशिक रूप से क्रमबद्ध समुच्चय का में सबसे कम तत्व के रूप में होता है के प्रत्येक तत्व से अधिक या उसके बराबर है यदि में ऐसा कोई तत्व उपस्थित होता है।[1] सुप्रीमम को कम से कम ऊपरी बाउंड या एलयूबी के रूप में भी जाना जाता है।.[1]

निम्नतम एक यथार्थ अर्थ में एक सुप्रीमा की अवधारणा के लिए दोहरी क्रमबद्ध सिद्धांत के रूप में है। निम्नतम और सुप्रीमा वास्तविक संख्याओं की विशेष स्थिति होती है, जो गणितीय विश्लेषण में महत्वपूर्ण रूप में होती है और विशेष रूप से लेबेसेग एकीकरण में महत्वपूर्ण हैं। चूंकि, सामान्य परिभाषाएं क्रमबद्ध सिद्धांत की अधिक अमूर्त सेटिंग में मान्य रहती हैं, जहां यादृच्छिक आंशिक रूप से क्रमबद्ध समुच्चय पर विचार किया जाता है।

निम्नतम और सुप्रीमम की अवधारणा न्यूनतम और अधिकतम के करीब होती है, लेकिन विश्लेषण में अधिक उपयोगी रूप में होती है क्योंकि वे विशेष समुच्चय को बेहतर ढंग से चित्रित करते हैं जिनमें हो सकता है कोई न्यूनतम या अधिकतम नहीं हो जैसे, उदाहरण के लिए धनात्मक वास्तविक संख्याओं का समुच्चय ( सहित नहीं) में न्यूनतम के रूप में नहीं होते है, क्योंकि किसी दिए गए तत्व का केवल आधे में विभाजित किया जाता है जिसके परिणामस्वरूप एक छोटी संख्या होती है जो अभी भी के अंदर है चूँकि, वास्तविक संख्या के सापेक्ष धनात्मक वास्तविक संख्याओं में से एक सबसे कम होती है जो सभी धनात्मक वास्तविक संख्याओं से छोटा है और किसी भी अन्य वास्तविक संख्या से बड़ा होता है जिसे निचली सीमा के रूप में उपयोग किया जा सकता है। प्रश्न में समुच्चय के एक सुपरसमुच्चय के सापेक्ष सदैव और केवल एक समुच्चय को निम्नतम रूप में परिभाषित किया गया है। उदाहरण के लिए, धनात्मक वास्तविक संख्याओं के अंदर धनात्मक वास्तविक संख्याओं में से कोई भी अपने स्वयं के सुपरसमुच्चय के रूप में नहीं होती है और न ही धनात्मक वास्तविक संख्याओं के अंदर धनात्मक वास्तविक संख्याओं में से कोई भी धनात्मक वास्तविक भाग के रूप में होता है।

औपचारिक परिभाषा

सुप्रीमम = कम से कम ऊपरी बाउंड

आंशिक रूप से क्रमित समुच्चय के उपसमुच्चय की निचली सीमा का एक अवयव के रूप में है जैसे कि,

  • सभी के लिए

के एक निचले बाउंड को एक कम या सबसे बड़ी निम्नतम सीमा कहा जाता है या के रूप में यदि

  • सभी निचली सीमाओं के लिए का में , किसी अन्य निचली सीमा से बड़ा या उसके बराबर होता है।

इसी तरह,एक उपसमुच्चय की एक ऊपरी सीमा आंशिक रूप से क्रमबद्ध किए गए समुच्चय का आंशिक रूप से क्रमबद्ध समुच्चय का एक तत्व है का ऐसा तत्व है कि

