वर्टेक्स ऑपरेटर बीजगणित: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
गणित में, शीर्ष प्रचालक बीजगणित (VOA) एक बीजगणितीय संरचना है जो [[द्वि-आयामी अनुरूप क्षेत्र सिद्धांत]] और [[स्ट्रिंग सिद्धांत|स्ट्वलय सिद्धांत]] में महत्वपूर्ण भूमिका निभाता है। भौतिक अनुप्रयोगों के अतिरिक्त, शीर्ष प्रचालक बीजगणित विशुद्ध रूप से गणितीय संदर्भों जैसे अपरूप कल्पना और ज्यामितीय लैंगलैंड पत्राचार में उपयोगी प्रतिपादित हुए हैं। | गणित में, शीर्ष प्रचालक बीजगणित (VOA) एक बीजगणितीय संरचना है जो [[द्वि-आयामी अनुरूप क्षेत्र सिद्धांत]] और [[स्ट्रिंग सिद्धांत|स्ट्वलय सिद्धांत]] में महत्वपूर्ण भूमिका निभाता है। भौतिक अनुप्रयोगों के अतिरिक्त, शीर्ष प्रचालक बीजगणित विशुद्ध रूप से गणितीय संदर्भों जैसे अपरूप कल्पना और ज्यामितीय लैंगलैंड पत्राचार में उपयोगी प्रतिपादित हुए हैं। | ||
शीर्ष बीजगणित से संबंधित धारणा 1986 में [[रिचर्ड बोरचर्ड्स]] द्वारा प्रस्तुत की गई थी, जो [[ इगोर फ्रेनकेल |इगोर फ्रेनकेल]] के कारण एक अनंत-आयामी लाई बीजगणित के निर्माण से प्रेरित थी। इस निर्माण के समय, एक [[फॉक स्पेस]] नियोजित करता है जो जालक सदिश से संलग्न शीर्ष प्रचालकों की कार्यकलाप को स्वीकार करता है। बोरचर्ड्स ने शीर्ष बीजगणित की धारणा को जालक शीर्ष प्रचालकों के मध्य संबंधों को स्वयंसिद्ध करके उद्यत किया, एक बीजगणितीय संरचना का निर्माण किया जो फ्रेनकेल की विधि का पालन करके नए ले बीजगणित का निर्माण करने की अनुमति देता है। | शीर्ष बीजगणित से संबंधित धारणा 1986 में [[रिचर्ड बोरचर्ड्स]] द्वारा प्रस्तुत की गई थी, जो [[ इगोर फ्रेनकेल |इगोर फ्रेनकेल]] के कारण एक अनंत-आयामी लाई बीजगणित के निर्माण से प्रेरित थी। इस निर्माण के समय, एक [[फॉक स्पेस|फॉक स्थान]] नियोजित करता है जो जालक सदिश से संलग्न शीर्ष प्रचालकों की कार्यकलाप को स्वीकार करता है। बोरचर्ड्स ने शीर्ष बीजगणित की धारणा को जालक शीर्ष प्रचालकों के मध्य संबंधों को स्वयंसिद्ध करके उद्यत किया, एक बीजगणितीय संरचना का निर्माण किया जो फ्रेनकेल की विधि का पालन करके नए ले बीजगणित का निर्माण करने की अनुमति देता है। | ||
शीर्ष प्रचालक बीजगणित की धारणा को शीर्ष बीजगणित की धारणा के एक संशोधन के रूप में प्रस्तुत किया गया था, 1988 में फ्श्रेणीेल, [[जेम्स लेपोव्स्की]] और [[अर्ने म्योरमैन]] द्वारा के निर्माण के लिए उनकी परियोजना के भाग के रूप में, उन्होंने देखा कि प्रकृति में दिखाई देने वाले अनेक शीर्ष बीजगणितों में एक उपयोगी अतिरिक्त संरचना (विरासोरो बीजगणित की एक क्रिया) होती है, और एक ऊर्जा प्रचालक के संबंध में एक संपत्ति के नीचे बाध्य को संतुष्ट करती है। इस अवलोकन से प्रेरित होकर, उन्होंने वीरासोरो क्रिया और संपत्ति के नीचे बाध्य को स्वयंसिद्धि के रूप में जोड़ा था। | शीर्ष प्रचालक बीजगणित की धारणा को शीर्ष बीजगणित की धारणा के एक संशोधन के रूप में प्रस्तुत किया गया था, 1988 में फ्श्रेणीेल, [[जेम्स लेपोव्स्की]] और [[अर्ने म्योरमैन]] द्वारा के निर्माण के लिए उनकी परियोजना के भाग के रूप में, उन्होंने देखा कि प्रकृति में दिखाई देने वाले अनेक शीर्ष बीजगणितों में एक उपयोगी अतिरिक्त संरचना (विरासोरो बीजगणित की एक क्रिया) होती है, और एक ऊर्जा प्रचालक के संबंध में एक संपत्ति के नीचे बाध्य को संतुष्ट करती है। इस अवलोकन से प्रेरित होकर, उन्होंने वीरासोरो क्रिया और संपत्ति के नीचे बाध्य को स्वयंसिद्धि के रूप में जोड़ा था। | ||
Line 111: | Line 111: | ||
:<math>Y(J^{a_1}_{n_1+1}J^{a_2}_{n_2+1}...J^{a_k}_{n_k+1}1, z) = :\frac{\partial^{n_1}}{\partial z^{n_1}}\frac{J^{a_1}(z)}{n_1!}\frac{\partial^{n_2}}{\partial z^{n_2}}\frac{J^{a_2}(z)}{n_2!} \cdots \frac{\partial^{n_k}}{\partial z^{n_k}}\frac{J^{a_k}(z)}{n_k!}:</math> | :<math>Y(J^{a_1}_{n_1+1}J^{a_2}_{n_2+1}...J^{a_k}_{n_k+1}1, z) = :\frac{\partial^{n_1}}{\partial z^{n_1}}\frac{J^{a_1}(z)}{n_1!}\frac{\partial^{n_2}}{\partial z^{n_2}}\frac{J^{a_2}(z)}{n_2!} \cdots \frac{\partial^{n_k}}{\partial z^{n_k}}\frac{J^{a_k}(z)}{n_k!}:</math> | ||
अधिक सामान्यतः, यदि किसी को सदिश स्थान दिया जाता है, एंडोमोर्फिज्म के साथ <math>V</math>, <math>T</math> और सदिश <math>1</math>, और एक सदिश <math>J^a</math> के एक | अधिक सामान्यतः, यदि किसी को सदिश स्थान दिया जाता है, एंडोमोर्फिज्म के साथ <math>V</math>, <math>T</math> और सदिश <math>1</math>, और एक सदिश <math>J^a</math> के एक समुच्चय को निर्धारित करता है। क्षेत्रो का एक समुच्चय <math>J^a(z)\in \mathrm{End}(V)[[z^{\pm 1}]]</math> जो पारस्परिक रूप से स्थानीय हैं, जिनके सकारात्मक भार गुणांक <math>V</math> उत्पन्न होते हैं, और जो अभिज्ञान और अनुवाद के प्रतिबंधों को पूर्ण करता है, तो पिछला सूत्र शीर्ष बीजगणित संरचना का वर्णन करता है। | ||
== उदाहरण == | == उदाहरण == | ||
=== हाइजेनबर्ग शीर्ष प्रचालक बीजगणित === | === हाइजेनबर्ग शीर्ष प्रचालक बीजगणित === | ||
