केली-क्लेन मीट्रिक: Difference between revisions
m (9 revisions imported from alpha:केली-क्लेन_मीट्रिक) |
No edit summary |
||
Line 202: | Line 202: | ||
* Jan Drösler (1979) "Foundations of multidimensional metric scaling in Cayley-Klein geometries", [[British Journal of Mathematical and Statistical Psychology]] 32(2); 185–211 | * Jan Drösler (1979) "Foundations of multidimensional metric scaling in Cayley-Klein geometries", [[British Journal of Mathematical and Statistical Psychology]] 32(2); 185–211 | ||
{{DEFAULTSORT:Cayley-Klein metric}} | {{DEFAULTSORT:Cayley-Klein metric}} | ||
[[Category:Articles with hatnote templates targeting a nonexistent page|Cayley-Klein metric]] | |||
[[Category:Created On 28/02/2023|Cayley-Klein metric]] | |||
[[Category: | [[Category:Machine Translated Page|Cayley-Klein metric]] | ||
[[Category:Created On 28/02/2023]] | [[Category:Pages with script errors|Cayley-Klein metric]] | ||
[[Category:Vigyan Ready]] | [[Category:Templates Vigyan Ready|Cayley-Klein metric]] | ||
[[Category:प्रक्षेपी ज्यामिति|Cayley-Klein metric]] | |||
[[Category:मीट्रिक ज्यामिति|Cayley-Klein metric]] |
Revision as of 17:01, 15 March 2023
गणित में, केली-क्लेन मीट्रिक प्रक्षेप्य स्थान में निश्चित चतुर्भुज के पूरक (सेट सिद्धांत) पर एक मीट्रिक (गणित) है जिसे क्रॉस-अनुपात का उपयोग करके परिभाषित किया गया है। इसके निर्माण की प्रारंभ आर्थर केली के निबंध ऑन द थ्योरी ऑफ डिस्टेंस से हुई[1] उन्होंने क्वाड्रिक को निरपेक्ष कहा था। निर्माण 1871 और 1873 में फेलिक्स क्लेन द्वारा और बाद की पुस्तकों और पत्रों में विस्तार से विकसित किया गया था।[2] केली-क्लेन मेट्रिक्स ज्यामिति में एकीकृत विचार है क्योंकि विधि का उपयोग अतिशयोक्तिपूर्ण ज्यामिति, अण्डाकार ज्यामिति और यूक्लिडियन ज्यामिति में आव्यूह प्रदान करने के लिए किया जाता है। गैर-यूक्लिडियन ज्यामिति का क्षेत्र अधिक सीमा तक केली-क्लेन मेट्रिक्स द्वारा प्रदान किए गए आधार पर टिका हुआ है।
नींव
कार्ल वॉन स्टॉड्ट (1847) द्वारा थ्रो का बीजगणित ज्यामिति के लिए एक दृष्टिकोण है जो मीट्रिक (गणित) से स्वतंत्र है। यह विचार प्रक्षेपी हार्मोनिक संयुग्मों और क्रॉस-अनुपातों के संबंध को रेखा पर माप के लिए मौलिक के रूप में उपयोग करना था।[3] एडमंड लागुएरे (1853) द्वारा एक अन्य महत्वपूर्ण अंतर्दृष्टि लैगुएरे सूत्र थी, जिसने दिखाया कि दो रेखाओं के बीच यूक्लिडियन कोण को एक क्रॉस-अनुपात के लघुगणक के रूप में व्यक्त किया जा सकता है।[4] आखिरकार, केली (1859) ने प्रक्षेपी मीट्रिक के संदर्भ में दूरी को व्यक्त करने के लिए संबंध तैयार किए, और उन्हें ज्यामिति के निरपेक्ष के रूप में सेवारत सामान्य चतुष्कोणों या शंकुओं से संबंधित किया था।