  • सभी के लिए

एक ऊपरी सीमा का को सुप्रीमम या कम से कम ऊपरी बाउंड या ज्वाइन कहा जाता है यदि,

  • सभी ऊपरी सीमा के लिए का में , किसी अन्य ऊपरी सीमा से कम या उसके बराबर होता है।

अस्तित्व और विशिष्टता

निम्नतम और सुप्रीमा आवश्यक नहीं है। एक कम से कम एक सबसमुच्चय का अस्तित्व यदि की कोई निचली सीमा नहीं है या यदि निचली सीमा के समुच्चय में सबसे बड़ा तत्व नहीं है, तो विफल हो सकता है। चूंकि, यदि कोई निम्नतम या सुप्रीमा के रूप में उपस्थित होते है, तो यह अद्वितीय रूप में होते है।

परिणामस्वरुप , आंशिक रूप से क्रमबद्ध समुच्चय जिसके लिए कुछ इन्फिमा उपस्थित होते है, विशेष रूप से रोचक रूप में हो जाते हैं। उदाहरण के लिए, एक जाली आंशिक रूप से क्रमबद्ध समुच्चय है जिसमें सभी अरिक्त परिमित उपसमुच्चय में सुप्रीमम और न्यूनतम दोनों होते हैं और एक पूर्ण जाली एक आंशिक रूप से क्रमबद्ध समुच्चय होता है जिसमें सभी उपसमुच्चय में सुप्रीमम और न्यूनतम दोनों होते हैं। इस तरह के विचारों से उत्पन्न होने वाले आंशिक रूप से क्रमबद्ध समुच्चयो के विभिन्न वर्गों के बारे में अधिक जानकारी पूर्णता (क्रमबद्ध सिद्धांत) के लेख में पाई जाती है।

यदि एक उपसमुच्चय का सुप्रीमम उपस्थित है और यह अद्वितीय है। यदि सबसे बड़ा तत्व है, तो वह तत्व सुप्रीमम होता है, अन्यथा सुप्रीमम का संबंध से संबंधित नहीं है। इसी तरह, यदि निम्‍नतम उपस्थित है, तो यह अद्वितीय है। यदि में सबसे कम तत्व सम्मलि होते है, तो वह तत्व न्यूनतमरूप में होता है; अन्यथा, निम्नतम का संबंध से नहीं है या उपस्थित नहीं है।

अधिकतम और न्यूनतम तत्वों से संबंध

आंशिक रूप से क्रमबद्ध किए गए समुच्चय के उपसमुच्चय का सबसे कम होता है। यह मानते हुए कि यह उपस्थित है, आवश्यक नहीं है, यदि ऐसा होता है, तो यह न्यूनतम या कम से कम तत्व के रूप में होता है। इसी प्रकार यदि का सुप्रीमम से संबंधित है, तो यह का अधिकतम या सबसे बड़ा तत्व होता है।

उदाहरण के लिए, ऋणात्मक वास्तविक संख्याओं के समुच्चय पर विचार करते है शून्य को छोड़कर, इस समुच्चय का कोई सबसे बड़ा तत्व नहीं होता है, क्योंकि समुच्चय के प्रत्येक तत्व के लिए एक और बड़ा तत्व होता है। उदाहरण के लिए, किसी भी नकारात्मक वास्तविक संख्या के लिए एक अन्य ऋणात्मक वास्तविक संख्या के रूप में होती है, जो अधिक है। दूसरी ओर प्रत्येक वास्तविक संख्या शून्य से अधिक या उसके बराबर निश्चित रूप से इस समुच्चय पर एक ऊपरी सीमा के रूप में होती है। इस तरह, ऋणात्मक वास्तविकों की सबसे छोटी ऊपरी सीमा है, इसलिए सुप्रीमम 0 इस समुच्चय में एक उच्चतम है लेकिन कोई सबसे बड़ा तत्व नहीं है।

चूँकि, अधिकतम तत्व की परिभाषा अधिक सामान्य होती है। विशेष रूप से, एक समुच्चय में कई अधिकतम और न्यूनतम तत्व हो सकते हैं, जबकि इन्फिमा और सुप्रीमा अद्वितीय रूप में होते है।

