सामान्यीकृत प्रतिलोम: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(5 intermediate revisions by 4 users not shown)
Line 74: Line 74:
किसी भी अर्धसमूह में यदि और केवल यदि <math>a \cdot b \cdot a = a</math> होने पर तत्व ''b'' एक तत्व ''a'' का सामान्यीकृत व्युत्क्रम है (या वलय , क्योंकि किसी भी वलय में गुणन फलन एक अर्धसमूह है)।
किसी भी अर्धसमूह में यदि और केवल यदि <math>a \cdot b \cdot a = a</math> होने पर तत्व ''b'' एक तत्व ''a'' का सामान्यीकृत व्युत्क्रम है (या वलय , क्योंकि किसी भी वलय में गुणन फलन एक अर्धसमूह है)।


वलय <math>\mathbb{Z}/12\mathbb{Z}</math> में तत्व 3 के सामान्यीकृत व्युत्क्रम 3, 7 और 11 हैं, चूंकि वलय '''में हैं''' <math>\mathbb{Z}/12\mathbb{Z}</math> में '''हैं''':
वलय <math>\mathbb{Z}/12\mathbb{Z}</math> में तत्व 3 के सामान्यीकृत व्युत्क्रम 3, 7 और 11 हैं, चूंकि वलय '''में हैं''' <math>\mathbb{Z}/12\mathbb{Z}</math> में:


:<math>3 \cdot 3 \cdot 3 = 3</math>
:<math>3 \cdot 3 \cdot 3 = 3</math>
:<math>3 \cdot 7 \cdot 3 = 3</math>
:<math>3 \cdot 7 \cdot 3 = 3</math>
:<math>3 \cdot 11 \cdot 3 = 3</math>
:<math>3 \cdot 11 \cdot 3 = 3</math>
वलय <math>\mathbb{Z}/12\mathbb{Z}</math> में तत्व 4 का सामान्यीकृत व्युत्क्रम 1, 4, 7 और 10 हैं, चूंकि वलय '''में हैं''' <math>\mathbb{Z}/12\mathbb{Z}</math> में '''है''':
वलय <math>\mathbb{Z}/12\mathbb{Z}</math> में तत्व 4 का सामान्यीकृत व्युत्क्रम 1, 4, 7 और 10 हैं, चूंकि वलय '''में हैं''' <math>\mathbb{Z}/12\mathbb{Z}</math> में:


:<math>4 \cdot 1 \cdot 4 = 4</math>
:<math>4 \cdot 1 \cdot 4 = 4</math>
Line 99: Line 99:


== उपयोग ==
== उपयोग ==
किसी भी सामान्यीकृत व्युत्क्रम का उपयोग यह निर्धारित करने के लिए किया जा सकता है कि क्या रैखिक समीकरणों की एक प्रणाली का कोई समाधान है, और यदि इस प्रकार तो उन सभी को देने के लिए। यदि n × m रैखिक प्रणाली के लिए कोई समाधान उपस्थित है
किसी भी सामान्यीकृत व्युत्क्रम का उपयोग यह निर्धारित करने के लिए किया जा सकता है कि क्या रैखिक समीकरणों की एक प्रणाली का कोई समाधान है, और यदि ऐसा है तो उन सभी को समाधान दिया जा सकता है। यदि n × m रैखिक प्रणाली के लिए कोई समाधान उपस्थित है तो:


:<math>Ax = b</math>,
:<math>Ax = b</math>,


वेक्टर के साथ <math>x</math> अज्ञात और वेक्टर की <math>b</math> स्थिरांकों की, सभी समाधान द्वारा दिया जाता है
अज्ञात के साथ सदिश <math>x</math> और '''<math>b</math>''' स्थिरांकों के साथ सदिश <math>b</math> होने पर , सभी समाधान प्रदर्शित किया जाता है:


:<math>x = A^\mathrm{g}b + \left[I - A^\mathrm{g}A\right]w</math>,
:<math>x = A^\mathrm{g}b + \left[I - A^\mathrm{g}A\right]w</math>,


