मेग्मा (बीजगणित): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 73: Line 73:


== गुणों द्वारा वर्गीकरण ==
== गुणों द्वारा वर्गीकरण ==
{{Group-like structures}}  
{| class="wikitable"
|+समूह जैसी संरचनाएँ         
!
!समग्रता
!संबद्धता
!पहचान
!श्लोक में
!क्रमविनिमेयता
|-
!सेमीग्रुपॉइड
|अनावश्यक
|आवश्यक
|अनावश्यक
|अनावश्यक
|अनावश्यक
|-
!निम्न श्रेणी
|अनावश्यक
|आवश्यक
|आवश्यक
|अनावश्यक
|अनावश्यक
|-
!ग्रुपॉयड
|अनावश्यक
|आवश्यक
|आवश्यक
|आवश्यक
|अनावश्यक
|-
!मेग्मा
|आवश्यक
|अनावश्यक
|अनावश्यक
|अनावश्यक
|अनावश्यक
|-
!क्वासी ग्रुप
|आवश्यक
|अनावश्यक
|अनावश्यक
|आवश्यक
|अनावश्यक
|-
!यूनिटल मैग्मा
|आवश्यक
|अनावश्यक
|आवश्यक
|अनावश्यक
|अनावश्यक
|-
!सेमिग्रुप
|आवश्यक
|आवश्यक
|अनावश्यक
|अनावश्यक
|अनावश्यक
|-
!कुंडली
|आवश्यक
|अनावश्यक
|आवश्यक
|आवश्यक
|अनावश्यक
|-
!मोनोइड
|आवश्यक
|आवश्यक
|आवश्यक
|अनावश्यक
|अनावश्यक
|-
!समूह
|आवश्यक
|आवश्यक
|आवश्यक
|आवश्यक
|अनावश्यक
|-
!क्रमविनिमेय मोनोइड
|आवश्यक
|आवश्यक
|आवश्यक
|अनावश्यक
|आवश्यक
|-
!एबेलियन समूह
|आवश्यक
|आवश्यक
|आवश्यक
|आवश्यक
|आवश्यक
|}
मेग्मा {{math|(''S'', •)}}, साथ {{math|''x'', ''y'', ''u'', ''z''}} ∈ {{math|''S''}}, कहा जाता है।
मेग्मा {{math|(''S'', •)}}, साथ {{math|''x'', ''y'', ''u'', ''z''}} ∈ {{math|''S''}}, कहा जाता है।


Line 170: Line 262:
* {{citation |first=Richard Hubert |last=Bruck |author-link=Richard Hubert Bruck |title=A survey of binary systems |year=1971 |publisher=Springer |isbn=978-0-387-03497-3 |edition=3rd}}
* {{citation |first=Richard Hubert |last=Bruck |author-link=Richard Hubert Bruck |title=A survey of binary systems |year=1971 |publisher=Springer |isbn=978-0-387-03497-3 |edition=3rd}}


{{DEFAULTSORT:Magma (Algebra)}}[[Category: गैर-सहयोगी बीजगणित]] [[Category: बाइनरी ऑपरेशंस]] [[Category: बीजगणितीय संरचनाएं]]
{{DEFAULTSORT:Magma (Algebra)}}


 
[[Category:Articles containing French-language text|Magma (Algebra)]]
 
[[Category:Articles with hatnote templates targeting a nonexistent page|Magma (Algebra)]]
[[Category: Machine Translated Page]]
[[Category:Created On 01/03/2023|Magma (Algebra)]]
[[Category:Created On 01/03/2023]]
[[Category:Lua-based templates|Magma (Algebra)]]
[[Category:Machine Translated Page|Magma (Algebra)]]
[[Category:Pages with script errors|Magma (Algebra)]]
[[Category:Short description with empty Wikidata description|Magma (Algebra)]]
[[Category:Templates Translated in Hindi|Magma (Algebra)]]
[[Category:Templates Vigyan Ready|Magma (Algebra)]]
[[Category:Templates that add a tracking category|Magma (Algebra)]]
[[Category:Templates that generate short descriptions|Magma (Algebra)]]
[[Category:Templates using TemplateData|Magma (Algebra)]]
[[Category:गैर-सहयोगी बीजगणित|Magma (Algebra)]]
[[Category:बाइनरी ऑपरेशंस|Magma (Algebra)]]
[[Category:बीजगणितीय संरचनाएं|Magma (Algebra)]]