जबकि मैक्सिमा और मिनिमा उस उपसमुच्चय के सदस्य होने चाहिए जो कि विचाराधीन है, किसी उपसमुच्चय के न्यूनतम और उच्चतम उस उपसमुच्चय के सदस्य होने की आवश्यकता नहीं होती है।

न्यूनतम ऊपरी सीमा

अंत में, आंशिक रूप से क्रमबद्ध किये गये समुच्चय पर कम से कम ऊपरी सीमा हो सकती है। न्यूनतम ऊपरी सीमा वे ऊपरी सीमाएं होती है, जिनके लिए कोई भी सख्त से छोटा तत्व नहीं है और जो ऊपरी सीमा के रूप में होती है। इससे यह नहीं कहा जाता कि प्रत्येक न्यूनतम उच्चतम सीमा अन्य सभी ऊपरी सीमाओं से छोटी होती है परंतु यह मात्र बड़ी नहीं है.न्यूनतम और कम से कम के बीच का अंतर केवल तभी संभव है जब दिया गया क्रम पूरी तरह से व्यवस्थित समुच्चय नहीं है। पूरी तरह से क्रमबद्ध समुच्चय में वास्तविक संख्याओं की तरह अवधारणाएं में समानता होती हैं।

एक उदाहरण के रूप में, माना को प्राकृतिक संख्याओं के सभी परिमित उपसमुच्चयों का समुच्चय है और सभी समुच्चयों को लेकर प्राप्त आंशिक रूप से क्रमबद्ध समुच्चय पर विचार करते है और पूर्णांक के समुच्चय के साथ और धनात्मक वास्तविक संख्याओं का समुच्चय ऊपर के रूप में सबसमुच्चय समावेशन द्वारा क्रमबद्ध किया गया है। फिर स्पष्ट रूप से दोनों और प्राकृतिक संख्याओं के सभी परिमित समुच्चय से अधिक हैं। तथा फिर भी, न तो है से छोटा है और न ही इसका विलोम सत्य है, दोनों समुच्चय न्यूनतम ऊपरी सीमाएँ के रूप में होती है, लेकिन कोई भी सुप्रीमम नहीं होती है।

कम से कम ऊपरी बाध्य गुण धर्म

कम से कम ऊपरी बाध्य गुण धर्म उपरोक्त पूर्णता गुणों का एक उदाहरण के रूप में है, जो वास्तविक संख्याओं के समुच्चय के लिए विशिष्ट होते है। इस गुण धर्म को कभी-कभी डेडेकाइंड पूर्णता कहा जाता है।

यदि एक क्रमबद्ध दिया गया समुच्चय गुण धर्म है कि हर गैर-खाली उपसमुच्चय ऊपरी बाउंड होने पर भी कम से कम ऊपरी बाउंड होता है कहा जाता है कि सबसे कम-ऊपरी-बाध्य गुण धर्म है। जैसा कि ऊपर उल्लेख किया गया है, समुच्चय सभी वास्तविक संख्याओं में सबसे कम-ऊपरी-बाध्य गुण धर्म है। इसी तरह, समुच्चय पूर्णांकों में सबसे कम-ऊपरी-बाध्य गुण धर्म है; यदि का एक अरिक्त उपसमुच्चय है और कुछ संख्या है ऐसा है कि हर तत्व का से कम या बराबर है तो वहाँ एक कम से कम ऊपरी सीमा है के लिए एक पूर्णांक जिसके लिए ऊपरी सीमा है और के लिए हर दूसरे ऊपरी बाउंड से कम या बराबर है एक सुव्यवस्थित समुच्चय में कम से कम ऊपरी बाध्य गुण धर्म होता है और खाली उपसमुच्चय में भी कम से कम ऊपरी सीमा पूरे समुच्चय की न्यूनतम रूप में होती है।