[5][6] क्लेन (1871, 1873) ने वॉन स्टॉड्ट के काम से मीट्रिक अवधारणाओं के अंतिम अवशेषों को हटा दिया और केली के नए मीट्रिक को लघुगणक और चार बिंदुओं की ज्यामितीय व्यवस्था द्वारा उत्पन्न संख्या के रूप में क्रॉस-अनुपात को आधार बनाने के लिए इसे केली के सिद्धांत के साथ जोड़ दिया।[7] दूरी की परिपत्र परिभाषा से बचने के लिए यह प्रक्रिया आवश्यक है यदि क्रॉस-अनुपात पहले से परिभाषित दूरियों का दोहरा अनुपात है।[8] विशेष रूप से, उन्होंने दिखाया कि गैर-यूक्लिडियन ज्यामिति केली-क्लेन मीट्रिक पर आधारित हो सकती हैं।[9]
केली-क्लेन ज्यामिति गति के समूह का अध्ययन है जो केली-क्लेन मीट्रिक अपरिवर्तनीय (गणित) को छोड़ देता है। यह चतुर्भुज या शंकु के चयन पर निर्भर करता है जो अंतरिक्ष का 'पूर्ण' बन जाता है। इस समूह को कॉलिनेशन के रूप में प्राप्त किया जाता है जिसके लिए निरपेक्ष अपरिवर्तनीय (गणित) है। दरअसल, क्रॉस-रेशियो किसी भी समानता के अनुसार अपरिवर्तनीय है, और स्थिर निरपेक्ष मीट्रिक तुलना को सक्षम बनाता है, जो समानता होगी। उदाहरण के लिए, यूनिट वृत्त पॉइंकेयर डिस्क मॉडल और अतिपरवलयिक ज्यामिति में बेल्ट्रामी-क्लेन मॉडल का निरपेक्ष है। इसी तरह, वास्तविक रेखा पोंकारे अर्ध-समतल मॉडल का निरपेक्ष है।
केली-क्लेन ज्यामिति की सीमा को 2004 में होर्स्ट और रॉल्फ स्ट्रुवे द्वारा संक्षेपित किया गया था:[10]
- वास्तविक प्रोजेक्टिव लाइन में तीन निरपेक्ष हैं, वास्तविक प्रोजेक्टिव प्लेन में सात और वास्तविक प्रोजेक्टिव स्पेस में 18 हैं। अतिशयोक्तिपूर्ण, अण्डाकार, गैलीलियन और मिन्कोस्कीयन के रूप में सभी मौलिक गैर-यूक्लिडियन प्रोजेक्टिव रिक्त स्थान और उनके दोहरे को इस तरह परिभाषित किया जा सकता है।
केली-क्लेन वोरोनोई आरेख रेखीय अधिसमतल द्विभाजक के साथ एफ़िन चित्र हैं।[11]
क्रॉस अनुपात और दूरी
केली-क्लेन मीट्रिक को पहली बार वास्तविक प्रक्षेपी रेखा P(R) और प्रक्षेपी निर्देशांक पर चित्रित किया गया है। सामान्यतः प्रक्षेपी ज्यामिति मीट्रिक ज्यामिति से जुड़ी नहीं होती है, किन्तु होमोग्राफी और प्राकृतिक लघुगणक के साथ उपकरण संबंध बनाता है। P(R) पर दो बिंदुओं p और q से प्रारंभ करें। कैनोनिकल एम्बेडिंग में वे [p:1] और [q:1] हैं। होमोग्राफिक प्रतिचित्र
p को शून्य और q को अनंत तक ले जाता है। इसके अतिरिक्त, मध्यबिंदु (p+q)/2 [1:1] तक जाता है। प्राकृतिक लघुगणक अंतराल [p,q] की छवि को वास्तविक रेखा पर ले जाता है, जिसमें मध्यबिंदु की छवि का लॉग 0 होता है।
अंतराल में दो बिंदुओं के बीच की दूरी के लिए, केली-क्लेन मीट्रिक बिंदुओं के अनुपात के लघुगणक का उपयोग करता है। जब अंश और हर समान रूप से पुन: समानुपातित होते हैं तो अनुपात संरक्षित रहता है, इसलिए ऐसे अनुपातों का लघुगणक संरक्षित रहता है। अनुपातों का यह लचीलापन दूरी के लिए शून्य बिंदु की गति को सक्षम बनाता है: इसे उपरोक्त होमोग्राफी को प्रयुक्त करने के लिए a पर स्थानांतरित करने के लिए, डब्ल्यू प्राप्त करना कहते हैं। फिर इस होमोग्राफी का निर्माण करें:
