सीरियल मैनिपुलेटर: Difference between revisions
(Created page with "सीरियल मैनिपुलेटर्स सबसे आम औद्योगिक रोबोट हैं और उन्हें मोटर-एक्...") |
No edit summary |
||
(21 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
क्रमिक ऑपरेटर सबसे सामान्य औद्योगिक रोबोट हैं और उन्हें मोटर-सक्रिय जोड़ों द्वारा जुड़े लिंक की श्रृंखला के रूप में डिज़ाइन किया गया है जो आधार से अंत-प्रभावक तक विस्तारित होते हैं। अधिकांशतः उनके पास [[अवतारवाद]] आर्म संरचना होता है जिसे कंधे, कोहनी और कलाई के रूप में वर्णित किया जाता है। | |||
समनुक्रम रोबोट में सामान्यतः छह जोड़ होते हैं, क्योंकि रोबोट के कार्यक्षेत्र में इच्छानुसार स्थिति और अभिविन्यास में हेरफेर की गई वस्तु को रखने के लिए कम से कम छह डिग्री की स्वतंत्रता की आवश्यकता होती है। | |||
आज के उद्योग में | आज के उद्योग में समनुक्रम रोबोट के लिए लोकप्रिय एप्लिकेशन पिक-एंड-प्लेस [[समनुक्रम]] रोबोट है, जिसे [[SCARA|स्कारा]] रोबोट कहा जाता है, जिसमें चार डिग्री की स्वतंत्रता है।[[Image:Scara.gif|thumb|300px|स्कारा असेंबली रोबोट।]] | ||
[[Image:Scara.gif|thumb|300px| | |||
== संरचना == | == संरचना == | ||
[[Image:Robot arm model 1.png|thumb|300px|कीनेमेटिक श्रृंखला में छह डीओएफ के साथ | [[Image:Robot arm model 1.png|thumb|300px|कीनेमेटिक श्रृंखला में छह डीओएफ के साथ क्रमिक ऑपरेटर का उदाहरण।]]अपने सबसे सामान्य रूप में, समनुक्रम रोबोट में जोड़ों से जुड़े कई कठोर लिंक होते हैं। निर्माण और नियंत्रण में सरलता के विचारों ने रोबोट को केवल उल्टे संयुक्त या [[प्रिज्मीय जोड़]] और ऑर्थोगोनल, समानांतर और / या इंटरसेक्टिंग संयुक्त अक्षों (इच्छानुसार से संयुक्त अक्षों के अतिरिक्त) के साथ प्रेरित किया है। | ||
डोनाल्ड एल. पीपर ने इस संदर्भ में | डोनाल्ड एल. पीपर ने इस संदर्भ में पहले व्यावहारिक रूप से प्रासंगिक परिणाम प्राप्त किया,<ref>D.L. Pieper. [https://web.archive.org/web/20160924184009/http://www.dtic.mil/get-tr-doc/pdf?AD=AD0680036 The kinematics of manipulators under computer control]. PhD Thesis, Stanford University, Department of Mechanical Engineering, 1968</ref> [[321 गतिज संरचना]] के रूप में संदर्भित: छह उल्टे जोड़ों के साथ क्रमिक ऑपरेटर के व्युत्क्रम गतिकी, और लगातार तीन जोड़ों के साथ, इसे बंद-रूप में हल किया जा सकता है, अर्थात विश्लेषणात्मक रूप से इस परिणाम का औद्योगिक रोबोटों के डिजाइन पर अधिक प्रभाव था। | ||
छह उल्टे जोड़ों के साथ | |||
इस परिणाम का औद्योगिक रोबोटों के डिजाइन पर | |||
क्रमिक ऑपरेटर का मुख्य लाभ रोबोट के आकार और उसके कब्जे वाले कार्य स्थान के संबंध में बड़ा कार्यक्षेत्र है। इन रोबोटों की मुख्य हानी हैं: | |||