एक समुच्चय का एक उदाहरण है कि lacks सबसे कम-ऊपरी-बाध्य गुण धर्म है परिमेय संख्याओं का समुच्चय होता है। सभी परिमेय संख्याओं का समुच्चय होता है ऐसा है कि तब एक ऊपरी सीमा है उदाहरण के लिए,या लेकिन कम से कम ऊपरी सीमा में नहीं : यदि हम मान लें कम से कम ऊपरी सीमा है, एक विरोधाभास तुरंत निकाला जाता है क्योंकि किसी भी दो वास्तविक के बीच और (2| के वर्गमूल सहित)और ) कुछ तर्कसंगत उपस्थित है जो स्वयं कम से कम ऊपरी सीमा होनी चाहिए (यदि ) या का सदस्य से अधिक (यदि ). एक अन्य उदाहरण अतिवास्तविक रूप में है; धनात्मक अतिसूक्ष्मों के समुच्चय की कम से कम ऊपरी सीमा नहीं होती है।

एक संगत सबसे बड़ी बाध्य गुण धर्म के रूप में होती है; क्रमबद्ध समुच्चय पर निम्नतम गुण धर्म होती है, यदि और केवल यदि यह कम से कम-ऊपरी-बाध्य गुण धर्म भी रखती है; एक समुच्चय की निचली सीमा के समुच्चय की सबसे कम-ऊपरी सीमा सबसे बड़ी निचली सीमा के रूप में होती है और एक समुच्चय की ऊपरी सीमा के समुच्चय की सबसे बड़ी-निचली सीमा समुच्चय की सबसे कम-ऊपरी सीमा है।

यदि आंशिक रूप से क्रमबद्ध किए गए समुच्चय में प्रत्येक परिबद्ध उपसमुच्चय का एक सुप्रीमम होता है, यह किसी भी समुच्चय के लिए भी लागू होता है फलन क्षेत्र में जिसमें से सभी फलन होते हैं को जहाँ यदि और केवल यदि सभी के लिए है, उदाहरण के लिए, यह वास्तविक फंक्षन के लिए लागू होता है, और चूंकि यह प्रकार्यों के विशेष स्थिति के बारे में माना जा सकता है, इन्हें वास्तविक टुपल्स और वास्तविक संख्या के अनुक्रमों के लिए. होता है।

सबसे कम-ऊपरी-बाध्य गुण धर्म सर्वोच्चता का सूचक है।

वास्तविक संख्याओं की अनंतता और सर्वोच्चता

गणितीय विश्लेषण में, उपसमुच्चय की निम्नतम और सुप्रीमा वास्तविक संख्याएँ विशेष रूप से महत्वपूर्ण होती है। उदाहरण के लिए, ऋणात्मक वास्तविक संख्याओं में सबसे बड़ा अवयव नहीं होता है और उनकी सर्वोच्चता होती है जो ऋणात्मक वास्तविक संख्या नहीं है।[1] वास्तविक संख्याओं की पूर्णता का अर्थ है कि कोई भी परिबद्ध गैररिक्त उपसमुच्चय वास्तविक संख्या के एक निम्नतम और एक सुप्रीमा है और इसके समतुल्य है, यदि नीचे बाध्य नहीं है, तो अधिकांशतः औपचारिक रूप से लिखता है यदि खाली समुच्चय है तथा औपचारिक रूप से लिखता है

गुण

यदि तब वास्तविक संख्याओं का कोई समुच्चय होता है यदि और केवल यदि और अन्यथा [2]

यदि तब वास्तविक संख्या के समुच्चय (जब तक ) और के रूप में होते है

इन्फर्मा और सुप्रीमा की पहचान करना

यदि की अनंतिम उपस्थित है अर्थात, एक वास्तविक संख्या है और यदि तब कोई वास्तविक संख्या है यदि और केवल यदि एक निचली सीमा है और हर के लिए वहाँ है एक साथ इसी प्रकार यदि एक वास्तविक संख्या है और यदि तब कोई वास्तविक संख्या है यदि और केवल यदि एक ऊपरी सीमा है और यदि प्रत्येक के लिए है एक साथ है