Latest revision as of 10:49, 15 March 2023

अमूर्त बीजगणित में, मैग्मा, बिनार[1] या संभवतः ही कभी ग्रुपॉयड बीजगणितीय संरचना का मूल प्रकार है। जो विशेष रूप से मैग्मा में बाइनरी ऑपरेशन से लैस समूह (गणित) होता है। जिसे परिभाषा के अनुसार क्लोजर (बाइनरी ऑपरेशन) होना चाहिए था। अतः कोई अन्य संपत्तियां आरोपित नहीं हैं।

इतिहास और शब्दावली

ग्रुपॉयड शब्द की शुरुआत सन् 1927 में हेनरिक ब्रांट द्वारा अपने ब्रांट ग्रुपॉयड (जर्मन ग्रुपॉयड से अनुवादित) का वर्णन करते हुए प्रस्तुत किया गया था। इस शब्द को इस आलेख में प्रयुक्त अर्थ (बाइनरी ऑपरेशन के साथ समूह) में बी. ए. हॉसमैन और ऑयस्टीन अयस्क (1937) द्वारा विनियोजित गया था।[2] ज़ेंट्रलब्लैट में बाद के पत्रों की कुछ समीक्षाओं में, ब्रांट शब्दावली के इस अतिभार से बहुत असहमत थे। ब्रांट ग्रुपॉइड श्रेणी सिद्धांत में प्रयुक्त अर्थ में ग्रुपॉयड है, चूँकि हौसमैन और अयस्क द्वारा उपयोग किए जाने वाले अर्थ में नहीं होता है। फिर भी,अल्फ्रेड हॉब्लिट्ज़ेल क्लिफोर्ड और जी.बी. प्रेस्टन (1961) और जॉन मैकिंटोश होवी (1995) द्वारा अर्धसमूह सिद्धांत में प्रभावशाली पुस्तकें और ग्रुपॉयड का उपयोग इस अर्थ में करती हैं। हॉसमैन और अयस्क के अर्थ में हॉलिंग्स (2014) लिखते हैं कि ग्रुपॉयड शब्द का उपयोग संभवतः आधुनिक गणित में श्रेणी सिद्धांत में दिए गए अर्थ में सबसे अधिक बार किया जाता है।[3]

बर्गमैन और हॉस्कनेचट (1996) के अनुसार, समूह के लिए सामान्यतः स्वीकृत शब्द नहीं होते है। अतः जो अनिवार्य रूप से साहचर्य बाइनरी ऑपरेशन नहीं है। ग्रुपॉइड शब्द का प्रयोग कई सार्वभौमिक बीजगणितियों द्वारा किया जाता है, चूँकि श्रेणी सिद्धांत और संबंधित क्षेत्रों में कार्यकर्ता इस उपयोग के लिए कड़ी आपत्ति जताते हैं चूँकि वे उसी शब्द का उपयोग करते हैं जिसका अर्थ है 'श्रेणी जिसमें सभी मोर्फिज्म्स व्युत्क्रमणीय हैं'। मैग्मा शब्द का प्रयोग जीन पियरे सेरे [ली बीजगणित और लाइ समूह, 1965] द्वारा किया गया था।[4] यह निकोलस बोरबाकी के में भी दिखाई देता है। गणित के तत्व, बीजगणित, अध्याय 1 से 3, 1970।.[5]