* कम कठोरता | * कम कठोरता खुली गतिकी संरचना के लिए निहित है, | ||
* | * त्रुटियों को संचित और लिंक से लिंक तक बढ़ाया जाता है, | ||
* तथ्य यह है कि उन्हें अधिकांश एक्ट्यूएटर्स के बड़े वजन को | * तथ्य यह है कि उन्हें अधिकांश एक्ट्यूएटर्स के बड़े वजन को ले जाना और स्थानांतरित करना है, और | ||
* अपेक्षाकृत कम प्रभावी भार जिसे वे | * अपेक्षाकृत कम प्रभावी भार जिसे वे कुशलता से कार्य सकते हैं। | ||
== | == गतिकी == | ||
रोबोट के | रोबोट के अंतिम प्रभावकार की स्थिति और अभिविन्यास रोबोट आर्म के ज्यामितीय मॉडल के माध्यम से संयुक्त पदों से प्राप्त होते हैं। समनुक्रम रोबोट के लिए, संयुक्त स्थिति से अंत-प्रभावक मुद्रा तक मानचित्रण आसान है, व्युत्क्रम मानचित्रण अधिक कठिन है। इसलिए, अधिकांश औद्योगिक रोबोटों में विशेष डिज़ाइन होते हैं जो उलटा मानचित्रण की जटिलता को कम करते हैं। | ||
=== कार्यक्षेत्र === | === कार्यक्षेत्र === | ||
रोबोट के | रोबोट के अंत-प्रभावक का पहुंच योग्य कार्यक्षेत्र कई गुना पहुंच योग्य फ्रेम है। जहां रोबोट वेग उत्पन्न कर सकता है जो उस बिंदु पर पूर्ण स्पर्शरेखा स्थान फैलाता है, यानी, यह अतिरेक की गई वस्तु को तीन डिग्री स्वतंत्रता के साथ अनुवाद कर सकता है, और ऑब्जेक्ट को तीन डिग्री रोटेशन के साथ घुमा सकता है।<br />रोबोट द्वारा धारण की गई वस्तु के संयुक्त स्थान और कार्टेशियन अंतरिक्ष निर्देशांक के बीच संबंध सामान्य रूप से बहु-मूल्यवान होते हैं: एक ही मुद्रा को क्रमिक भुजा द्वारा अलग-अलग विद्यियो से पहुँचा जा सकता है, प्रत्येक संयुक्त निर्देशांक के अलग सेट के साथ। इसलिए रोबोट के पहुंच योग्य कार्यक्षेत्र को आकृति (जिसे असेंबली मोड भी कहा जाता है) में बांटा गया है, जिसमें गतिज रिश्ते स्थानीय रूप से एक-से-एक होते हैं। | ||
रोबोट द्वारा धारण की गई वस्तु के संयुक्त स्थान और कार्टेशियन अंतरिक्ष निर्देशांक के बीच संबंध सामान्य रूप से बहु-मूल्यवान होते हैं: एक ही मुद्रा को | |||
=== विलक्षणता === | === विलक्षणता === | ||
विलक्षणता क्रमिक ऑपरेटर का विन्यास है जिसमें संयुक्त मापदण्डअब अंत-प्रभावक की स्थिति और अभिविन्यास को पूरी तरह से परिभाषित नहीं करते हैं। विलक्षणता विन्यास में होती है जब संयुक्त कुल्हाड़ियों को एक तरह से संरेखित किया जाता है जो अंत-प्रभावक को स्थिति में लाने के लिए भुजा की क्षमता को कम करता है। उदाहरण के लिए जब क्रमिक ऑपरेटर पूरी तरह से विस्तारित होता है तो इसे सीमा विलक्षणता के रूप में जाना जाता है।<ref >[https://mecademic.com/resources/Singularities/Robot-singularities What are singularities in a six-axis robot arm?]</ref> | |||