अनुक्रमों की सीमा से संबंध

यदि वास्तविक संख्याओं का कोई गैर-खाली समुच्चय है तो सदैव एक गैर-घटता अनुक्रम उपस्थित होता है में ऐसा है कि इसी तरह, एक संभवतः अलग गैर-बढ़ती अनुक्रम उपस्थित होता है में ऐसा है कि ऐसे क्रम की सीमा के रूप में न्यूनतम और उच्चतम को व्यक्त करने से गणित की विभिन्न शाखाओं के प्रमेयों को लागू करने की अनुमति मिलती है। उदाहरण के लिए टोपोलॉजी से प्रसिद्ध तथ्य पर विचार करते है कि यदि एक सतत कार्य (टोपोलॉजी) के रूप में है और अपने डोमेन में बिंदुओं का एक क्रम है, जो एक बिंदु पर अभिसरण करता है तब अनिवार्य रूप से अभिसरण करता है तात्पर्य यह है कि यदि एक वास्तविक संख्या है जहाँ सभी में हैं और यदि एक सतत कार्य है जिसका डोमेन सम्मलित है और तब

जो उदाहरण के लिए गारंटी देता है[note 1] वह समुच्चय का अनुगामी बिंदु के रूप में होता है यदि इसके अतिरिक्त जो ग्रहण किया गया है, वह निरंतर कार्य करता है एक बढ़ता या गैर-घटता कार्य है, तो यह निष्कर्ष निकालना भी संभव है यह, उदाहरण के लिए, यह निष्कर्ष निकालने के लिए लागू किया जाता है कि जब भी डोमेन के साथ एक वास्तविक या जटिल संख्या मूल्यवान कार्य है जिसका आदर्श है परिमित है, तो प्रत्येक गैर-ऋणात्मक वास्तविक संख्या के लिए
मानचित्र के बाद से द्वारा परिभाषित एक निरंतर गैर-घटता कार्य है जिसका डोमेन सदैव सम्मलित रूप में होता है। और

चूंकि यह चर्चा के लिए इसी तरह के निष्कर्ष निकाले जा सकते हैं उचित परिवर्तनों के साथ (जैसे कि इसकी आवश्यकता है गैर-घटने के अतिरिक्त गैर-बढ़ती हो)। अन्य मानदंड (गणित) के संदर्भ में परिभाषित या कमजोर एलपी क्षेत्र | कमजोर सम्मलित करें अंतरिक्ष मानदंड (के लिए ), एलपी क्षेत्र पर मानदंड और ऑपरेटर मानदंड के रूप में होते है, मोनोटोन सीक्वेंस में जो अभिसरण करता है या करने के लिए का उपयोग नीचे दिए गए कई फार्मूले को सिद्ध करने में मदद के लिए भी किया जा सकता है, क्योंकि वास्तविक संख्याओं का जोड़ और गुणा निरंतर संक्रियाएं के रूप में होती है।

समुच्चय पर अंकगणितीय संचालन

निम्नलिखित सूत्र एक अंकन पर निर्भर करते हैं, जो समुच्चय पर अंकगणितीय संचालन को आसानी से सामान्यीकृत करता है। लगातार, वास्तविक संख्याओं के समुच्चय हैं।

समुच्चय का योग

दो समुच्चय का मिन्कोवस्की योग और वास्तविक संख्याओं का समुच्चय होता है।

संख्याओं के जोड़े के सभी संभव अंकगणितीय योगों से मिलकर, प्रत्येक समुच्चय से एक मिन्कोव्स्की राशि का न्यूनतम और सुप्रीमम संतुष्ट करता है
और

समुच्चय का उत्पाद

दो समुच्चय का गुणन और वास्तविक संख्याओं की संख्या को उनके मिन्कोव्स्की योग के समान परिभाषित किया गया है