- जो w को [1: 1] तक ले जाता है।
पहली और दूसरी होमोग्राफी की रचना 1 से 1 तक होती है, इस प्रकार अंतराल में इच्छानुसारसे सामान्यीकरण होता है। रचित होमोग्राफी को पी, क्यू और ए का क्रॉस अनुपात होमोग्राफी कहा जाता है। चार मूल्यों के समारोह के रूप में अधिकांशतः क्रॉस अनुपात प्रस्तुत किया जाता है। यहां तीन होमोग्राफी को परिभाषित करते हैं और चौथा होमोग्राफी के फंक्शन का तर्क है। इस चौथे बिंदु की 0 से दूरी मूल्यांकित होमोग्राफी का लघुगणक है।
P(R) युक्त एक प्रक्षेपी स्थान में मान लीजिए कि एक शंकु K दिया गया है, जिसमें p और q पर K है। बड़े स्थान पर होमोग्राफी में K अपरिवर्तनीय सेट के रूप में हो सकता है क्योंकि यह अंतरिक्ष के बिंदुओं को क्रमबद्ध करता है। इस तरह की होमोग्राफी को P (R) पर प्रेरित करती है, और चूंकि P और q K पर रहते हैं, इसलिए क्रॉस अनुपात अपरिवर्तनीय रहता है। उच्च समरूपता गति (ज्यामिति) संरक्षण दूरी, एक आइसोमेट्री के साथ K से घिरे क्षेत्र की गति प्रदान करती है।।
डिस्क अनुप्रयोग
मान लीजिए कि एक यूनिट वृत्त को निरपेक्ष के लिए चुना गया है। यह P2(R) के रूप में हो सकता है
- जो मेल खाता है
दूसरी ओर, साधारण जटिल तल में इकाई वृत्त
- जटिल संख्या अंकगणित का उपयोग करता है
और जटिल प्रोजेक्टिव लाइन P(C) में पाया जाता है, जो वास्तविक प्रक्षेपी समतल P2(R) से कुछ अलग है। पिछले अनुभाग में प्रस्तुत P(R) के लिए दूरी की धारणा उपलब्ध है क्योंकि P(R) P2(R) और P(C) दोनों में सम्मिलित है। कहें कि a और b P2(R) में वृत्त के आंतरिक बिंदु हैं। फिर वे एक रेखा पर स्थित होते हैं जो वृत्त को p और q पर प्रतिच्छेद करती है। a से b की दूरी होमोग्राफी के मूल्य का लघुगणक है, जो P, q और a द्वारा उत्पन्न होता है, जब b पर प्रयुक्त होता है। इस उदाहरण में डिस्क में जियोडेसिक्स लाइन सेगमेंट हैं।
दूसरी ओर, जियोडेसिक्स जटिल तल की डिस्क में सामान्यीकृत वृत्तों के चाप होते हैं। कर्व्स के इस वर्ग को मोबियस ट्रांसफॉर्मेशन द्वारा अनुमत किया जाता है, इस डिस्क की गतियों का स्रोत जो यूनिट वृत्त को अपरिवर्तनीय सेट के रूप में छोड़ देता है। इस डिस्क में a और b दिया हुआ है, अद्वितीय सामान्यीकृत वृत्त है जो इकाई वृत्त को समकोण पर मिलता है, मान लीजिए इसे p और q पर प्रतिच्छेद करता है। दोबारा, a से b की दूरी के लिए पहले P, q, और a के लिए होमोग्राफी का निर्माण होता है, फिर इसे b पर मूल्यांकन करता है, और अंत में लघुगणक का उपयोग करता है। इस तरह से प्राप्त अतिपरवलयिक तल के दो मॉडल केली-क्लेन मॉडल और पॉइंकेयर डिस्क मॉडल हैं।