गैर-क्रमानुक्रमिक शीर्ष बीजगणित का एक मूल उदाहरण श्रेणी 1 मुक्त बोसॉन है, जिसे हाइजेनबर्ग शीर्ष प्रचालक बीजगणित भी कहा जाता है। यह एक सदिश b द्वारा उत्पन्न होता है, इस अर्थ में कि क्षेत्र b(z) = Y(b,z) के गुणांकों को सदिश 1 पर | गैर-क्रमानुक्रमिक शीर्ष बीजगणित का एक मूल उदाहरण श्रेणी 1 मुक्त बोसॉन है, जिसे हाइजेनबर्ग शीर्ष प्रचालक बीजगणित भी कहा जाता है। यह एक सदिश b द्वारा उत्पन्न होता है, इस अर्थ में कि क्षेत्र b(z) = Y(b,z) के गुणांकों को सदिश 1 पर आवेदन करने से, हम एक विस्तरित हुए समुच्चय को प्राप्त करते हैं। अंतर्निहित सदिश स्थान अनंत-चर बहुपद वलय '''C'''[''x''<sub>1</sub>,''x''<sub>2</sub>,...] है, जहां धनात्मक n के लिए ''Y''(''b'',''z''),का गुणांक b<sub>–n</sub> ''x''<sub>n</sub> द्वारा गुणन, और ''b''<sub>n</sub> ''x''<sub>n</sub> में आंशिक अवकलज के n गुणन के रूप में कार्य करता है। ''b''<sub>0</sub> की कार्यकलाप शून्य से गुणन है, गति शून्य फॉक प्रतिनिधित्व ''V''<sub>0</sub> का उत्पादन करता है, हाइजेनबर्ग लाइ बीजगणित का (''b''<sub>n</sub> द्वारा उत्पन्न पूर्णांक n के लिए, क्रमविनिमय संबंधों के साथ [''b''<sub>n</sub>,''b''<sub>m</sub>]=''n'' δ<sub>n,–m</sub>), अर्थात, ''b''<sub>n</sub> द्वारा विस्तरित किये गए उप-बीजगणितीय के साधारण प्रतिनिधित्व, n ≥ 0 से प्रेरित है। | ||
फॉक | फॉक स्थान ''V''<sub>0</sub> निम्नलिखित पुनर्निर्माण द्वारा शीर्ष बीजगणित में बनाया जा सकता है: | ||
:<math>Y( x_{n_1+1}x_{n_2+1}x_{n_3+1}...x_{n_k+1}, z) \equiv \frac{1}{n_1!n_2!..n_k!}:\partial^{n_1}b(z)\partial^{n_2}b(z)...\partial^{n_k}b(z):</math> | :<math>Y( x_{n_1+1}x_{n_2+1}x_{n_3+1}...x_{n_k+1}, z) \equiv \frac{1}{n_1!n_2!..n_k!}:\partial^{n_1}b(z)\partial^{n_2}b(z)...\partial^{n_k}b(z):</math> | ||
जहाँ :..: सामान्य क्रम को | जहाँ :..: सामान्य क्रम को (अर्थात x में सभी व्युत्पादित को दाईं ओर ले जाना) दर्शाता है। शीर्ष प्रचालकों को एक बहुविकल्पीय अभिलक्षक f के कार्यात्मक के रूप में भी लिखा जा सकता है: | ||
:<math> Y[f,z] \equiv :f\left(\frac{b(z)}{0!},\frac{b'(z)}{1!},\frac{b''(z)}{2!},...\right): </math> | :<math> Y[f,z] \equiv :f\left(\frac{b(z)}{0!},\frac{b'(z)}{1!},\frac{b''(z)}{2!},...\right): </math> | ||
यदि हम | यदि हम स्वीकार करते हैं कि f के विस्तार में प्रत्येक पद प्रसामान्य क्रमित है। | ||
श्रेणी 1 मुक्त बोसोन के एन-गुना | श्रेणी 1 मुक्त बोसोन के एन-गुना प्रदिश उत्पाद को लेकर श्रेणी एन मुक्त बोसॉन दिया जाता है। एन-आयामी स्थान में किसी भी सदिश बी के लिए, किसी के पास एक क्षेत्र बी (''z'') होता है, जिसके गुणांक श्रेणी एन हाइजेनबर्ग बीजगणित के तत्व होते हैं, जिनके क्रमविनिमय संबंधों में एक अतिरिक्त आंतरिक उत्पाद [''b''<sub>n</sub>,''c''<sub>m</sub>]=''n'' (b,c) δ<sub>n,–m</sub> संबंध होता है: | ||
=== विरासोरो शीर्ष प्रचालक बीजगणित<!--'विरासोरो | === विरासोरो शीर्ष प्रचालक बीजगणित<!--'विरासोरो प्रतिबंध', 'विरासोरो शीर्ष प्रचालक बीजगणित', 'विरासोरो शीर्ष प्रचालक बीजगणित' यहां अनुप्रेषित करें-->=== | ||
विरासोरो शीर्ष प्रचालक बीजगणित<!--बोल्डफेस प्रति WP:R#PLA-->दो कारणों से महत्वपूर्ण हैं: सर्वप्रथम, शीर्ष प्रचालक बीजगणित में अनुरूप तत्व विरासोरो शीर्ष प्रचालक बीजगणित से एक समरूपता को विहित रूप से प्रेरित करता है, इसलिए वे सिद्धांत में एक सार्वभौमिक भूमिका निभाते हैं। | विरासोरो शीर्ष प्रचालक बीजगणित<!--बोल्डफेस प्रति WP:R#PLA-->दो कारणों से महत्वपूर्ण हैं: सर्वप्रथम, शीर्ष प्रचालक बीजगणित में अनुरूप तत्व विरासोरो शीर्ष प्रचालक बीजगणित से एक समरूपता को विहित रूप से प्रेरित करता है, इसलिए वे सिद्धांत में एक सार्वभौमिक भूमिका निभाते हैं। द्वितीय, वे वीरसोरो बीजगणित के एकात्मक प्रतिनिधित्व के सिद्धांत से घनिष्ठ रूप से संलग्न हुए हैं, और ये [[अनुरूप क्षेत्र सिद्धांत]] में एक प्रमुख भूमिका निभाते हैं। विशेष रूप से, एकात्मक विरासोरो न्यूनतम प्रतिरूप इन शीर्ष बीजगणितों के सरल भागफल हैं, और उनके प्रदिश उत्पाद संयुक्त रूप से अधिक जटिल शीर्ष प्रचालक बीजगणित का निर्माण करने का एक माध्यम प्रदान करते हैं। | ||
विरासोरो शीर्ष प्रचालक बीजगणित को विरासोरो बीजगणित के एक प्रेरित प्रतिनिधित्व के रूप में परिभाषित किया गया है: यदि हम एक केंद्रीय चार्ज सी | विरासोरो शीर्ष प्रचालक बीजगणित को विरासोरो बीजगणित के एक प्रेरित प्रतिनिधित्व के रूप में परिभाषित किया गया है: यदि हम एक केंद्रीय चार्ज सी चयनित करते हैं, तो उप-बीजगणितीय '''C'''[z]∂<sub>z</sub> + ''K'' के लिए अद्वितीय एक-आयामी मापांक है। जिसके लिए K cId द्वारा, और 'C'[z]∂<sub>z</sub> साधारण रूप से कार्य करता है, और इसी प्रेरित मापांक को ''L''<sub>–n</sub> = –z<sup>−n–1</sup>∂<sub>z</sub> में बहुपदों द्वारा विस्तरित किया जाता है, जैसा कि n 1 से अधिक पूर्णांकों पर होता है। मापांक में तब विभाजन कार्य होता है | ||
:<math>Tr_V q^{L_0} = \sum_{n \in \mathbf{R}} \dim V_n q^n = \prod_{n \geq 2} (1-q^n)^{-1}</math> | :<math>Tr_V q^{L_0} = \sum_{n \in \mathbf{R}} \dim V_n q^n = \prod_{n \geq 2} (1-q^n)^{-1}</math> | ||