यदि और धनात्मक वास्तविक संख्याओं के अरिक्त समुच्चय हैं और इसी तरह सुप्रीमा के लिए है[3]

एक समुच्चय का स्केलर उत्पाद

एक वास्तविक संख्या का उत्पाद और एक समुच्चय वास्तविक संख्याओं का समुच्चय है

यदि तब
जबकि यदि तब
का उपयोग करते हुए और अंकन यह इस प्रकार है कि
किसी समुच्चय का गुणक प्रतिलोम

किसी भी समुच्चय के लिए जिसमें सम्मलित नहीं है के रूप में होते है,

यदि तब खाली नहीं है
जहां यह समीकरण कब भी होता है यदि परिभाषा प्रयोग किया जाता है।[note 2] इस समानता को वैकल्पिक रूप से लिखा जा सकता है

 इसके अतिरिक्त,  यदि और केवल यदि  जहाँ यदि [note 2]  तब 


डुअलिटी

यदि कोई दर्शाता है आंशिक रूप से क्रमबद्ध समुच्चय विलोम संबंध के साथ; अर्थात सभी के लिए घोषित करते है

फिर एक उपसमुच्चय का निम्नतम में के सुप्रीमम के बराबर है में और इसके विपरीत होते है।

वास्तविक संख्याओं के सबसमुच्चय के लिए, एक अन्य प्रकार का डुअलिटी धारण करता है: जहाँ


उदाहरण

इन्फिमा

  • संख्याओं के समुच्चय का अनंत है जो नंबर निचली सीमा है, लेकिन सबसे बड़ी निचली सीमा नहीं है, और इसलिए न्यूनतम नहीं है।
  • अधिक सामान्यतः , यदि एक समुच्चय में सबसे छोटा तत्व होता है, तो सबसे छोटा तत्व समुच्चय के लिए न्यूनतम होता है। इस स्थिति में, इसे समुच्चय का न्यूनतम भी कहा जाता है।
  • यदि सीमा के साथ घटता क्रम है तब


सुप्रीम

  • संख्याओं के समुच्चय का सुप्रीमम है जो नंबर एक ऊपरी सीमा है, लेकिन यह कम से कम ऊपरी सीमा नहीं है, और इसलिए सुप्रीमम नहीं है।

पिछले उदाहरण में, परिमेय संख्या के एक समुच्चय का सुप्रीमम अपरिमेय संख्या के रूप में है, जिसका अर्थ है कि परिमेय पूर्ण स्थान में होती है ।

सुप्रीमम एक मूल गुण धर्म के रूप में होती है

किसी भी कार्यात्मक (गणित) के लिए और

एक उपसमुच्चय का सुप्रीमम का जहाँ विभाजक को दर्शाता है, तत्वों का लघुत्तम समापवर्तक है

एक समुच्चय का सुप्रीमम कुछ समुच्चय के सबसमुच्चय युक्त आंशिक रूप से क्रमबद्ध समुच्चय पर विचार करते समय सबसमुच्चय का संघ (समुच्चय सिद्धांत) , है जहाँ का सत्ता स्थापित है और उपसमुच्चय के रूप में है।

यह भी देखें

टिप्पणियाँ

  1. Since is a sequence in that converges to this guarantees that belongs to the closure of
  2. 2.0 2.1 The definition is commonly used with the extended real numbers; in fact, with this definition the equality will also hold for any non-empty subset However, the notation is usually left undefined, which is why the equality is given only for when


संदर्भ

  1. 1.0 1.1 1.2 1.3 1.4 Rudin, Walter (1976). ""Chapter 1 The Real and Complex Number Systems"". गणितीय विश्लेषण के सिद्धांत (print) (3rd ed.). McGraw-Hill. p. 4. ISBN 0-07-054235-X.
  2. Rockafellar & Wets 2009, pp. 1–2.
  3. Zakon, Elias (2004). गणितीय विश्लेषण मैं. Trillia Group. pp. 39–42.


बाहरी संबंध