विशेष सापेक्षता
1919/20 से गणित के इतिहास पर अपने व्याख्यान में, मरणोपरांत 1926 में प्रकाशित, क्लेन ने लिखा:[12]
- स्थिति चार आयामी संसार में या (तीन आयामों में रहने और सजातीय निर्देशांक का उपयोग करने के लिए) ने हाल ही में भौतिकी के विशेष सापेक्षता के माध्यम से विशेष महत्व प्राप्त किया है।
अर्थात् निरपेक्ष या अतिशयोक्तिपूर्ण ज्यामिति में (जैसा कि ऊपर चर्चा की गई है), अंतरालों के अनुरूप हैं या अंतरिक्ष समय में, और इसके परिवर्तन को पूर्ण अपरिवर्तनीय छोड़कर लोरेन्ट्ज़ परिवर्तनों से संबंधित किया जा सकता है। इसी तरह, अतिशयोक्तिपूर्ण ज्यामिति में इकाई वृत्त या इकाई क्षेत्र के समीकरण भौतिक वेगों के अनुरूप होते हैं या सापेक्षता में, जो प्रकाश की गति c से बंधे हैं, जिससे किसी भी भौतिक वेग के लिए v, अनुपात v/c इकाई क्षेत्र के आंतरिक भाग तक ही सीमित है, और गोले की सतह ज्यामिति के लिए केली निरपेक्ष बनाती है।
क्लेन द्वारा 1910 में,[13] और गैर-यूक्लिडियन ज्यामिति पर उनके व्याख्यान के 1928 के संस्करण में अतिपरवलयिक अंतरिक्ष और विशेष सापेक्षता के मिंकोव्स्की अंतरिक्ष के बीच संबंध के बारे में अतिरिक्त विवरण बताया गया था।[14]
एफिन सीके-ज्यामिति
2008 में होर्स्ट मार्टिनी और मार्गरीटा स्पिरोवा ने केली एब्सोल्यूट से जुड़े एफाइन ज्यामिति का उपयोग करते हुए क्लिफर्ड के वृत्त प्रमेयों और अन्य यूक्लिडियन ज्यामिति के पहले को सामान्यीकृत किया:
- यदि निरपेक्ष में रेखा होती है, तो व्यक्ति केली-क्लेन ज्योमेट्रीज की उपप्रजाति प्राप्त करता है। यदि निरपेक्ष में रेखा f और f पर बिंदु F होता है, तो हमारे पास आइसोट्रोपिक ज्यामिति होती है। समदैशिक वृत्त शंकु है जो f पर f को स्पर्श करता है।[15]
सजातीय निर्देशांक (x, y, z) का प्रयोग करें। अनंत पर रेखा f = 0 है। यदि F = (0,1,0), तो y-अक्ष के समानांतर व्यास वाला परवलय समदैशिक वृत्त है।
चलो पी = (1,0,0) और क्यू = (0,1,0) पूर्ण पर हो, तो एफ उपरोक्त के रूप में है। (x,y) तल में आयताकार अतिपरवलय को अनंत पर रेखा पर P और Q से होकर निकलना माना जाता है। ये वक्र छद्म-यूक्लिडियन वृत्त हैं।
मार्टिनी और स्पिरोवा द्वारा उपचार आइसोट्रोपिक ज्यामिति के लिए दोहरी संख्या और छद्म-यूक्लिडियन ज्यामिति के लिए विभाजन-जटिल संख्या का उपयोग करता है। ये सामान्यीकृत सम्मिश्र संख्याएँ अपनी ज्यामिति से उसी प्रकार संबद्ध होती हैं जैसे साधारण संमिश्र संख्याएँ यूक्लिडियन ज्यामिति के साथ करती हैं।
इतिहास
केली
The question recently arose in conversation whether a dissertation of 2 lines could deserve and get a Fellowship. ... Cayley's projective definition of length is a clear case if we may interpret "2 lines" with reasonable latitude. ... With Cayley the importance of the idea is obvious at first sight.