इस स्थान में एक शीर्ष प्रचालक बीजगणित संरचना है, जहाँ शीर्ष | इस स्थान में एक शीर्ष प्रचालक बीजगणित संरचना है, जहाँ शीर्ष प्रचालक द्वारा परिभाषित किया गया है: | ||
:<math>Y(L_{-n_1-2}L_{-n_2-2}...L_{-n_k-2}|0\rangle,z) \equiv \frac{1}{n_1!n_2!..n_k!}:\partial^{n_1}L(z)\partial^{n_2}L(z)...\partial^{n_k}L(z):</math> | :<math>Y(L_{-n_1-2}L_{-n_2-2}...L_{-n_k-2}|0\rangle,z) \equiv \frac{1}{n_1!n_2!..n_k!}:\partial^{n_1}L(z)\partial^{n_2}L(z)...\partial^{n_k}L(z):</math> | ||
और <math>\omega = L_{-2}|0\rangle</math> | और <math>\omega = L_{-2}|0\rangle</math> तथ्य यह है कि विरासोरो क्षेत्र एल (''z'') स्वयं के संबंध में स्थानीय है, इसके स्व-क्रमविनिमयक के सूत्र से घटाया जा सकता है: | ||
<math>[L(z),L(x)] =\left(\frac{\partial}{\partial x}L(x)\right)w^{-1}\delta \left(\frac{z}{x}\right)-2L(x)x^{-1}\frac{\partial}{\partial z}\delta \left(\frac{z}{x}\right)-\frac{1}{12}cx^{-1}\left(\frac{\partial}{\partial z}\right)^3\delta \left(\frac{z}{x}\right)</math> | <math>[L(z),L(x)] =\left(\frac{\partial}{\partial x}L(x)\right)w^{-1}\delta \left(\frac{z}{x}\right)-2L(x)x^{-1}\frac{\partial}{\partial z}\delta \left(\frac{z}{x}\right)-\frac{1}{12}cx^{-1}\left(\frac{\partial}{\partial z}\right)^3\delta \left(\frac{z}{x}\right)</math> | ||
Line 144: | Line 144: | ||
जहाँ c [[केंद्रीय प्रभार]] है। | जहाँ c [[केंद्रीय प्रभार]] है। | ||
केंद्रीय आवेश c के विरासोरो शीर्ष बीजगणित से किसी अन्य शीर्ष बीजगणित के शीर्ष बीजगणित समरूपता को देखते हुए, ω | केंद्रीय आवेश c के विरासोरो शीर्ष बीजगणित से किसी अन्य शीर्ष बीजगणित के शीर्ष बीजगणित समरूपता को देखते हुए, ω के प्रतिरूप से जुड़ा शीर्ष प्रचालक स्वचालित रूप से विरासोरो संबंधों को संतुष्ट करता है, अर्थात, ω का प्रतिरूप एक अनुरूप सदिश है। इसके विपरीत, शीर्ष बीजगणित में कोई भी अनुरूप सदिश कुछ वीरासोरो शीर्ष संचालक बीजगणित से एक विशिष्ट शीर्ष बीजगणित समरूपता को प्रेरित करता है। | ||
विरासोरो शीर्ष प्रचालक बीजगणित सरल हैं, | विरासोरो शीर्ष प्रचालक बीजगणित सरल हैं, अतिरिक्त इसके कि जब c का रूप1–6(''p''–''q'')<sup>2</sup>/''pq'' होता है,तो सह अभाज्य पूर्णांक p,q 1 से दृढ़ता से अधिक होता है- यह Kac के निर्धारक सूत्र से होता है। इन असाधारण स्थितियों में, एक अद्वितीय अधिकतम आदर्श होता है, और संबंधित भागफल को न्यूनतम प्रतिरूप कहा जाता है। जब p = q+1, शीर्ष बीजगणित विरासोरो के एकात्मक निरूपण होते हैं, और उनके मापांक असतत श्रृंखला निरूपण के रूप में जाने जाते हैं। वे भाग में अनुरूप क्षेत्र सिद्धांत में एक महत्वपूर्ण भूमिका निभाते हैं क्योंकि वे असामान्य रूप से विनयशील हैं, और छोटे पी के लिए, वे महत्वपूर्णता पर प्रसिद्ध [[सांख्यिकीय यांत्रिकी]] प्रणालियों के अनुरूप हैं, उदाहरण के लिए, द्वि-आयामी महत्वपूर्ण ईज़िंग प्रतिरूप, त्रि-महत्वपूर्ण ईज़िंग प्रतिरूप [[वेइकांग वांग]] के कार्य से, और तीन-राज्य [[पॉट्स मॉडल|पॉट्स प्रतिरूप]] आदि{{sfn|Wang|1993}} संलयन नियमों के संबंध में, हमारे पास एकात्मक न्यूनतम प्रतिरूप की प्रदिश श्रेणियों का पूर्ण विवरण है। उदाहरण के लिए, जब c=1/2 (Ising) होता है, तो निम्नतम L के साथ तीन अपुनःस्थाप्य मापांक ''L''<sub>0</sub>- भार 0, 1/2, और 1/16 होते हैं, और इसका संलयन वलय '''Z'''[''x'',''y'']/(''x''<sup>2</sup>–1, ''y''<sup>2</sup>–''x''–1, ''xy''–''y'') है। | ||
=== | === संबंध शीर्ष बीजगणित === | ||
हाइजेनबर्ग लाइ बीजगणित को एक अनट्विस्टेड | हाइजेनबर्ग लाइ बीजगणित को एक अनट्विस्टेड संबंध लाइ बीजगणित के साथ परिवर्तित कर | संबंध केसी-मूडी लाइ बीजगणित (अर्थात, एक परिमित-आयामी सरल लाई बीजगणित पर लूप बीजगणित का सार्वभौमिक [[केंद्रीय विस्तार (गणित)]]), कोई निर्वात प्रतिनिधित्व का निर्माण कर सकता है ठीक उसी प्रकार जैसे मुक्त बोसॉन शीर्ष बीजगणित का निर्माण किया जाता है। यह बीजगणित वेस-ज़ुमिनो-विटन प्रतिरूप के वर्तमान बीजगणित के रूप में उत्पन्न होता है, जो [[विसंगति (भौतिकी)]] का उत्पादन करता है जिसे केंद्रीय विस्तार के रूप में व्याख्या किया जाता है। | ||
ठोस रूप से, केंद्रीय विस्तार को वापस खींच रहा है | ठोस रूप से, केंद्रीय विस्तार को वापस खींच रहा है | ||
:<math>0 \to \mathbb{C} \to \hat{\mathfrak{g}} \to \mathfrak{g}[t,t^{-1}] \to 0</math> | :<math>0 \to \mathbb{C} \to \hat{\mathfrak{g}} \to \mathfrak{g}[t,t^{-1}] \to 0</math> | ||
समावेशन के साथ <math>\mathfrak{g}[t] \to \mathfrak{g}[t,t^{-1}]</math> एक विभाजित विस्तार उत्पन्न करता है, और | समावेशन के साथ <math>\mathfrak{g}[t] \to \mathfrak{g}[t,t^{-1}]</math> एक विभाजित विस्तार उत्पन्न करता है, और निर्वात मापांक बाद के एक आयामी प्रतिनिधित्व से प्रेरित होता है, जिस पर एक केंद्रीय आधार तत्व कुछ चुने हुए स्थिरांक द्वारा कार्य करता है जिसे स्तर कहा जाता है। चूंकि केंद्रीय तत्वों को परिमित प्रकार के बीजगणित पर अपरिवर्तनीय आंतरिक उत्पादों के साथ अभिज्ञाना जा सकता है <math>\mathfrak{g}</math>, एक सामान्यतः स्तर को सामान्य करता है ताकि [[ मारक रूप ]] में दोहरी [[कॉक्सेटर संख्या|कॉक्व्यवस्थितर संख्या]] का स्तर दोगुना हो। समतुल्य रूप से, स्तर एक आंतरिक उत्पाद देता है जिसके लिए सबसे लंबी जड़ का मानदंड 2 है। यह लूप बीजगणित सम्मेलन से मेल खाता है, जहां स्तरों को बस संलग्न हुए कॉम्पैक्ट लाई समूहों के तीसरे कोहोलॉजी द्वारा पृथक किया जाता है। | ||