इच्छानुसार वेक्टर पर पैरामीट्रिक <math>w</math>, कहाँ <math>A^\mathrm{g}</math> का कोई सामान्यीकृत प्रतिलोम है <math>A</math>. समाधान उपस्थित हैं यदि और केवल यदि <math>A^\mathrm{g}b</math> एक समाधान है, अर्थात, यदि और केवल यदि <math>AA^\mathrm{g}b = b</math>. यदि में पूर्ण स्तंभ श्रेणी है, तो इस समीकरण में ब्रैकेटेड अभिव्यक्ति शून्य आव्युह है और इसलिए समाधान अद्वितीय है।<ref>{{harvnb|James|1978|pp=109–110}}</ref>
इच्छानुसार सदिश <math>w</math> पर पैरामीट्रिक(प्राचलिक), जहाँ <math>A^\mathrm{g}</math> <math>A</math> का कोई सामान्यीकृत प्रतिलोम है। समाधान उपस्थित हैं यदि और केवल यदि <math>A^\mathrm{g}b</math> एक समाधान है, अर्थात, यदि और केवल यदि <math>AA^\mathrm{g}b = b</math> है। यदि ''A'' में पूर्ण स्तंभ श्रेणी है, तो इस समीकरण में ब्रैकेटेड अभिव्यक्ति एक शून्य आव्युह है और इसलिए समाधान अद्वितीय है।<ref>{{harvnb|James|1978|pp=109–110}}</ref>
== मेट्रिसेस के सामान्यीकृत व्युत्क्रम ==
== आव्युहों के सामान्यीकृत व्युत्क्रम ==
मेट्रिसेस के सामान्यीकृत व्युत्क्रमों को निम्नानुसार चित्रित किया जा सकता है। होने देना <math>A \in \mathbb{R}^{m \times n}</math>, और<math display="block">A = U \begin{bmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{bmatrix} V^\textsf{T}</math>इसका विलक्षण -मूल्य अपघटन हो। फिर किसी सामान्यीकृत व्युत्क्रम के लिए <math>A^g</math>, वहां है<ref name=":0" />आव्युह <math>X</math>, <math>Y</math>, और <math>Z</math> इस प्रकार कि<math display="block">A^g = V \begin{bmatrix} \Sigma_1^{-1} & X \\ Y & Z \end{bmatrix} U^\textsf{T}.</math>इसके विपरीत, कोई भी विकल्प <math>X</math>, <math>Y</math>, और <math>Z</math> इस रूप के आव्युह के लिए एक सामान्यीकृत व्युत्क्रम है <math>A</math>.<ref name=":0" /> <math>\{1,2\}</math>वें>-विपरीत वही हैं जिनके लिए <math>Z = Y \Sigma_1 X</math>, <math>\{1,3\}</math>-विपरीत वही हैं जिनके लिए <math>X = 0</math>, और यह <math>\{1,4\}</math>-विपरीत वही हैं जिनके लिए <math>Y = 0</math>. विशेष रूप से, छद्म व्युत्क्रम द्वारा दिया गया है <math>X = Y = Z = 0</math>:<math display="block">A^+ = V \begin{bmatrix} \Sigma_1^{-1} & 0 \\ 0 & 0 \end{bmatrix} U^\textsf{T}.</math>
आव्युहों के सामान्यीकृत व्युत्क्रमों को निम्नानुसार चित्रित किया जा सकता है। माना <math>A \in \mathbb{R}^{m \times n}</math>, और<math display="block">A = U \begin{bmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{bmatrix} V^\textsf{T}</math>इसका विलक्षण -मूल्य अपघटन हो। फिर किसी सामान्यीकृत व्युत्क्रम <math>A^g</math> के लिए वहां <ref name=":0" />आव्युह <math>X</math>, <math>Y</math>, और <math>Z</math> इस प्रकार है कि<math display="block">A^g = V \begin{bmatrix} \Sigma_1^{-1} & X \\ Y & Z \end{bmatrix} U^\textsf{T}.</math>इसके विपरीत,इस रूप के आव्युह के लिए <math>X</math>, <math>Y</math>, और <math>Z</math> का कोई भी विकल्प <math>A</math> का सामान्यीकृत व्युत्क्रम है।<ref name=":0" /> <math>\{1,2\}</math>-व्युत्क्रम वही हैं जिनके लिए <math>Z = Y \Sigma_1 X</math> हो , <math>\{1,3\}</math>-व्युत्क्रम वही हैं जिनके लिए <math>X = 0</math>, और यह <math>\{1,4\}</math>-व्युत्क्रम वही हैं जिनके लिए <math>Y = 0</math> होता है। विशेष रूप से, छद्म व्युत्क्रम <math>X = Y = Z = 0</math> द्वारा प्रदर्शित है:<math display="block">A^+ = V \begin{bmatrix} \Sigma_1^{-1} & 0 \\ 0 & 0 \end{bmatrix} U^\textsf{T}.</math>