Littlewood (1986, pp. 39–40)
आर्थर केली (1859) ने निरपेक्ष को परिभाषित किया जिस पर उन्होंने सजातीय निर्देशांक के संदर्भ में दूसरी डिग्री की सतह के सामान्य समीकरण के रूप में अपनी प्रक्षेपी मीट्रिक आधारित किया:[1]
वास्तविक | आधुनिक |
---|---|
दो बिंदुओं के बीच की दूरी तब द्वारा दी जाती है
वास्तविक | आधुनिक |
---|---|
दो आयामों में
वास्तविक | आधुनिक |
---|---|
दूरी के साथ
वास्तविक | आधुनिक |
---|---|
जिनमें से उन्होंने विशेष स्थिति पर चर्चा की दूरी के साथ
क्लेन
फेलिक्स क्लेन (1871) ने केली के भावों को निम्नानुसार सुधारा: उन्होंने सजातीय निर्देशांक के संदर्भ में निरपेक्ष (जिसे उन्होंने मौलिक शंकु खंड कहा) लिखा:[16]
वास्तविक | आधुनिक |
---|---|
और निरपेक्ष बनाकर और दो तत्वों के लिए, उन्होंने क्रॉस अनुपात के संदर्भ में उनके बीच की दूरी को परिभाषित किया:
वास्तविक | आधुनिक |
---|---|
समतल में, मीट्रिक दूरियों के लिए समान संबंध होते हैं, अतिरिक्त इसके कि और अब प्रत्येक तीन निर्देशांक से संबंधित हैं। मौलिक शंकु खंड के रूप में उन्होंने विशेष स्थिति पर चर्चा की, जो वास्तविक होने पर अतिपरवलयिक ज्यामिति और काल्पनिक होने पर अण्डाकार ज्यामिति से संबंधित है।[17] इस रूप को अपरिवर्तनीय छोड़ने वाले परिवर्तन संबंधित गैर-यूक्लिडियन अंतरिक्ष में गति का प्रतिनिधित्व करते हैं। वैकल्पिक रूप से, उन्होंने के रूप में वृत्त के समीकरण को रूप में प्रयोग किया, जो अतिशयोक्तिपूर्ण ज्यामिति से संबंधित है जब सकारात्मक है (बेल्ट्रामी-क्लेन मॉडल) या अण्डाकार ज्यामिति जब नकारात्मक है।[18] अंतरिक्ष में, उन्होंने दूसरी डिग्री की मौलिक सतहों पर चर्चा की, जिसके अनुसार काल्पनिक वाले अण्डाकार ज्यामिति को संदर्भित करते हैं, वास्तविक और रेक्टिलाइनियर एक-शीट अतिपरवलयिक के अनुरूप होते हैं, जिनका तीन मुख्य ज्यामिति में से किसी से कोई संबंध नहीं होता है, जबकि वास्तविक और गैर-रेक्टिलाइनियर हाइपरबोलिक अंतरिक्ष का उल्लेख करते हैं।
अपने 1873 के पेपर में उन्होंने केली मीट्रिक और परिवर्तन समूहों के बीच के संबंध को निरुपित किया।[19] विशेष रूप से, वास्तविक गुणांक वाले द्विघात समीकरण, दूसरी डिग्री की सतहों के अनुरूप, वर्गों के योग में परिवर्तित हो सकते हैं, जिनमें से धनात्मक और ऋणात्मक चिह्नों की संख्या के बीच का अंतर बराबर रहता है (इसे अब सिल्वेस्टर का जड़त्व का नियम कहा जाता है)। यदि सभी वर्गों का चिन्ह समान है, तो सतह सकारात्मक वक्रता के साथ काल्पनिक है। यदि चिह्न अन्य चिह्नों से भिन्न है, तो सतह दीर्घवृत्ताभ या ऋणात्मक वक्रता वाली दो-पत्रक अतिपरवलयज बन जाती है।
शीतकालीन सेमेस्टर 1889/90 (प्रकाशित 1892/1893) में गैर-यूक्लिडियन ज्यामिति पर अपने व्याख्यान के पहले खंड में, उन्होंने गैर-यूक्लिडियन समतल पर चर्चा की, इन भावों का पूर्ण रूप से उपयोग करते हुए:[20]
समर सेमेस्टर 1890 (1892/1893 भी प्रकाशित) के व्याख्यान वाले दूसरे खंड में, क्लेन ने केली मीट्रिक के साथ गैर-यूक्लिडियन अंतरिक्ष पर चर्चा की[21]
रॉबर्ट फ्रिक और क्लेन ने 1897 में ऑटोमोर्फिक फ़ंक्शन पर व्याख्यान के पहले खंड के परिचय में इन सभी को संक्षेप में प्रस्तुत किया, जिसमें उन्होंने उपयोग किया समतल ज्यामिति में निरपेक्ष के रूप में, और साथ ही अतिशयोक्तिपूर्ण स्थान के लिए।[25] गैर-यूक्लिडियन ज्यामिति पर क्लेन के व्याख्यान को मरणोपरांत खंड के रूप में पुनर्प्रकाशित किया गया और 1928 में वाल्थर रोज़मैन द्वारा महत्वपूर्ण रूप से संपादित किया गया था।[26] गैर-यूक्लिडियन ज्यामिति पर क्लेन के काम का ऐतिहासिक विश्लेषणए'कैम्पो और पापाडोपोलोस (2014) द्वारा दिया गया था।[9]