आधार | आधार चयन कर ''J''<sup>a</sup> परिमित प्रकार का लाई बीजगणित, कोई J का उपयोग करके संबंध लाई बीजगणित का आधार बना सकता है,''J''<sup>a</sup><sub>''n''</sub> = ''J''<sup>a</sup> ''ए''क केंद्रीय तत्व K के साथ मिलकर। पुनर्निर्माण के द्वारा, हम क्षेत्र के व्युत्पादित के सामान्य ऑर्डर किए गए उत्पादों द्वारा शीर्ष प्रचालकों का वर्णन कर सकते हैं | ||
<sup> | |||
:<math>J^a(z) = \sum_{n=-\infty}^\infty J^a_n z^{-n-1} = \sum_{n=-\infty}^\infty (J^a t^n) z^{-n-1}.</math> | :<math>J^a(z) = \sum_{n=-\infty}^\infty J^a_n z^{-n-1} = \sum_{n=-\infty}^\infty (J^a t^n) z^{-n-1}.</math> | ||
जब स्तर गैर-महत्वपूर्ण होता है, अर्थात, आंतरिक उत्पाद किलिंग फॉर्म का आधा हिस्सा नहीं होता है, तो वैक्यूम प्रतिनिधित्व में एक अनुरूप तत्व होता है, जो [[सुगवारा निर्माण]] द्वारा दिया जाता है।{{efn|The history of the Sugawara construction is complicated, with several attempts required to get the formula correct.[https://mathoverflow.net/q/16406]}} दोहरे आधारों के किसी भी विकल्प के लिए J<sup> | जब स्तर गैर-महत्वपूर्ण होता है, अर्थात, आंतरिक उत्पाद किलिंग फॉर्म का आधा हिस्सा नहीं होता है, तो वैक्यूम प्रतिनिधित्व में एक अनुरूप तत्व होता है, जो [[सुगवारा निर्माण]] द्वारा दिया जाता है।{{efn|The history of the Sugawara construction is complicated, with several attempts required to get the formula correct.[https://mathoverflow.net/q/16406]}} दोहरे आधारों के किसी भी विकल्प के लिए ''J''<sup>a</sup>, जे<sub>a</sub> स्तर 1 आंतरिक उत्पाद के संबंध में, अनुरूप तत्व है | ||
:<math>\omega = \frac{1}{2(k+h^\vee)} \sum_a J_{a,-1} J^a_{-1} 1</math> | :<math>\omega = \frac{1}{2(k+h^\vee)} \sum_a J_{a,-1} J^a_{-1} 1</math> | ||
और एक शीर्ष प्रचालक बीजगणित उत्पन्न करता है जिसका केंद्रीय प्रभार है <math>k \cdot \dim \mathfrak{g}/(k+h^\vee)</math>. महत्वपूर्ण स्तर पर, अनुरूप संरचना नष्ट हो जाती है, क्योंकि भाजक शून्य है, परन्तु कोई प्रचालक एल उत्पन्न कर सकता है<sub>''n''</sub> n ≥ –1 के लिए एक सीमा लेकर जब k क्रांतिकता की ओर अग्रसर होता है। | और एक शीर्ष प्रचालक बीजगणित उत्पन्न करता है जिसका केंद्रीय प्रभार है <math>k \cdot \dim \mathfrak{g}/(k+h^\vee)</math>. महत्वपूर्ण स्तर पर, अनुरूप संरचना नष्ट हो जाती है, क्योंकि भाजक शून्य है, परन्तु कोई प्रचालक एल उत्पन्न कर सकता है<sub>''n''</sub> n ≥ –1 के लिए एक सीमा लेकर जब k क्रांतिकता की ओर अग्रसर होता है। | ||
इस निर्माण को श्रेणी 1 मुक्त बोसोन के लिए काम करने के लिए परिवर्तिता जा सकता है। वास्तव में, विरासोरो सदिश एक-पैरामीटर परिवार ω बनाते हैं<sub>''s''</sub> = 1/2 एक्स<sub>1</sub><sup>2</sup> + एस एक्स<sub>2</sub>, परिणामी शीर्ष प्रचालक बीजगणित को केंद्रीय प्रभार | इस निर्माण को श्रेणी 1 मुक्त बोसोन के लिए काम करने के लिए परिवर्तिता जा सकता है। वास्तव में, विरासोरो सदिश एक-पैरामीटर परिवार ω बनाते हैं<sub>''s''</sub> = 1/2 एक्स<sub>1</sub><sup>2</sup> + एस एक्स<sub>2</sub>, परिणामी शीर्ष प्रचालक बीजगणित को केंद्रीय प्रभार 1−12''s''<sup>2</sup> के साथ प्रदान करना जब s = 0, हमारे पास श्रेणीबद्ध आयाम के लिए निम्न सूत्र होता है: | ||
:<math>Tr_V q^{L_0} = \sum_{n \in \mathbf{Z}} \dim V_n q^n = \prod_{n \geq 1} (1-q^n)^{-1}</math> | :<math>Tr_V q^{L_0} = \sum_{n \in \mathbf{Z}} \dim V_n q^n = \prod_{n \geq 1} (1-q^n)^{-1}</math> | ||
Line 180: | Line 178: | ||
प्रश्न में डबल कवर विशिष्ट रूप से निम्नलिखित नियम द्वारा आइसोमोर्फिज्म तक निर्धारित होते हैं: तत्वों का रूप होता है {{mvar|±e<sub>α</sub>}} जालक सदिश के लिए {{math|''α'' ∈ Λ}} (अर्थात, एकप्रतिचित्र है {{math|Λ}} भेजना {{mvar|e<sub>α</sub>}} से α जो संकेतों को भूल जाता है), और गुणा संबंधों को संतुष्ट करता है,eαeβ = (-1)(α,β)eβeα. इसका वर्णन करने का एक और तरीका यह है कि एक भी जाली Λ दिया गया है, वहाँ एक अद्वितीय (कोबाउंड्री तक) सामान्यीकृत कोसायकल ε(α, β) है जिसमें मान ±1 ऐसा है कि (−1)(α,β) = ε(α, β) ε(β, α), जहां सामान्यीकरण की स्थिति यह है कि ε(α, 0) = ε(0, α) = 1 सभी α ∈ Λ के लिए। यह चक्र क्रम 2 के एक समूह द्वारा Λ के एक केंद्रीय विस्तार को प्रेरित करता है, और हम आधार eα (α ∈ Λ) और गुणन नियम eαeβ = ε(α, β)eα+β - के साथ एक मुड़ समूह वलय Cε[Λ] प्राप्त करते हैं - ε पर चक्रीय स्थिति अंगूठी की संबद्धता सुनिश्चित करती है।<sup>{{sfn|Kac|1998}} | प्रश्न में डबल कवर विशिष्ट रूप से निम्नलिखित नियम द्वारा आइसोमोर्फिज्म तक निर्धारित होते हैं: तत्वों का रूप होता है {{mvar|±e<sub>α</sub>}} जालक सदिश के लिए {{math|''α'' ∈ Λ}} (अर्थात, एकप्रतिचित्र है {{math|Λ}} भेजना {{mvar|e<sub>α</sub>}} से α जो संकेतों को भूल जाता है), और गुणा संबंधों को संतुष्ट करता है,eαeβ = (-1)(α,β)eβeα. इसका वर्णन करने का एक और तरीका यह है कि एक भी जाली Λ दिया गया है, वहाँ एक अद्वितीय (कोबाउंड्री तक) सामान्यीकृत कोसायकल ε(α, β) है जिसमें मान ±1 ऐसा है कि (−1)(α,β) = ε(α, β) ε(β, α), जहां सामान्यीकरण की स्थिति यह है कि ε(α, 0) = ε(0, α) = 1 सभी α ∈ Λ के लिए। यह चक्र क्रम 2 के एक समूह द्वारा Λ के एक केंद्रीय विस्तार को प्रेरित करता है, और हम आधार eα (α ∈ Λ) और गुणन नियम eαeβ = ε(α, β)eα+β - के साथ एक मुड़ समूह वलय Cε[Λ] प्राप्त करते हैं - ε पर चक्रीय स्थिति अंगूठी की संबद्धता सुनिश्चित करती है।<sup>{{sfn|Kac|1998}} | ||