== परिवर्तन संगति गुण ==
== परिवर्तन संगति गुण ==
व्यावहारिक अनुप्रयोगों में आव्युह परिवर्तनों के वर्ग की सर्वसमिका(पहचान) करना आवश्यक है जिसे सामान्यीकृत व्युत्क्रम द्वारा संरक्षित किया जाना चाहिए। उदाहरण के लिए, मूर-पेनरोज़ प्रतिलोम, <math>A^+,</math> एकात्मक मैट्रिसेस U और V से जुड़े परिवर्तनों के संबंध में संगति की निम्नलिखित परिभाषा को संतुष्ट करता है:
व्यावहारिक अनुप्रयोगों में आव्युह परिवर्तनों के वर्ग की पहचान करना आवश्यक है जिसे सामान्यीकृत व्युत्क्रम द्वारा संरक्षित किया जाना चाहिए। उदाहरण के लिए, मूर-पेनरोज़ प्रतिलोम, <math>A^+,</math> विलक्षणात्मक आव्युहों U और V से जुड़े परिवर्तनों के संबंध में संगति की निम्नलिखित परिभाषा को संतुष्ट करता है:


:<math>(UAV)^+ = V^* A^+ U^*</math>.
:<math>(UAV)^+ = V^* A^+ U^*</math>.


Drazin प्रतिलोम , <math> A^\mathrm{D}</math> एक विलक्षण आव्युह एस से जुड़े समानता परिवर्तनों के संबंध में स्थिरता की निम्नलिखित परिभाषा को संतुष्ट करता है:
ड्रैज़िन प्रतिलोम , <math> A^\mathrm{D}</math> एक विलक्षण आव्युह ''S'' से जुड़े समानता परिवर्तनों के संबंध में स्थिरता की निम्नलिखित परिभाषा को संतुष्ट करता है:


:<math>\left(SAS^{-1}\right)^\mathrm{D} = S A^\mathrm{D} S^{-1}</math>.
:<math>\left(SAS^{-1}\right)^\mathrm{D} = S A^\mathrm{D} S^{-1}</math>.


इकाई-संगत (यूसी) व्युत्क्रम,<ref>{{harvnb|Uhlmann|2018}}</ref> <math>A^\mathrm{U},</math> निरंकुश विकर्ण मैट्रिसेस डी और से जुड़े परिवर्तनों के संबंध में संगति की निम्नलिखित परिभाषा को संतुष्ट करता है:
इकाई-संगत (यूसी) व्युत्क्रम,<ref>{{harvnb|Uhlmann|2018}}</ref> <math>A^\mathrm{U},</math> निरंकुश विकर्ण आव्युहों ''D'' और ''E'' से जुड़े परिवर्तनों के संबंध में संगति की निम्नलिखित परिभाषा को संतुष्ट करता है:


:<math>(DAE)^\mathrm{U} = E^{-1} A^\mathrm{U} D^{-1}</math>.
:<math>(DAE)^\mathrm{U} = E^{-1} A^\mathrm{U} D^{-1}</math>.