यह भी देखें
टिप्पणियाँ
- ↑ 1.0 1.1 Cayley (1859), p 82, §§209 to 229
- ↑ Klein (1871, 1873), Klein (1893ab), Fricke/Klein (1897), Klein (1910), Klein/Ackerman (1926/1979), Klein/Rosemann (1928)
- ↑ Klein & Rosemann (1928), p. 163
- ↑ Klein & Rosemann (1928), p. 138
- ↑ Klein & Rosemann (1928), p. 303
- ↑ Pierpont (1930), p. 67ff
- ↑ Klein & Rosemann (1928), pp. 163, 304
- ↑ Russell (1898), page 32
- ↑ 9.0 9.1 Campo & Papadopoulos (2014)
- ↑ H & R Struve (2004) page 157
- ↑ Nielsen (2016)
- ↑ Klein/Ackerman (1926/1979), p. 138
- ↑ Klein (1910)
- ↑ Klein & Rosemann (1928), chapter XI, §5
- ↑ Martini and Spirova (2008)
- ↑ Klein (1871), p. 587
- ↑ Klein (1871), p. 601
- ↑ Klein (1871), p. 618
- ↑ Klein (1873), § 7
- ↑ Klein (1893a), pp. 64, 94, 109, 138
- ↑ Klein (1893b), p. 61
- ↑ Klein (1893b), p. 64
- ↑ Klein (1893b), pp. 76ff, 108ff
- ↑ Klein (1893b), pp. 82ff, 142ff
- ↑ Fricke & Klein (1897), Introduction pp. 1-60
- ↑ Klein & Rosemann (1928)
संदर्भ
ऐतिहासिक
- von Staudt, K. (1847). स्थान ज्यामिति. Nürnberg: Nürnberg F. Korn.
- Laguerre, E. (1853). "चूल्हा के सिद्धांत पर ध्यान दें". Nouvelles annales de mathématiques. 12: 57–66.
- Cayley, A. (1859). "क्वांटिक्स पर छठा संस्मरण". Philosophical Transactions of the Royal Society of London. 149: 61–90. doi:10.1098/rstl.1859.0004.
- Klein, F. (1871). "तथाकथित गैर-यूक्लिडियन ज्यामिति के बारे में". Mathematische Annalen. 4 (4): 573–625. doi:10.1007/BF02100583. S2CID 119465069.
- Klein, F. (1873). "तथाकथित गैर-यूक्लिडियन ज्यामिति के बारे में". Mathematische Annalen. 6 (2): 112–145. doi:10.1007/BF01443189. S2CID 123810749.
- Klein, F. (1893a). Schilling, Fr. (ed.). गैर-यूक्लिडियन ज्यामिति I, 1889-90 के शीतकालीन सेमेस्टर के दौरान दिया गया व्याख्यान. Göttingen.
{{cite book}}
: CS1 maint: location missing publisher (link) (दूसरा प्रिंट, पहला प्रिंट 1892 में) - Klein, F. (1893b). Schilling, Fr. (ed.). गैर-यूक्लिडियन ज्यामिति II, 1890 के ग्रीष्मकालीन सेमेस्टर के दौरान दिया गया व्याख्यान. Göttingen.
{{cite book}}
: CS1 maint: location missing publisher (link) (दूसरा प्रिंट, पहला प्रिंट 1892 में)
माध्यमिक स्रोत
- Killing, W. (1885). गैर-यूक्लिडियन स्थानिक रूप. Leipzig: Teubner.
- Fricke, R.; Klein, F. (1897). ऑटोमोर्फिक कार्यों के सिद्धांत पर व्याख्यान - खंड एक: समूह-सैद्धांतिक नींव. Leipzig: Teubner.
- बर्ट्रेंड रसेल (1898) ज्यामिति की नींव पर निबंध, डोवर प्रकाशन, इंक द्वारा 1956 में फिर से जारी किया गया।
- अल्फ्रेड नॉर्थ व्हाइटहेड (1898) यूनिवर्सल बीजगणित, पुस्तक VI अध्याय 1: दूरी का सिद्धांत, पीपी 347-70, विशेष रूप से धारा 199 केली की दूरी का सिद्धांत।
- Hausdorff, F. (1899). "गैर-यूक्लिडियन ज्यामिति में विश्लेषणात्मक योगदान". Leipziger Math.-Phys. Berichte. 51: 161–214. hdl:2027/hvd.32044092889328.