शीर्ष प्रचालक सबसे कम वज़न वाले सदिश से जुड़ा हुआ है {{mvar|v<sub>λ</sub>}} फॉक | शीर्ष प्रचालक सबसे कम वज़न वाले सदिश से जुड़ा हुआ है {{mvar|v<sub>λ</sub>}} फॉक स्थान में {{mvar|V<sub>λ</sub>}} है | ||
:<math>Y(v_\lambda,z) = e_\lambda :\exp \int \lambda(z): = e_\lambda z^\lambda \exp \left (\sum_{n<0} \lambda_n \frac{z^{-n}}{n} \right )\exp \left (\sum_{n>0} \lambda_n \frac{z^{-n}}{n} \right ),</math> | :<math>Y(v_\lambda,z) = e_\lambda :\exp \int \lambda(z): = e_\lambda z^\lambda \exp \left (\sum_{n<0} \lambda_n \frac{z^{-n}}{n} \right )\exp \left (\sum_{n>0} \lambda_n \frac{z^{-n}}{n} \right ),</math> | ||
कहाँ {{mvar|z<sup>λ</sup>}} रेखीय मानचित्र के लिए एक आशुलिपि है जो α-Fock स्थान के किसी भी तत्व को लेता है {{mvar|V<sub>α</sub>}} एकपदी के लिए {{math|''z''<sup>(''λ'',''α'')</sup>}}. फ़ॉक | कहाँ {{mvar|z<sup>λ</sup>}} रेखीय मानचित्र के लिए एक आशुलिपि है जो α-Fock स्थान के किसी भी तत्व को लेता है {{mvar|V<sub>α</sub>}} एकपदी के लिए {{math|''z''<sup>(''λ'',''α'')</sup>}}. फ़ॉक स्थान के अन्य तत्वों के लिए शीर्ष प्रचालक को पुनर्निर्माण द्वारा निर्धारित किया जाता है। | ||
जैसा कि मुक्त बोसोन की स्थिति में, किसी के पास सदिश स्थान के एक तत्व s द्वारा दिए गए अनुरूप सदिश का विकल्प होता है {{math|Λ ⊗ '''C'''}}, परन्तु शर्त यह है कि अतिरिक्त फॉक रिक्त स्थान में पूर्णांक एल है<sub>0</sub> eigenvalues एस की पसंद को विवश करता है: एक अलौकिक आधार के लिए {{mvar|x<sub>i</sub>}}, सदिश 1/2 x<sub>i,1</sub><sup>2</sup> + एस<sub>2</sub> संतुष्ट करना चाहिए {{math|(''s'', ''λ'') ∈ '''Z'''}} सभी के लिए λ ∈ Λ, अर्थात, s दोहरे जालक में स्थित है। | जैसा कि मुक्त बोसोन की स्थिति में, किसी के पास सदिश स्थान के एक तत्व s द्वारा दिए गए अनुरूप सदिश का विकल्प होता है {{math|Λ ⊗ '''C'''}}, परन्तु शर्त यह है कि अतिरिक्त फॉक रिक्त स्थान में पूर्णांक एल है<sub>0</sub> eigenvalues एस की पसंद को विवश करता है: एक अलौकिक आधार के लिए {{mvar|x<sub>i</sub>}}, सदिश 1/2 x<sub>i,1</sub><sup>2</sup> + एस<sub>2</sub> संतुष्ट करना चाहिए {{math|(''s'', ''λ'') ∈ '''Z'''}} सभी के लिए λ ∈ Λ, अर्थात, s दोहरे जालक में स्थित है। | ||
Line 194: | Line 192: | ||
== मापांक == | == मापांक == | ||
साधारण वलयों की प्रकार, शीर्ष बीजगणित मापांक या प्रतिनिधित्व की धारणा को स्वीकार करते हैं। अनुरूप क्षेत्र सिद्धांत में मापांक एक महत्वपूर्ण भूमिका निभाते हैं, जहां उन्हें अक्सर सेक्टर कहा जाता है। भौतिकी साहित्य में एक मानक धारणा यह है कि एक अनुरूप क्षेत्र सिद्धांत का पूर्ण [[हिल्बर्ट अंतरिक्ष]] बाएँ-चलने वाले और दाएँ-चलने वाले क्षेत्रों के | साधारण वलयों की प्रकार, शीर्ष बीजगणित मापांक या प्रतिनिधित्व की धारणा को स्वीकार करते हैं। अनुरूप क्षेत्र सिद्धांत में मापांक एक महत्वपूर्ण भूमिका निभाते हैं, जहां उन्हें अक्सर सेक्टर कहा जाता है। भौतिकी साहित्य में एक मानक धारणा यह है कि एक अनुरूप क्षेत्र सिद्धांत का पूर्ण [[हिल्बर्ट अंतरिक्ष]] बाएँ-चलने वाले और दाएँ-चलने वाले क्षेत्रों के प्रदिश उत्पादों के योग में विघटित हो जाता है: | ||
:<math>\mathcal{H} \cong \bigoplus_{i \in I} M_i \otimes \overline{M_i}</math> | :<math>\mathcal{H} \cong \bigoplus_{i \in I} M_i \otimes \overline{M_i}</math> | ||
Line 211: | Line 209: | ||
:<math>z^{-1}\delta\left(\frac{y-x}{z}\right)Y^M(u,x)Y^M(v,y)w - z^{-1}\delta\left(\frac{-y+x}{z}\right)Y^M(v,y)Y^M(u,x)w = y^{-1}\delta\left(\frac{x+z}{y}\right)Y^M(Y(u,z)v,y)w.</math> | :<math>z^{-1}\delta\left(\frac{y-x}{z}\right)Y^M(u,x)Y^M(v,y)w - z^{-1}\delta\left(\frac{-y+x}{z}\right)Y^M(v,y)Y^M(u,x)w = y^{-1}\delta\left(\frac{x+z}{y}\right)Y^M(Y(u,z)v,y)w.</math> | ||