तथ्य यह है कि मूर-पेनरोज़ व्युत्क्रम घूर्णन के संबंध में स्थिरता प्रदान करता है (जो ऑर्थोनॉर्मल ट्रांसफ़ॉर्मेशन हैं) भौतिकी और अन्य अनुप्रयोगों में इसके व्यापक उपयोग की व्याख्या करता है जिसमें यूक्लिडियन दूरियों को संरक्षित किया जाना चाहिए। इसके विपरीत, यूसी व्युत्क्रम तब प्रयुक्त होता है जब विभिन्न अवस्था चर, जैसे मील बनाम किलोमीटर पर इकाइयों की पसंद के संबंध में प्रणाली व्यवहार अपरिवर्तनीय होने की उम्मीद की जाती है।
तथ्य यह है कि मूर-पेनरोज़ व्युत्क्रम घूर्णन के संबंध में स्थिरता प्रदान करता है (जो अलौकिक परिवर्तन हैं) भौतिकी और अन्य अनुप्रयोगों में इसके व्यापक उपयोग की व्याख्या करता है जिसमें यूक्लिडियन दूरियों को संरक्षित किया जाना चाहिए। इसके विपरीत, यूसी व्युत्क्रम तब प्रयुक्त होता है जब विभिन्न अवस्था चर, जैसे मील बनाम किलोमीटर पर इकाइयों की पसंद के संबंध में प्रणाली व्यवहार अपरिवर्तनीय होने की उम्मीद की जाती है।


== यह भी देखें ==
== यह भी देखें ==
Line 149: Line 149:
* {{cite journal|last1=Zheng|first1=Bing|last2=Bapat|first2=Ravindra|title=सामान्यीकृत व्युत्क्रम A(2)T,S और एक रैंक समीकरण|journal=Applied Mathematics and Computation|volume=155|issue=2|pages=407–415|year=2004| doi=10.1016/S0096-3003(03)00786-0}}
* {{cite journal|last1=Zheng|first1=Bing|last2=Bapat|first2=Ravindra|title=सामान्यीकृत व्युत्क्रम A(2)T,S और एक रैंक समीकरण|journal=Applied Mathematics and Computation|volume=155|issue=2|pages=407–415|year=2004| doi=10.1016/S0096-3003(03)00786-0}}


श्रेणी:मैट्रिसेस
श्रेणी:आव्युहों


होस्ट(आतिथेय) श्रेणी:गणितीय शब्दावली
होस्ट(आतिथेय) श्रेणी:गणितीय शब्दावली


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Created On 01/03/2023]]
[[Category:Created On 01/03/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Missing redirects]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]

Latest revision as of 10:08, 15 March 2023

गणित में, और विशेष रूप से, बीजगणित में, तत्व x का सामान्यीकृत व्युत्क्रम (या, जी-प्रतिलोम) तत्व y है जिसमें एक व्युत्क्रम तत्व के कुछ गुण होते हैं, किन्तु आवश्यक नहीं कि वे सभी हों। आव्युह के सामान्यीकृत व्युत्क्रम के निर्माण का उद्देश्य आव्युह प्राप्त करना है जो व्युत्क्रम आव्युह की तुलना में आव्युह के व्यापक वर्ग के लिए कुछ अर्थों में व्युत्क्रम के रूप में काम कर सकता है। सामान्यीकृत व्युत्क्रम को किसी भी गणितीय संरचना में परिभाषित किया जा सकता है जिसमें गुण साहचर्य गुणन सम्मिलित होता है, जो कि एक अर्धसमूह में होता है। यह लेख एक आव्युह के सामान्यीकृत व्युत्क्रम का वर्णन करता है।

यदि है तो आव्युह , आव्युह का सामान्यीकृत प्रतिलोम होगा ।[1][2][3] एक इच्छानुसार एक सामान्यीकृत व्युत्क्रम, इच्छानुसार आव्युह के लिए उपस्थित है, और जब आव्युह में एक नियमित व्युत्क्रम होता है, तो यह व्युत्क्रम इसका अनूठा सामान्यीकृत व्युत्क्रम होता है।[1]

प्रेरणा

रैखिक समीकरणों की प्रणाली पर विचार करें

जहाँ एक आव्युह और का स्तंभ स्थान है। यदि निरर्थक है (जिसका तात्पर्य है ) तब व्यवस्था का समाधान होगा। ध्यान दें कि, यदि अत: विलक्षण है तो:

अब मान लीजिए आयताकार (), या वर्ग और एकल है। फिर हमें एक दक्षिणपंथी प्रत्याशी की आवश्यकता है आदेश ऐसा सभी के लिए होगा। अर्थात:

[4]

अतः, रैखिक प्रणाली का एक समाधान है।

समान रूप से, हमें एक आव्युह की आवश्यकता है आदेश इस प्रकार है कि

अतः हम सामान्यीकृत प्रतिलोम को इस प्रकार परिभाषित कर सकते हैं: आव्यूह में दिया गया है , यदि हो तो एक आव्यूह , का सामान्यीकृत प्रतिलोम कहा जाता है।‍[1][2][3] कुछ लेखकों द्वारा आव्युह का नियमित व्युत्क्रम को कहा गया है।[5]

प्रकार

महत्वपूर्ण प्रकार के सामान्यीकृत व्युत्क्रम में सम्मिलित हैं:

  • एकपक्षीय प्रतिलोम (दक्षिणपंथी प्रतिलोम या वामपंथी प्रतिलोम )
  • दक्षिणपंथी प्रतिलोम: यदि आव्युह में आयाम और है , तो वहाँ एक उपस्थित आव्यूह का दक्षिणपंथी व्युत्क्रम कहलाता है इस प्रकार है जहाँ , सर्वसमिका आव्युह है।
  • वामपंथी प्रतिलोम: यदि आव्युह आयाम और हैं तो वहाँ एक उपस्थित आव्यूह का वामपंथी व्युत्क्रम कहा जाता है इस प्रकार कि , जहाँ , सर्वसमिका आव्युह है।[6]
  • बॉटल-डफिन प्रतिलोम
  • ड्रैज़िन प्रतिलोम
  • मूर-पेनरोज़ प्रतिलोम

कुछ सामान्यीकृत व्युत्क्रमों को पेनरोज़ स्थितियों के आधार पर परिभाषित और वर्गीकृत किया गया है:

जहाँ संयुग्म संक्रमण को दर्शाता है। यदि प्रथम प्रतिबंध को संतुष्ट करता है, तो यह का सामान्यीकृत प्रतिलोम है। यदि यह पहली दो स्थितियों(प्रतिबंधों) को संतुष्ट करता है, तो यह का प्रतिवर्ती सामान्यीकृत व्युत्क्रम है। यदि यह चारों प्रतिबंधों को पूरा करता है, तो यह का छद्म व्युत्क्रम है , जिसे द्वारा दर्शाया गया है और ई. एच. मूर और रोजर पेनरोज़ द्वारा अग्रणी कार्यों के बाद, मूर-पेनरोज़ व्युत्क्रम के रूप में भी जाना जाता है।[2][7][8][9][10][11] के एक -प्रतिलोम को एक व्युत्क्रम के रूप में परिभाषित करना सुविधाजनक है जो ऊपर सूचीबद्ध पेनरोज़ स्थितियों में से उपसमुच्चय को संतुष्ट करता है। -प्रतिलोम के इन विभिन्न वर्गों के बीच जैसे संबंध स्थापित किया जा सकता है।[1]

जब गैर-विलक्षण है, तो कोई सामान्यीकृत प्रतिलोम होता है और यह इसलिए अद्वितीय है। विलक्षण के लिए, कुछ सामान्यीकृत व्युत्क्रम, जैसे कि ड्रैज़िन व्युत्क्रम और मूर-पेनरोज़ प्रतिलोम अद्वितीय हैं, इसके स्थान पर अन्य आवश्यक रूप से विशिष्ट रूप से परिभाषित नहीं हैं।

उदाहरण

प्रतिवर्त सामान्यीकृत प्रतिलोम

माना:

अतः , विलक्षण है और इसका कोई नियमित व्युत्क्रम नहीं है। चूँकि, और पेनरोज़ प्रतिबंधों (1) और (2) को संतुष्ट करते हैं , किन्तु (3) या (4) नहीं करते है । इस प्रकार, का एक प्रतिवर्त सामान्यीकृत प्रतिलोम है।

एकपक्षीय प्रतिलोम

माना:

अतः वर्गाकार नहीं है, कोई नियमित व्युत्क्रम नहीं है। चूँकि, का दक्षिणपंथी व्युत्क्रम है आव्यूह कोई वामपंथी प्रतिलोम नहीं है।