परिभाषा

मैग्मा समूह (गणित) एम है। जो बाइनरी ऑपरेशन से मेल खाता है। • जो कोई भी दो तत्व (गणित) a, bM दूसरे तत्व के लिए, abM. भेजता है। प्रतीक • ठीक प्रकार से परिभाषित ऑपरेशन के लिए सामान्य प्लेसहोल्डर है। मैग्मा, समूह और ऑपरेशन के रूप में अर्हता प्राप्त करने के लिए (M, •) को निम्नलिखित आवश्यकता को पूर्ण करना चाहिए (जिसे मैग्मा या क्लोजर स्वयंसिद्ध के रूप में जाना जाता है)।

एम में सभी a, b के लिए, ऑपरेशन ab का परिणाम भी M में है।

और गणितीय अंकन में,

यदि • इसके अतिरिक्त आंशिक संक्रिया है, तो (M, •) को आंशिक मैग्मा[6] या अधिक बार आंशिक ग्रुपॉयड कहा जाता है।[6][7]

मैग्मास की आकृतिवाद

मैग्मास का आकारिकी फलन f : MN मैपिंग मैग्मा M को मैग्मा N है। जो बाइनरी ऑपरेशन को संरक्षित करता है।

f (xM y) = f(x) •N f(y),

जंहा •M और •N क्रमशः M और N पर बाइनरी ऑपरेशन को दर्शाते हैं।

अंकन और कॉम्बिनेटरिक्स

मैग्मा ऑपरेशन को बार-बार प्रयुक्त किया जा सकता है और सामान्यतः, गैर-सहयोगी स्थिति में, आदेश मायने रखता है। जिसे कोष्ठकों के साथ नोट किया जाता है। साथ ही, संक्रिया • को अधिकांशतः छोड़ दिया जाता है और सन्निकटन द्वारा नोट किया जाता है।

(a • (bc)) • d ≡ (a(bc))d.

आशुलिपि का उपयोग अधिकांशतः कोष्ठकों की संख्या को कम करने के लिए किया जाता है। जिसमें अंतरतम संचालन और कोष्ठकों के जोड़े को छोड़ दिया जाता है जिसे केवल सन्निकटन के साथ प्रतिस्थापित किया जा रहा है। xyz ≡ (xy) • z. उदाहरण के लिए, उपरोक्त को निम्नलिखित अभिव्यक्ति के लिए संक्षिप्त किया गया है। जिसमें अभी भी कोष्ठक हैं।

(abc)d.

कोष्ठकों के उपयोग से पूर्ण प्रकार से बचने की विधि उपसर्ग अंकन है, जिसमें ही अभिव्यक्ति ••abcd. लिखी जाएगी और विधि, प्रोग्रामर से परिचित, पोस्टफिक्स नोटेशन (रिवर्स पोलिश नोटेशन) है, जिसमें अभिव्यक्ति abc••d, लिखा जाएगा, जिसमें निष्पादन का क्रम केवल बाएँ से दाएँ होता है (कोई करी नहीं)।

मैग्मा के तत्वों को दर्शाने वाले प्रतीकों से युक्त सभी संभव स्ट्रिंग (कंप्यूटर विज्ञान) और संतुलित कोष्ठकों के समूह को डाइक भाषा कहा जाता है। मैग्मा ऑपरेटर के n अनुप्रयोगों लिखने की विभिन्न विधियों को कुल संख्या कैटलन संख्या Cn द्वारा दिए गए हैं। इस प्रकार, उदाहरण के लिए, C2 = 2, जो कि केवल कथन है कि (ab)c और a(bc) मैग्मा के तीन तत्वों को दो संक्रियाओं के साथ युग्मित करने की केवल दो विधि हैं। कम तुच्छ, C3 = 5: ((ab)c)d, (a(bc))d, (ab)(cd), a((bc)d), और a(b(cd)).