विलक्षणता पर अंत-प्रभावक एक या एक से अधिक डिग्री की मोड़ स्वतंत्रता खो देता है (तत्काल, अंत-प्रभावक इन दिशाओं में नहीं जा सकता)।<br />छह से कम स्वतंत्र जोड़ों वाले समनुक्रम रोबोट सदैव इस अर्थ में सिंगुलर होते हैं कि वे कभी भी छह-आयामी मोड़ वाले स्थान को नहीं फैला सकते। इसे अधिकांशतः वास्तुशिल्प विलक्षणता कहा जाता है। विलक्षणता सामान्यतः रोबोट के कार्यक्षेत्र में अलग बिंदु नहीं है, किंतु उप-कई गुना है। | |||
एक | |||
=== निरर्थक ऑपरेटर === | |||
अनावश्यक ऑपरेटर के पास छह डिग्री से अधिक स्वतंत्रता होती है, जिसका अर्थ है कि इसमें अतिरिक्त संयुक्त मापदण्डहैं <ref>P. Moubarak, et al., [https://web.archive.org/web/20180105011411/https://pdfs.semanticscholar.org/83d0/20205bb41acbcac75cfee82b8afea69bcb51.pdf A Globally Converging Algorithm for Adaptive Manipulation and Trajectory Following for Mobile Robots with Serial Redundant Arms], Robotica, 31 (8) (2013) 1299 – 1311.</ref> जो रोबोट के कॉन्फ़िगरेशन को बदलने की अनुमति देता है, जबकि यह निश्चित स्थिति और अभिविन्यास में अपना अंतिम प्रभाव रखता है। | |||
विशिष्ट निरर्थक ऑपरेटर में सात जोड़ होते हैं, उदाहरण के लिए तीन कंधे पर, कोहनी का जोड़ और तीन कलाई पर। यह ऑपरेटर अपनी कोहनी को चक्र के चारों ओर घुमा सकता है, जबकि यह अपने अंत-प्रभावक की विशिष्ट स्थिति और अभिविन्यास बनाए रखता है। | |||
स्नेक रोबोट के पास छह डिग्री से अधिक स्वतंत्रता होती है और इसे अधिकांशतः अति-निवारक कहा जाता है। | |||
== निर्माता == | == निर्माता == | ||
*[[एबीबी समूह]] | *[[एबीबी समूह]] | ||
* कुशल प्रौद्योगिकी | * कुशल प्रौद्योगिकी | ||
* [[अल्पविराम]] | * [[अल्पविराम|कोमाऊ]] | ||
*[[एप्सन रोबोट]] | *[[एप्सन रोबोट]] | ||
*[[FANUC रोबोटिक्स]] | *[[FANUC रोबोटिक्स|फनुक रोबोटिक्स]] | ||
*[[कावासाकी रोबोची सीएस]] | *[[कावासाकी रोबोची सीएस]] | ||
*[[चिल्लाना]] | *[[चिल्लाना|कुका]] | ||
* [[मित्सुबिशी]] | * [[मित्सुबिशी]] | ||
* [[पूर्व आदमी]] | * [[पूर्व आदमी]] | ||
Line 52: | Line 48: | ||
== यह भी देखें == | == यह भी देखें == | ||
* समानांतर | * समानांतर ऑपरेटर | ||
* [[रोबोट कीनेमेटीक्स]] | * [[रोबोट कीनेमेटीक्स|रोबोट गतिकी]] | ||
== संदर्भ == | == संदर्भ == | ||
Line 59: | Line 55: | ||
{{Robotics}} | {{Robotics}} | ||
[[Category: | [[Category:Collapse templates]] | ||
[[Category:Created On 16/02/2023]] | [[Category:Created On 16/02/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:औद्योगिक रोबोट|-]] | |||
[[Category:रोबोट कीनेमेटीक्स]] | |||
[[Category:रोबोटिक जोड़तोड़]] |
Latest revision as of 16:12, 16 March 2023