- डंकन सोमरविले (1910/11) एन-डायमेंशनल स्पेस में केली-क्लेन मेट्रिक्स, एडिनबर्ग मैथमेटिकल सोसायटी की कार्यवाही 28:25-41।
- Klein, Felix (1910). doi:10.1007/978-3-642-51960-4_31. ISBN 978-3-642-51898-0. में पुनर्मुद्रित Klein, Felix (1921). गणितीय ग्रंथों का संग्रह. Vol. 1. pp. 533–552. doi:10.1007/978-3-642-51960-4_31. डेविड डेलफेनिच द्वारा अंग्रेजी अनुवाद: लोरेंत्ज़ समूह की ज्यामितीय नींव पर . Jahresbericht der Deutschen Mathematiker-Vereinigung. 19: 533–552.
- Veblen, O. and Young J.W. (1918). प्रक्षेपी ज्यामिति. Boston: Ginn.
- Liebmann, H. (1923). गैर-यूक्लिडियन ज्यामिति. Berlin & Leipzig: Berlin W. de Gruyter.
- Klein, F. (1926). Courant, R.; Neugebauer, O. (eds.). उन्नीसवीं सदी में गणित के विकास पर व्याख्यान. Berlin: Springer.; अंग्रेजी अनुवाद: एम. एकरमैन, रॉबर्ट हर्मन (गणितज्ञ) द्वारा 19वीं सदी में गणित का विकास
- Klein, F. (1928). Rosemann, W. (ed.). गैर-यूक्लिडियन ज्यामिति पर व्याख्यान. Berlin: Springer.
- Pierpont, J. (1930). "गैर-यूक्लिडियन ज्यामिति, एक पूर्वव्यापी" (PDF). Bulletin of the American Mathematical Society. 36 (2): 66–76. doi:10.1090/S0002-9904-1930-04885-5.
- Littlewood, J. E. (1986) [1953], Littlewood's miscellany, Cambridge University Press, ISBN 978-0-521-33058-9, MR 0872858
- जॉर्जिया तकनीकी संस्थान से हार्वे लिपकिन (1985) मेट्रिकल ज्योमेट्री
- Struve, Horst; Struve, Rolf (2004), "Projective spaces with Cayley–Klein metrics", Journal of Geometry, 81 (1): 155–167, doi:10.1007/s00022-004-1679-5, ISSN 0047-2468, MR 2134074, S2CID 121783102
- Martini Horst, Spirova Margarita (2008). "एफ़िन केली-क्लेन विमानों में सर्कल ज्यामिति". Periodica Mathematica Hungarica. 57 (2): 197–206. doi:10.1007/s10998-008-8197-5. S2CID 31045705.
- Struve, Horst; Struve, Rolf (2010), "Non-euclidean geometries: the Cayley–Klein approach", Journal of Geometry, 89 (1): 151–170, doi:10.1007/s00022-010-0053-z, ISSN 0047-2468, MR 2739193, S2CID 123015988
- A’Campo, N.; Papadopoulos, A. (2014). "On Klein's So-called Non-Euclidean geometry". In Ji, L.; Papadopoulos, A. (eds.). सोफस लाइ और फेलिक्स क्लेन: द एर्लांगेन प्रोग्राम एंड इट्स इम्पैक्ट इन मैथमेटिक्स एंड फिजिक्स. pp. 91–136. arXiv:1406.7309. doi:10.4171/148-1/5. ISBN 978-3-03719-148-4. S2CID 6389531.
- Nielsen, Frank; Muzellec, Boris; Nock, Richard (2016), "Classification with mixtures of curved mahalanobis metrics", 2016 IEEE International Conference on Image Processing (ICIP), pp. 241–245, doi:10.1109/ICIP.2016.7532355, ISBN 978-1-4673-9961-6, S2CID 7481968
अग्रिम पठन
- Jan Drösler (1979) "Foundations of multidimensional metric scaling in Cayley-Klein geometries", British Journal of Mathematical and Statistical Psychology 32(2); 185–211