शीर्ष बीजगणित के मापांक एक [[एबेलियन श्रेणी]] बनाते हैं। शीर्ष प्रचालक बीजगणित के साथ काम करते समय, पिछली परिभाषा को [[कमजोर मॉड्यूल|कमजोर मापांक]] नाम दिया गया है, और अतिरिक्त स्थिति को पूर्ण करने के लिए वी-मापांक की आवश्यकता होती है जो एल<sub>0</sub> ज़ेड के प्रत्येक सहसमुच्चय में नीचे परिमित-आयामी | शीर्ष बीजगणित के मापांक एक [[एबेलियन श्रेणी]] बनाते हैं। शीर्ष प्रचालक बीजगणित के साथ काम करते समय, पिछली परिभाषा को [[कमजोर मॉड्यूल|कमजोर मापांक]] नाम दिया गया है, और अतिरिक्त स्थिति को पूर्ण करने के लिए वी-मापांक की आवश्यकता होती है जो एल<sub>0</sub> ज़ेड के प्रत्येक सहसमुच्चय में नीचे परिमित-आयामी आइगेनस्थान और ईजेनवैल्यूज़ के साथ सेमीसिंपली कार्य करता है। हुआंग, लेपोव्स्की, मियामोटो और झांग के कार्य{{citation needed|date=January 2023}} ने व्यापकता के विभिन्न स्तरों पर दिखाया है कि शीर्ष प्रचालक बीजगणित के मापांक एक फ्यूजन प्रदिश उत्पाद संचालन को स्वीकार करते हैं, और एक [[ब्रेडेड टेंसर श्रेणी|ब्रेडेड प्रदिश श्रेणी]] बनाते हैं। | ||
जब वी-मापांक की [[श्रेणी (गणित)]] सूक्ष्म रूप से अनेक अलघुकरणीय वस्तुओं के साथ अर्ध-सरल होती है, तो शीर्ष प्रचालक बीजगणित वी को तर्कसंगत कहा जाता है। तर्कसंगत शीर्ष प्रचालक बीजगणित एक अतिरिक्त परिमितता परिकल्पना को संतुष्ट करता है (झू के सी के रूप में जाना जाता है<sub>2</sub>-संबद्धता की स्थिति) विशेष रूप से अच्छी प्रकार से व्यवहार करने के लिए जाने जाते हैं, और नियमित कहलाते हैं। उदाहरण के लिए, झू के 1996 के मापांकर इनवेरिएंस प्रमेय का दावा है कि नियमित वीओए के मापांक के वर्ण एसएल के सदिश-मूल्यवान प्रतिनिधित्व का निर्माण करते हैं।<sub>2</sub>(जेड)। विशेष रूप से, यदि कोई VOA ''होलोमॉर्फिक'' है, अर्थात इसकी प्रतिनिधित्व श्रेणी सदिश रिक्त स्थान के समान है, तो इसका विभाजन कार्य ''SL'' है<sub>2</sub>(जेड) - एक स्थिर तक अपरिवर्तनीय। हुआंग ने दिखाया कि एक नियमित वीओए के मापांक की श्रेणी एक मापांकर | जब वी-मापांक की [[श्रेणी (गणित)]] सूक्ष्म रूप से अनेक अलघुकरणीय वस्तुओं के साथ अर्ध-सरल होती है, तो शीर्ष प्रचालक बीजगणित वी को तर्कसंगत कहा जाता है। तर्कसंगत शीर्ष प्रचालक बीजगणित एक अतिरिक्त परिमितता परिकल्पना को संतुष्ट करता है (झू के सी के रूप में जाना जाता है<sub>2</sub>-संबद्धता की स्थिति) विशेष रूप से अच्छी प्रकार से व्यवहार करने के लिए जाने जाते हैं, और नियमित कहलाते हैं। उदाहरण के लिए, झू के 1996 के मापांकर इनवेरिएंस प्रमेय का दावा है कि नियमित वीओए के मापांक के वर्ण एसएल के सदिश-मूल्यवान प्रतिनिधित्व का निर्माण करते हैं।<sub>2</sub>(जेड)। विशेष रूप से, यदि कोई VOA ''होलोमॉर्फिक'' है, अर्थात इसकी प्रतिनिधित्व श्रेणी सदिश रिक्त स्थान के समान है, तो इसका विभाजन कार्य ''SL'' है<sub>2</sub>(जेड) - एक स्थिर तक अपरिवर्तनीय। हुआंग ने दिखाया कि एक नियमित वीओए के मापांक की श्रेणी एक मापांकर प्रदिश श्रेणी है, और इसके संलयन नियम [[वर्लिंडे सूत्र]] को संतुष्ट करते हैं। | ||
हमारे पहले उदाहरण से जुड़ने के लिए, श्रेणी 1 फ्री बोसोन के इरेड्यूसिबल मापांक फॉक | हमारे पहले उदाहरण से जुड़ने के लिए, श्रेणी 1 फ्री बोसोन के इरेड्यूसिबल मापांक फॉक स्थान ''वी'' द्वारा दिए गए हैं।<sub>λ</sub> कुछ निश्चित गति के साथ λ, अर्थात हाइजेनबर्ग लाइ बीजगणित के प्रेरित प्रतिनिधित्व, जहां तत्व बी<sub>0</sub> λ द्वारा अदिश गुणन द्वारा कार्य करता है। अंतरिक्ष को C[''x'' के रूप में लिखा जा सकता है<sub>1</sub>,एक्स<sub>2</sub>,...]में<sub>λ</sub>, जहां वि<sub>λ</sub> एक विशिष्ट भू-राज्य सदिश है। मापांक श्रेणी अर्ध-सरल नहीं है, क्योंकि कोई एबेलियन लाइ बीजगणित के प्रतिनिधित्व को प्रेरित कर सकता है जहां बी<sub>0</sub> एक गैर-तुच्छ [[जॉर्डन ब्लॉक]] द्वारा कार्य करता है। श्रेणी एन फ्री बोसोन के लिए, एक इरेड्यूसिबल मापांक वी है<sub>λ</sub> जटिल एन-आयामी अंतरिक्ष में प्रत्येक सदिश λ के लिए। प्रत्येक सदिश b ∈ 'C'<sup>n</sup> से प्रचालक b प्राप्त होता है<sub>0</sub>, और फॉक स्थान वी<sub>λ</sub> संपत्ति से अलग है कि प्रत्येक ऐसे बी<sub>0</sub> आंतरिक उत्पाद (बी, λ) द्वारा अदिश गुणन के रूप में कार्य करता है। | ||
साधारण वलयो के विपरीत, शीर्ष बीजगणित एक ऑटोमोर्फिज्म से संलग्न मुड़े हुए मापांक की धारणा को स्वीकार करते हैं। आदेश N के एक ऑटोमोर्फिज़्म σ के लिए, क्रिया का रूप V ⊗ M → M((z<sup>1/N</sup>)), निम्नलिखित [[मोनोड्रोमी]] स्थिति के साथ: यदि u ∈ V संतुष्ट करता है σ u = exp(2πik/N)u, तो u<sub>n</sub> = 0 जब तक n n+k/N ∈ 'Z' को संतुष्ट नहीं करता है (विशेषज्ञों के मध्य संकेतों के बारे में कुछ असहमति है)। ज्यामितीय रूप से, मुड़े हुए मापांक को बीजगणितीय वक्र पर शाखा बिंदुओं से जोड़ा जा सकता है, जिसमें रामिफिकेशन (गणित) [[गैलोज़ कवर]] होता है। अनुरूप क्षेत्र सिद्धांत साहित्य में, मुड़े हुए मापांक को [[मुड़ क्षेत्र]] कहा जाता है, और [[orbifold]] पर स्ट्वलय सिद्धांत से घनिष्ठ रूप से जुड़ा हुआ है। | साधारण वलयो के विपरीत, शीर्ष बीजगणित एक ऑटोमोर्फिज्म से संलग्न मुड़े हुए मापांक की धारणा को स्वीकार करते हैं। आदेश N के एक ऑटोमोर्फिज़्म σ के लिए, क्रिया का रूप V ⊗ M → M((z<sup>1/N</sup>)), निम्नलिखित [[मोनोड्रोमी]] स्थिति के साथ: यदि u ∈ V संतुष्ट करता है σ u = exp(2πik/N)u, तो u<sub>n</sub> = 0 जब तक n n+k/N ∈ 'Z' को संतुष्ट नहीं करता है (विशेषज्ञों के मध्य संकेतों के बारे में कुछ असहमति है)। ज्यामितीय रूप से, मुड़े हुए मापांक को बीजगणितीय वक्र पर शाखा बिंदुओं से जोड़ा जा सकता है, जिसमें रामिफिकेशन (गणित) [[गैलोज़ कवर]] होता है। अनुरूप क्षेत्र सिद्धांत साहित्य में, मुड़े हुए मापांक को [[मुड़ क्षेत्र]] कहा जाता है, और [[orbifold]] पर स्ट्वलय सिद्धांत से घनिष्ठ रूप से जुड़ा हुआ है। | ||