जंहा n तत्वों के साथ nn2 मैग्मा हैं। इसलिए 1, 1, 16, 19683, 4294967296, ... (sequence A002489 in the OEIS) 0, 1, 2, 3, 4, ... तत्वों के साथ मैग्मा है। समरूपी मैग्मा की संगत संख्या 1, 1, 10, 3330 है, 178981952, ... (sequence A001329 in the OEIS) और साथ गैर-आइसोमोर्फिक और गैर- गैर आइसोमॉर्फिक मैग्मा की संख्या 1, 1, 7, 1734 है, 89521056, ... (sequence A001424 in the OEIS).[8]

मुक्त मैग्मा

समूह पर X पर मुक्त मेग्मा MX X द्वारा उत्पन्न "सबसे सामान्य संभव" मैग्मा है (अर्थात, जेनरेटर पर कोई संबंध या सिद्धांत नहीं लगाया गया है। मुफ्त वस्तु देख सकते है)। MX पर बाइनरी ऑपरेशन प्रत्येक दो ऑपरेंड को कोष्ठक में लपेटकर और उन्हें उसी क्रम में जोड़कर बनाया जाता है। उदाहरण के लिए,

ab = (a)(b),
a • (ab) = (a)((a)(b)),
(aa) • b = ((a)(a))(b).

MX को X पर गैर-सहयोगी शब्दों के समूह के रूप में वर्णित किया जा सकता है। जिसमें कोष्ठक बनाए रखा जाता है।[9]

इसे कंप्यूटर विज्ञान में परिचित शर्तों में भी देखा जा सकता है। X के तत्वों द्वारा लेबल किए गए पत्तों के साथ द्विआधारी वृक्षों की मेग्मा के रूप में ऑपरेशन पेड़ों को जड़ से जोड़ने का है। इसलिए वाक्य रचना में इसकी मूलभूत भूमिका है।

मुक्त मैग्मा में सार्वभौमिक संपत्ति होती है जैसे कि यदि f : XN X से किसी भी मेग्मा N के लिए फ़ंक्शन है, तब मैग्मा f के आकारिकी के लिए f' का अनूठा विस्तार है।

f ′ : MXN..

मैग्मा के प्रकार

मैग्मास और समूह (गणित) के मध्य बीजगणितीय संरचनाएं

सामान्यतः मैग्मास का अधिकांशतः इस प्रकार अध्ययन नहीं किया जाता है। इसके अतिरिक्त कई भिन्न-भिन्न प्रकार के मैग्मा हैं, जो इस बात पर निर्भर करता है कि ऑपरेशन को पूर्ण करने के लिए किन स्वयंसिद्धों की आवश्यकता है। सामान्यतः अध्ययन किए जाने वाले मैग्मा में सम्मिलित होते हैं।

  • मोनोइड: पहचान तत्व वाला अर्धसमूह होता है।
  • उलटा अर्धसमूह: उलटा तत्व वाला अर्धसमूह (साहचर्य के साथ अर्धसमूह भी) होता है।
  • समूह (गणित): व्युत्क्रम, साहचर्य और पहचान तत्व के साथ मेग्मा होता है।

ध्यान दें कि प्रत्येक विभाज्यता और उलटापन रद्द करने की संपत्ति को दर्शाता है।

क्रमविनिमेय के साथ मैग्मास
  • क्रमविनिमेय मैग्मा: क्रमविनिमेयता वाला मैग्मा।
  • क्रमविनिमेय मोनॉयड: क्रमविनिमेयता के साथ मोनॉयड।
  • एबेलियन समूह: क्रमविनिमेयता वाला समूह।