अन्य अर्धसमूहों (या वलयों) का व्युत्क्रम

किसी भी अर्धसमूह में यदि और केवल यदि होने पर तत्व b एक तत्व a का सामान्यीकृत व्युत्क्रम है (या वलय , क्योंकि किसी भी वलय में गुणन फलन एक अर्धसमूह है)।

वलय में तत्व 3 के सामान्यीकृत व्युत्क्रम 3, 7 और 11 हैं, चूंकि वलय में हैं में:

वलय में तत्व 4 का सामान्यीकृत व्युत्क्रम 1, 4, 7 और 10 हैं, चूंकि वलय में हैं में:

यदि एक उपसमूह (या वलय) में एक तत्व का व्युत्क्रम होता है, तो व्युत्क्रम इस तत्व का एकमात्र सामान्यीकृत व्युत्क्रम होना चाहिए, जैसे कि वलय में तत्व 1, 5, 7 और 11 है।

वलय में में, कोई भी अवयव 0 का सामान्यीकृत प्रतिलोम है, चूँकि 2 का कोई व्यापक प्रतिलोम नहीं है, क्योंकि में ऐसा कोई b नहीं है कि हो।

निर्माण

निम्नलिखित लक्षणों को सत्यापित करना आसान है:

  • एक गैर-वर्गाकार आव्युह का दक्षिणपंथी व्युत्क्रम द्वारा प्रदर्शित किया गया है परंतु जब पूर्ण पंक्ति श्रेणी हो।[6]
  • एक गैर-वर्गकार आव्युह का वामपंथी व्युत्क्रम द्वारा प्रदर्शित किया गया है, परंतु जब पूर्ण स्तंभ श्रेणी हो।[6]
  • यदि एक श्रेणी गुणनखंड है, तो का जी-प्रतिलोम है, जहाँ का दक्षिणपंथी व्युत्क्रम है और का वामपंथी प्रतिलोम है।
  • यदि किसी भी गैर-विलक्षण आव्युह और के लिए है, तब इच्छानुसार और के लिए का सामान्यीकृत प्रतिलोम है।
  • माना: की श्रेणी है सामान्यता की हानि के बिना, इस प्रकार माना:
    जहाँ का गैर-विलक्षण उपआव्युह है तब,
    का सामान्यीकृत प्रतिलोम है जब यदि और केवल यदि हो।

उपयोग

किसी भी सामान्यीकृत व्युत्क्रम का उपयोग यह निर्धारित करने के लिए किया जा सकता है कि क्या रैखिक समीकरणों की एक प्रणाली का कोई समाधान है, और यदि ऐसा है तो उन सभी को समाधान दिया जा सकता है। यदि n × m रैखिक प्रणाली के लिए कोई समाधान उपस्थित है तो:

,

अज्ञात के साथ सदिश और स्थिरांकों के साथ सदिश होने पर , सभी समाधान प्रदर्शित किया जाता है:

,

इच्छानुसार सदिश पर पैरामीट्रिक(प्राचलिक), जहाँ का कोई सामान्यीकृत प्रतिलोम है। समाधान उपस्थित हैं यदि और केवल यदि एक समाधान है, अर्थात, यदि और केवल यदि है। यदि A में पूर्ण स्तंभ श्रेणी है, तो इस समीकरण में ब्रैकेटेड अभिव्यक्ति एक शून्य आव्युह है और इसलिए समाधान अद्वितीय है।[12]

आव्युहों के सामान्यीकृत व्युत्क्रम

आव्युहों के सामान्यीकृत व्युत्क्रमों को निम्नानुसार चित्रित किया जा सकता है। माना , और

इसका विलक्षण -मूल्य अपघटन हो। फिर किसी सामान्यीकृत व्युत्क्रम के लिए वहां [1]आव्युह , , और इस प्रकार है कि
इसके विपरीत,इस रूप के आव्युह के लिए , , और का कोई भी विकल्प का सामान्यीकृत व्युत्क्रम है।[1] -व्युत्क्रम वही हैं जिनके लिए हो , -व्युत्क्रम वही हैं जिनके लिए , और यह -व्युत्क्रम वही हैं जिनके लिए होता है। विशेष रूप से, छद्म व्युत्क्रम द्वारा प्रदर्शित है:

परिवर्तन संगति गुण

व्यावहारिक अनुप्रयोगों में आव्युह परिवर्तनों के वर्ग की पहचान करना आवश्यक है जिसे सामान्यीकृत व्युत्क्रम द्वारा संरक्षित किया जाना चाहिए। उदाहरण के लिए, मूर-पेनरोज़ प्रतिलोम, विलक्षणात्मक आव्युहों U और V से जुड़े परिवर्तनों के संबंध में संगति की निम्नलिखित परिभाषा को संतुष्ट करता है:

.

ड्रैज़िन प्रतिलोम , एक विलक्षण आव्युह S से जुड़े समानता परिवर्तनों के संबंध में स्थिरता की निम्नलिखित परिभाषा को संतुष्ट करता है:

.

इकाई-संगत (यूसी) व्युत्क्रम,[13] निरंकुश विकर्ण आव्युहों D और E से जुड़े परिवर्तनों के संबंध में संगति की निम्नलिखित परिभाषा को संतुष्ट करता है:

.

तथ्य यह है कि मूर-पेनरोज़ व्युत्क्रम घूर्णन के संबंध में स्थिरता प्रदान करता है (जो अलौकिक परिवर्तन हैं) भौतिकी और अन्य अनुप्रयोगों में इसके व्यापक उपयोग की व्याख्या करता है जिसमें यूक्लिडियन दूरियों को संरक्षित किया जाना चाहिए। इसके विपरीत, यूसी व्युत्क्रम तब प्रयुक्त होता है जब विभिन्न अवस्था चर, जैसे मील बनाम किलोमीटर पर इकाइयों की पसंद के संबंध में प्रणाली व्यवहार अपरिवर्तनीय होने की उम्मीद की जाती है।

यह भी देखें

उद्धरण

  1. 1.0 1.1 1.2 1.3 1.4 1.5 Ben-Israel & Greville 2003, pp. 2, 7
  2. 2.0 2.1 2.2 Nakamura 1991, pp. 41–42
  3. 3.0 3.1 Rao & Mitra 1971, pp. vii, 20
  4. Rao & Mitra 1971, p. 24
  5. Rao & Mitra 1971, pp. 19–20
  6. 6.0 6.1 6.2 Rao & Mitra 1971, p. 19
  7. Rao & Mitra 1971, pp. 20, 28, 50–51
  8. Ben-Israel & Greville 2003, p. 7
  9. Campbell & Meyer 1991, p. 10
  10. James 1978, p. 114
  11. Nakamura 1991, p. 42
  12. James 1978, pp. 109–110
  13. Uhlmann 2018

स्रोत

पाठ्यपुस्तक

  • Ben-Israel, Adi; Greville, Thomas Nall Eden (2003). सामान्यीकृत व्युत्क्रम: सिद्धांत और अनुप्रयोग (2nd ed.). New York, NY: Springer. doi:10.1007/b97366. ISBN 978-0-387-00293-4.
  • Campbell, Stephen L.; Meyer, Carl D. (1991). रेखीय परिवर्तन के सामान्यीकृत व्युत्क्रम. Dover. ISBN 978-0-486-66693-8.
  • Horn, Roger Alan; Johnson, Charles Royal (1985). मैट्रिक्स विश्लेषण. Cambridge University Press. ISBN 978-0-521-38632-6.
  • Nakamura, Yoshihiko (1991). उन्नत रोबोटिक्स: अतिरेक और अनुकूलन. Addison-Wesley. ISBN 978-0201151985.
  • Rao, C. Radhakrishna; Mitra, Sujit Kumar (1971). मेट्रिसेस और उसके अनुप्रयोगों का सामान्यीकृत प्रतिलोम. New York: John Wiley & Sons. pp. 240. ISBN 978-0-471-70821-6.

प्रकाशन

श्रेणी:आव्युहों

होस्ट(आतिथेय) श्रेणी:गणितीय शब्दावली