== शीर्ष प्रचालक सुपरलेजेब्रस == | == शीर्ष प्रचालक सुपरलेजेब्रस == | ||
अंतर्निहित सदिश स्थान को एक | अंतर्निहित सदिश स्थान को एक सुपरस्थान (अर्थात, एक Z/2Z-वर्गीकृत सदिश स्थान) होने की अनुमति देकर <math> V=V_+\oplus V_-</math>) एक शीर्ष बीजगणित के रूप में एक ही आँकड़े द्वारा एक शीर्ष सुपरलेजेब्रा को परिभाषित किया जा सकता है, जिसमें वी में 1 है<sub>+</sub> और टी एक भी प्रचालक। स्वयंसिद्ध अनिवार्य रूप से समान हैं, परन्तु स्थानीयता स्वयंसिद्ध, या समकक्ष योगों में से एक में उपयुक्त संकेतों को सम्मिलित करना चाहिए। अर्थात्, यदि a और b सजातीय हैं, तो Y(a,z)Y(b,w) की तुलना εY(b,w)Y(a,z) से की जाती है, जहां ε -1 है यदि a और b दोनों विषम हैं और 1 अन्यथा। यदि इसके अतिरिक्त V के सम भाग में एक विरासोरो तत्व ω है<sub>2</sub>, और सामान्य ग्रेडिंग प्रतिबंध संतुष्ट हैं, तो V को शीर्ष प्रचालक सुपरलेजेब्रा कहा जाता है। | ||
सबसे सरल उदाहरणों में से एक एकल मुक्त फ़र्मियन ψ द्वारा उत्पन्न शीर्ष प्रचालक सुपरलेजेब्रा है। विरासोरो प्रतिनिधित्व के रूप में, इसका केंद्रीय प्रभार 1/2 है, और सबसे कम वजन 0 और 1/2 के ईज़िंग मापांक के प्रत्यक्ष योग के रूप में विघटित होता है। कोई इसे द्विघात स्थान टी पर क्लिफर्ड बीजगणित के स्पिन प्रतिनिधित्व के रूप में भी वर्णित कर सकता है<sup>1/2</sup>सी[''टी'',''टी''<sup>-1</sup>](दिनांक)<sup>1/2</sup> अवशेष पेयवलय के साथ। शीर्ष प्रचालक सुपरलेजेब्रा पूर्णसममितिक है, इस अर्थ में कि सभी मापांक स्वयं के प्रत्यक्ष योग हैं, अर्थात, मापांक श्रेणी सदिश रिक्त स्थान की श्रेणी के समान है। | सबसे सरल उदाहरणों में से एक एकल मुक्त फ़र्मियन ψ द्वारा उत्पन्न शीर्ष प्रचालक सुपरलेजेब्रा है। विरासोरो प्रतिनिधित्व के रूप में, इसका केंद्रीय प्रभार 1/2 है, और सबसे कम वजन 0 और 1/2 के ईज़िंग मापांक के प्रत्यक्ष योग के रूप में विघटित होता है। कोई इसे द्विघात स्थान टी पर क्लिफर्ड बीजगणित के स्पिन प्रतिनिधित्व के रूप में भी वर्णित कर सकता है<sup>1/2</sup>सी[''टी'',''टी''<sup>-1</sup>](दिनांक)<sup>1/2</sup> अवशेष पेयवलय के साथ। शीर्ष प्रचालक सुपरलेजेब्रा पूर्णसममितिक है, इस अर्थ में कि सभी मापांक स्वयं के प्रत्यक्ष योग हैं, अर्थात, मापांक श्रेणी सदिश रिक्त स्थान की श्रेणी के समान है। | ||
मुक्त फ़र्मियन के | मुक्त फ़र्मियन के प्रदिश वर्ग को मुक्त आवेशित फ़र्मियन कहा जाता है, और बोसोन-फ़र्मियन पत्राचार द्वारा, यह विषम जालक Z से संलग्न जालक शीर्ष सुपरलेजेब्रा के लिए आइसोमोर्फिक है।{{sfn|Kac|1998}} इस पत्राचार का उपयोग डेट-जिंबो-काशीवारा-मिवा द्वारा गैर-रैखिक पीडीई के [[केपी पदानुक्रम]] के लिए [[सॉलिटन]] समाधान बनाने के लिए किया गया है। | ||
== सुपरकॉन्फॉर्मल संरचनाएं == | == सुपरकॉन्फॉर्मल संरचनाएं == | ||
वीरासोरो बीजगणित में कुछ [[सुपरसिमेट्री]] है जो स्वाभाविक रूप से [[सुपरकॉन्फॉर्मल फील्ड थ्योरी|सुपरकॉन्फॉर्मल क्षेत्र थ्योरी]] और [[ सुपरस्ट्रिंग सिद्धांत | सुपरस्ट्वलय सिद्धांत]] में दिखाई देती है। N=1, 2, और 4 [[सुपरकॉन्फॉर्मल बीजगणित]] का विशेष महत्व है। | वीरासोरो बीजगणित में कुछ [[सुपरसिमेट्री]] है जो स्वाभाविक रूप से [[सुपरकॉन्फॉर्मल फील्ड थ्योरी|सुपरकॉन्फॉर्मल क्षेत्र थ्योरी]] और [[ सुपरस्ट्रिंग सिद्धांत | सुपरस्ट्वलय सिद्धांत]] में दिखाई देती है। N=1, 2, और 4 [[सुपरकॉन्फॉर्मल बीजगणित]] का विशेष महत्व है। | ||
एक [[ supercurve ]] का इनफिनिटिमल होलोमॉर्फिक सुपरकॉन्फॉर्मल ट्रांसफॉर्मेशन (एक समान स्थानीय निर्देशांक z और N विषम स्थानीय निर्देशांक θ के साथ)<sub>1</sub>,...,मैं<sub>N</sub>) एक सुपर-स्ट्रेस-एनर्जी | एक [[ supercurve ]] का इनफिनिटिमल होलोमॉर्फिक सुपरकॉन्फॉर्मल ट्रांसफॉर्मेशन (एक समान स्थानीय निर्देशांक z और N विषम स्थानीय निर्देशांक θ के साथ)<sub>1</sub>,...,मैं<sub>N</sub>) एक सुपर-स्ट्रेस-एनर्जी प्रदिश टी (z, θ) के गुणांक द्वारा उत्पन्न होते हैं<sub>1</sub>, ..., मैं<sub>N</sub>). | ||
जब ''N''=1, टी में विरासोरो क्षेत्र ''L''(''z'') द्वारा दिया गया अजीब हिस्सा होता है, और यहां तक कि एक क्षेत्र द्वारा दिया गया हिस्सा भी होता है | जब ''N''=1, टी में विरासोरो क्षेत्र ''L''(''z'') द्वारा दिया गया अजीब हिस्सा होता है, और यहां तक कि एक क्षेत्र द्वारा दिया गया हिस्सा भी होता है | ||
Line 255: | Line 253: | ||
== अतिरिक्त निर्माण == | == अतिरिक्त निर्माण == | ||
* नियत बिन्दु उप-बीजगणितीय: एक शीर्ष प्रचालक बीजगणित पर समरूपता समूह की एक क्रिया को देखते हुए, फिक्स्ड सदिश का उप-बीजगणितीय भी एक शीर्ष प्रचालक बीजगणित है। 2013 में, मियामोटो ने प्रतिपादित किया कि दो महत्वपूर्ण परिमित गुण, अर्थात् झू की स्थिति सी<sub>2</sub> और नियमितता, परिमित हल करने योग्य समूह क्रियाओं के तहत निश्चित बिंदुओं को लेते समय संरक्षित किया जाता है। | * नियत बिन्दु उप-बीजगणितीय: एक शीर्ष प्रचालक बीजगणित पर समरूपता समूह की एक क्रिया को देखते हुए, फिक्स्ड सदिश का उप-बीजगणितीय भी एक शीर्ष प्रचालक बीजगणित है। 2013 में, मियामोटो ने प्रतिपादित किया कि दो महत्वपूर्ण परिमित गुण, अर्थात् झू की स्थिति सी<sub>2</sub> और नियमितता, परिमित हल करने योग्य समूह क्रियाओं के तहत निश्चित बिंदुओं को लेते समय संरक्षित किया जाता है। | ||