क्रमिक ऑपरेटर सबसे सामान्य औद्योगिक रोबोट हैं और उन्हें मोटर-सक्रिय जोड़ों द्वारा जुड़े लिंक की श्रृंखला के रूप में डिज़ाइन किया गया है जो आधार से अंत-प्रभावक तक विस्तारित होते हैं। अधिकांशतः उनके पास अवतारवाद आर्म संरचना होता है जिसे कंधे, कोहनी और कलाई के रूप में वर्णित किया जाता है।
समनुक्रम रोबोट में सामान्यतः छह जोड़ होते हैं, क्योंकि रोबोट के कार्यक्षेत्र में इच्छानुसार स्थिति और अभिविन्यास में हेरफेर की गई वस्तु को रखने के लिए कम से कम छह डिग्री की स्वतंत्रता की आवश्यकता होती है।
आज के उद्योग में समनुक्रम रोबोट के लिए लोकप्रिय एप्लिकेशन पिक-एंड-प्लेस समनुक्रम रोबोट है, जिसे स्कारा रोबोट कहा जाता है, जिसमें चार डिग्री की स्वतंत्रता है।
संरचना
अपने सबसे सामान्य रूप में, समनुक्रम रोबोट में जोड़ों से जुड़े कई कठोर लिंक होते हैं। निर्माण और नियंत्रण में सरलता के विचारों ने रोबोट को केवल उल्टे संयुक्त या प्रिज्मीय जोड़ और ऑर्थोगोनल, समानांतर और / या इंटरसेक्टिंग संयुक्त अक्षों (इच्छानुसार से संयुक्त अक्षों के अतिरिक्त) के साथ प्रेरित किया है।
डोनाल्ड एल. पीपर ने इस संदर्भ में पहले व्यावहारिक रूप से प्रासंगिक परिणाम प्राप्त किया,[1] 321 गतिज संरचना के रूप में संदर्भित: छह उल्टे जोड़ों के साथ क्रमिक ऑपरेटर के व्युत्क्रम गतिकी, और लगातार तीन जोड़ों के साथ, इसे बंद-रूप में हल किया जा सकता है, अर्थात विश्लेषणात्मक रूप से इस परिणाम का औद्योगिक रोबोटों के डिजाइन पर अधिक प्रभाव था।
क्रमिक ऑपरेटर का मुख्य लाभ रोबोट के आकार और उसके कब्जे वाले कार्य स्थान के संबंध में बड़ा कार्यक्षेत्र है। इन रोबोटों की मुख्य हानी हैं:
- कम कठोरता खुली गतिकी संरचना के लिए निहित है,
- त्रुटियों को संचित और लिंक से लिंक तक बढ़ाया जाता है,
- तथ्य यह है कि उन्हें अधिकांश एक्ट्यूएटर्स के बड़े वजन को ले जाना और स्थानांतरित करना है, और
- अपेक्षाकृत कम प्रभावी भार जिसे वे कुशलता से कार्य सकते हैं।
गतिकी
रोबोट के अंतिम प्रभावकार की स्थिति और अभिविन्यास रोबोट आर्म के ज्यामितीय मॉडल के माध्यम से संयुक्त पदों से प्राप्त होते हैं। समनुक्रम रोबोट के लिए, संयुक्त स्थिति से अंत-प्रभावक मुद्रा तक मानचित्रण आसान है, व्युत्क्रम मानचित्रण अधिक कठिन है। इसलिए, अधिकांश औद्योगिक रोबोटों में विशेष डिज़ाइन होते हैं जो उलटा मानचित्रण की जटिलता को कम करते हैं।
कार्यक्षेत्र
रोबोट के अंत-प्रभावक का पहुंच योग्य कार्यक्षेत्र कई गुना पहुंच योग्य फ्रेम है। जहां रोबोट वेग उत्पन्न कर सकता है जो उस बिंदु पर पूर्ण स्पर्शरेखा स्थान फैलाता है, यानी, यह अतिरेक की गई वस्तु को तीन डिग्री स्वतंत्रता के साथ अनुवाद कर सकता है, और ऑब्जेक्ट को तीन डिग्री रोटेशन के साथ घुमा सकता है।