गुणों द्वारा वर्गीकरण

समूह जैसी संरचनाएँ
समग्रता संबद्धता पहचान श्लोक में क्रमविनिमेयता
सेमीग्रुपॉइड अनावश्यक आवश्यक अनावश्यक अनावश्यक अनावश्यक
निम्न श्रेणी अनावश्यक आवश्यक आवश्यक अनावश्यक अनावश्यक
ग्रुपॉयड अनावश्यक आवश्यक आवश्यक आवश्यक अनावश्यक
मेग्मा आवश्यक अनावश्यक अनावश्यक अनावश्यक अनावश्यक
क्वासी ग्रुप आवश्यक अनावश्यक अनावश्यक आवश्यक अनावश्यक
यूनिटल मैग्मा आवश्यक अनावश्यक आवश्यक अनावश्यक अनावश्यक
सेमिग्रुप आवश्यक आवश्यक अनावश्यक अनावश्यक अनावश्यक
कुंडली आवश्यक अनावश्यक आवश्यक आवश्यक अनावश्यक
मोनोइड आवश्यक आवश्यक आवश्यक अनावश्यक अनावश्यक
समूह आवश्यक आवश्यक आवश्यक आवश्यक अनावश्यक
क्रमविनिमेय मोनोइड आवश्यक आवश्यक आवश्यक अनावश्यक आवश्यक
एबेलियन समूह आवश्यक आवश्यक आवश्यक आवश्यक आवश्यक

मेग्मा (S, •), साथ x, y, u, zS, कहा जाता है।

औसत दर्जे का मैग्मा

यदि यह सर्वसमिका xyuzxuyz पहचान को संतुष्ट करता है।

वाम अर्धमध्य
यदि यह सर्वसमिका xxyzxyxz पहचान को संतुष्ट करता है।
दाहिना अर्धमध्य
यदि यह सर्वसमिका yzxxyxzx पहचान को संतुष्ट करता है।
अर्द्धमध्यस्थ
यदि यह बाएँ और दाएँ दोनों अर्द्धमध्यस्थ है।

वाम वितरण

यदि यह सर्वसमिका xyzxyxz पहचान को संतुष्ट करता है।

सही वितरण

यदि यह सर्वसमिका yzxyxzx पहचान को संतुष्ट करता है।

स्वतः वितरण
यदि यह बाएँ और दाएँ वितरण दोनों है।

विनिमेय मैग्मा

यदि यह सर्वसमिका xyyx पहचान को संतुष्ट करता है।

निर्बल
यदि यह सर्वसमिका xxx पहचान को संतुष्ट करता है।
शक्तिहीन
यदि यह सर्वसमिका xxyy पहचान को संतुष्ट करता है।

जीरोपोटेंट

यदि यह सर्वसमिका xxyxxyxx पहचानों को संतुष्ट करता है।[10]

वैकल्पिकता

यदि यह सर्वसमिका xxyxxy और xyyxyy पहचानों को संतुष्ट करता है।

शक्ति-सहयोगी

यदि किसी तत्व द्वारा उत्पन्न उपमग्मा साहचर्य है

लचीला बीजगणित
यदि xyxxyx पहचान को संतुष्ट करता है।
अर्धसमूह, या साहचर्य
यदि यह सर्वसमिका xyzxyz पहचान को संतुष्ट करता है।

बायां अनार

यदि यह सर्वसमिका xyxz पहचान को संतुष्ट करता है।

सही अनार
यदि यह सर्वसमिका yxzx पहचान को संतुष्ट करता है।

शून्य गुणन वाला अर्धसमूह या अशक्त अर्धसमूह

यदि यह सर्वसमिका xyuv पहचान को संतुष्ट करता है।

यूनिटल
यदि इसमें पहचान तत्व है।

बायां-निरस्तीकरण

यदि सभी x, y, z, के लिए, संबंध xy = xz का अर्थ y = z है।

दायां-निरस्तीकरण

यदि सभी x, y, z के लिए, संबंध yx = zx का अर्थ y = z है।

निरस्तीकरण
यदि यह दायां-निरस्तीकरण और बायां-निरस्तीकरण दोनों है।
बाएँ शून्य के साथ एक अर्धसमूह
यदि यह अर्धसमूह है और यह सर्वसमिका xyx को संतुष्ट करता है।
सही शून्य के साथ एक अर्धसमूह
यदि यह अर्धसमूह है और यह सर्वसमिका yxx पहचान को संतुष्ट करता है।
त्रिमेडियल
यदि कोई ट्रिपल (आवश्यक रूप से भिन्न नहीं) तत्व औसत दर्जे का सबमग्मा उत्पन्न करता है।

एन्ट्रोपिक

यदि यह औसत दर्जे का रद्दीकरण मैग्मा का सार्वभौमिक बीजगणित है।[11]

मैग्मास की श्रेणी

मैग्मास की श्रेणी, जिसे मैग कहा जाता है। वह श्रेणी (गणित) है, जिसकी वस्तुएं मैग्मा हैं और जिनकी आकृतियां मैग्मा (बीजगणित) होमोमोर्फिज्म हैं। श्रेणी मैग में प्रत्यक्ष उत्पाद (श्रेणी सिद्धांत) है और समावेशन फ़ैक्टर है, प्रोजेक्शन (गणित) x T y = y  द्वारा दिए गए संचालन के साथ SetMed ↪ Mag तुच्छ मैग्मास के रूप में दिए होते है।

महत्वपूर्ण संपत्ति यह है कि इंजेक्टिव एंडोमोर्फिज्म को मैग्मा एक्सटेंशन के ऑटोमोर्फिज्म तक बढ़ाया जा सकता है। एंडोमोर्फिज्म के (निरंतर कार्य अनुक्रम) के कोलिमिट होते है।

चूँकि सिंगलटन (गणित) ({*}, *) मैग का टर्मिनल वस्तु है। चूँकि मैग बीजगणितीय श्रेणी है, मैग नुकीला और पूर्ण श्रेणी है।[12]

यह भी देखें

संदर्भ

  1. Bergman, Clifford (2011), Universal Algebra: Fundamentals and Selected Topics, CRC Press, ISBN 978-1-4398-5130-2
  2. Hausmann, B. A.; Ore, Øystein (October 1937), "Theory of quasi-groups", American Journal of Mathematics, 59 (4): 983–1004, doi:10.2307/2371362, JSTOR 2371362.
  3. Hollings, Christopher (2014), Mathematics across the Iron Curtain: A History of the Algebraic Theory of Semigroups, American Mathematical Society, pp. 142–143, ISBN 978-1-4704-1493-1.
  4. Bergman, George M.; Hausknecht, Adam O. (1996), Cogroups and Co-rings in Categories of Associative Rings, American Mathematical Society, p. 61, ISBN 978-0-8218-0495-7.
  5. Bourbaki, N. (1998) [1970], "Algebraic Structures: §1.1 Laws of Composition: Definition 1", Algebra I: Chapters 1–3, Springer, p. 1, ISBN 978-3-540-64243-5.
  6. 6.0 6.1 Müller-Hoissen, Folkert; Pallo, Jean Marcel; Stasheff, Jim, eds. (2012), Associahedra, Tamari Lattices and Related Structures: Tamari Memorial Festschrift, Springer, p. 11, ISBN 978-3-0348-0405-9.
  7. Evseev, A. E. (1988), "A survey of partial groupoids", in Silver, Ben (ed.), Nineteen Papers on Algebraic Semigroups, American Mathematical Society, ISBN 0-8218-3115-1.
  8. Weisstein, Eric W. "Groupoid". MathWorld.
  9. Rowen, Louis Halle (2008), "Definition 21B.1.", Graduate Algebra: Noncommutative View, Graduate Studies in Mathematics, American Mathematical Society, p. 321, ISBN 0-8218-8408-5.
  10. Kepka, T.; Němec, P. (1996), "Simple balanced groupoids" (PDF), Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, 35 (1): 53–60.
  11. Ježek, Jaroslav; Kepka, Tomáš (1981), "Free entropic groupoids" (PDF), Commentationes Mathematicae Universitatis Carolinae, 22 (2): 223–233, MR 0620359.
  12. Borceux, Francis; Bourn, Dominique (2004). मालसेव, प्रोटोमॉडुलर, होमोलॉजिकल और सेमी-एबेलियन श्रेणियां. Springer. pp. 7, 19. ISBN 1-4020-1961-0.


अग्रिम पठन