रोबोट द्वारा धारण की गई वस्तु के संयुक्त स्थान और कार्टेशियन अंतरिक्ष निर्देशांक के बीच संबंध सामान्य रूप से बहु-मूल्यवान होते हैं: एक ही मुद्रा को क्रमिक भुजा द्वारा अलग-अलग विद्यियो से पहुँचा जा सकता है, प्रत्येक संयुक्त निर्देशांक के अलग सेट के साथ। इसलिए रोबोट के पहुंच योग्य कार्यक्षेत्र को आकृति (जिसे असेंबली मोड भी कहा जाता है) में बांटा गया है, जिसमें गतिज रिश्ते स्थानीय रूप से एक-से-एक होते हैं।
विलक्षणता
विलक्षणता क्रमिक ऑपरेटर का विन्यास है जिसमें संयुक्त मापदण्डअब अंत-प्रभावक की स्थिति और अभिविन्यास को पूरी तरह से परिभाषित नहीं करते हैं। विलक्षणता विन्यास में होती है जब संयुक्त कुल्हाड़ियों को एक तरह से संरेखित किया जाता है जो अंत-प्रभावक को स्थिति में लाने के लिए भुजा की क्षमता को कम करता है। उदाहरण के लिए जब क्रमिक ऑपरेटर पूरी तरह से विस्तारित होता है तो इसे सीमा विलक्षणता के रूप में जाना जाता है।[2]
विलक्षणता पर अंत-प्रभावक एक या एक से अधिक डिग्री की मोड़ स्वतंत्रता खो देता है (तत्काल, अंत-प्रभावक इन दिशाओं में नहीं जा सकता)।
छह से कम स्वतंत्र जोड़ों वाले समनुक्रम रोबोट सदैव इस अर्थ में सिंगुलर होते हैं कि वे कभी भी छह-आयामी मोड़ वाले स्थान को नहीं फैला सकते। इसे अधिकांशतः वास्तुशिल्प विलक्षणता कहा जाता है। विलक्षणता सामान्यतः रोबोट के कार्यक्षेत्र में अलग बिंदु नहीं है, किंतु उप-कई गुना है।
निरर्थक ऑपरेटर
अनावश्यक ऑपरेटर के पास छह डिग्री से अधिक स्वतंत्रता होती है, जिसका अर्थ है कि इसमें अतिरिक्त संयुक्त मापदण्डहैं [3] जो रोबोट के कॉन्फ़िगरेशन को बदलने की अनुमति देता है, जबकि यह निश्चित स्थिति और अभिविन्यास में अपना अंतिम प्रभाव रखता है।
विशिष्ट निरर्थक ऑपरेटर में सात जोड़ होते हैं, उदाहरण के लिए तीन कंधे पर, कोहनी का जोड़ और तीन कलाई पर। यह ऑपरेटर अपनी कोहनी को चक्र के चारों ओर घुमा सकता है, जबकि यह अपने अंत-प्रभावक की विशिष्ट स्थिति और अभिविन्यास बनाए रखता है।
स्नेक रोबोट के पास छह डिग्री से अधिक स्वतंत्रता होती है और इसे अधिकांशतः अति-निवारक कहा जाता है।
निर्माता
- एबीबी समूह
- कुशल प्रौद्योगिकी
- कोमाऊ
- एप्सन रोबोट
- फनुक रोबोटिक्स
- कावासाकी रोबोची सीएस
- कुका
- मित्सुबिशी
- पूर्व आदमी
- स्तौबली
- रोबोटिक्स डिजाइन
- यूनिवर्सल रोबोट
यह भी देखें
- समानांतर ऑपरेटर
- रोबोट गतिकी
संदर्भ
- ↑ D.L. Pieper. The kinematics of manipulators under computer control. PhD Thesis, Stanford University, Department of Mechanical Engineering, 1968
- ↑ What are singularities in a six-axis robot arm?
- ↑ P. Moubarak, et al., A Globally Converging Algorithm for Adaptive Manipulation and Trajectory Following for Mobile Robots with Serial Redundant Arms, Robotica, 31 (8) (2013) 1299 – 1311.