* वर्तमान विस्तार: एक शीर्ष प्रचालक बीजगणित और इंटीग्रल कन्फर्मल वेट के कुछ मापांक दिए गए हैं, कोई भी अनुकूल परिस्थितियों में प्रत्यक्ष योग पर एक शीर्ष प्रचालक बीजगणित संरचना का वर्णन कर सकता है। जालक शीर्ष बीजगणित इसका एक मानक उदाहरण है। उदाहरणों का एक अन्य परिवार वीओए तैयार किया जाता है, जो ईज़िंग प्रतिरूप के | * वर्तमान विस्तार: एक शीर्ष प्रचालक बीजगणित और इंटीग्रल कन्फर्मल वेट के कुछ मापांक दिए गए हैं, कोई भी अनुकूल परिस्थितियों में प्रत्यक्ष योग पर एक शीर्ष प्रचालक बीजगणित संरचना का वर्णन कर सकता है। जालक शीर्ष बीजगणित इसका एक मानक उदाहरण है। उदाहरणों का एक अन्य परिवार वीओए तैयार किया जाता है, जो ईज़िंग प्रतिरूप के प्रदिश उत्पादों से प्रारंभ होता है, और ऐसे मापांक जोड़ता है जो उपयुक्त रूप से कोड के अनुरूप होते हैं। | ||
* ऑर्बिफोल्ड्स: एक पूर्णसममितिक वीओए पर कार्य करने वाले एक परिमित चक्रीय समूह को देखते हुए, यह अनुमान लगाया जाता है कि एक दूसरे पूर्णसममितिक वीओए का निर्माण इरेड्यूसिबल ट्विस्टेड मापांक से जुड़कर और एक प्रेरित ऑटोमोर्फिज्म के तहत निश्चित बिंदुओं को लेकर कर सकता है, जब तक कि ट्विस्टेड मापांक में उपयुक्त अनुरूप वजन हो। यह विशेष मामलों में सच माना जाता है, उदाहरण के लिए, जालक वीओएएस पर अभिनय करने वाले अधिकतम 3 आदेशों के समूह। | * ऑर्बिफोल्ड्स: एक पूर्णसममितिक वीओए पर कार्य करने वाले एक परिमित चक्रीय समूह को देखते हुए, यह अनुमान लगाया जाता है कि एक दूसरे पूर्णसममितिक वीओए का निर्माण इरेड्यूसिबल ट्विस्टेड मापांक से जुड़कर और एक प्रेरित ऑटोमोर्फिज्म के तहत निश्चित बिंदुओं को लेकर कर सकता है, जब तक कि ट्विस्टेड मापांक में उपयुक्त अनुरूप वजन हो। यह विशेष मामलों में सच माना जाता है, उदाहरण के लिए, जालक वीओएएस पर अभिनय करने वाले अधिकतम 3 आदेशों के समूह। | ||
* सह समुच्चय निर्माण (गोडार्ड, केंट, और ओलिव के कारण): केंद्रीय आवेश c के शीर्ष प्रचालक बीजगणित V और सदिश के एक व्यवस्थित S को देखते हुए, कम्यूटेंट C (V, S) को सदिश v के उप-स्थान के रूप में परिभाषित किया जा सकता है। S से आने वाले सभी क्षेत्रों के साथ सख्ती से परिवर्तन करें, जैसे कि Y(s,z)<nowiki></nowiki>v<nowiki></nowiki> ∈ Vz सभी s ∈ S के लिए। यह एक शीर्ष निकला Subalgebra, Y, T, और V से विरासत में मिली अभिज्ञान के साथ और यदि S केंद्रीय आवेश c का VOA है<sub>S</sub>, कम्यूटेंट केंद्रीय चार्ज c-c का VOA है<sub>S</sub>. उदाहरण के लिए, स्तर k+1 पर SU(2) को दो SU(2) बीजगणित के | * सह समुच्चय निर्माण (गोडार्ड, केंट, और ओलिव के कारण): केंद्रीय आवेश c के शीर्ष प्रचालक बीजगणित V और सदिश के एक व्यवस्थित S को देखते हुए, कम्यूटेंट C (V, S) को सदिश v के उप-स्थान के रूप में परिभाषित किया जा सकता है। S से आने वाले सभी क्षेत्रों के साथ सख्ती से परिवर्तन करें, जैसे कि Y(s,z)<nowiki></nowiki>v<nowiki></nowiki> ∈ Vz सभी s ∈ S के लिए। यह एक शीर्ष निकला Subalgebra, Y, T, और V से विरासत में मिली अभिज्ञान के साथ और यदि S केंद्रीय आवेश c का VOA है<sub>S</sub>, कम्यूटेंट केंद्रीय चार्ज c-c का VOA है<sub>S</sub>. उदाहरण के लिए, स्तर k+1 पर SU(2) को दो SU(2) बीजगणित के प्रदिश उत्पाद में k और 1 के स्तर पर एम्बेड करने से p=k+2, q=k+3, और के साथ विरासोरो असतत श्रृंखला प्राप्त होती है। इसका उपयोग 1980 के दशक में उनके अस्तित्व को प्रतिपादित करने के लिए किया गया था। फिर से SU(2) के साथ, स्तर k+2 को स्तर k और स्तर 2 के प्रदिश उत्पाद में एम्बेड करने से N=1 सुपरकॉन्फॉर्मल असतत श्रृंखला प्राप्त होती है। | ||
* बीआरएसटी न्यूनीकरण: किसी भी डिग्री 1 सदिश v संतोषजनक v के लिए<sub>0</sub><sup>2</sup>=0, इस प्रचालक की कोहोलॉजी में ग्रेडेड शीर्ष सुपरएलजेब्रा संरचना है। अधिक सामान्यतः, कोई भी वजन 1 क्षेत्र का उपयोग कर सकता है जिसका अवशेष वर्ग शून्य है। सामान्य विधि फ़र्मियन के साथ | * बीआरएसटी न्यूनीकरण: किसी भी डिग्री 1 सदिश v संतोषजनक v के लिए<sub>0</sub><sup>2</sup>=0, इस प्रचालक की कोहोलॉजी में ग्रेडेड शीर्ष सुपरएलजेब्रा संरचना है। अधिक सामान्यतः, कोई भी वजन 1 क्षेत्र का उपयोग कर सकता है जिसका अवशेष वर्ग शून्य है। सामान्य विधि फ़र्मियन के साथ प्रदिश है, क्योंकि तब एक में एक विहित अंतर होता है। एक महत्वपूर्ण विशेष मामला क्वांटम ड्रिनफेल्ड-सोकोलोव रिडक्शन है जो एफिन केएसी-मूडी बीजगणित पर आवेदन होता है ताकि एफाइन डब्ल्यू-बीजगणितीय को डिग्री 0 कोहोलॉजी के रूप में प्राप्त किया जा सके। ये डब्ल्यू बीजगणित भी स्क्रीनिंग प्रचालकों के गुठली द्वारा दिए गए मुक्त बोसोन के शीर्ष सबलजेब्रस के रूप में निर्माण को स्वीकार करते हैं। | ||
== संबंधित बीजगणितीय संरचनाएं == | == संबंधित बीजगणितीय संरचनाएं == | ||
* यदि कोई शीर्ष बीजगणित में ओपीई के केवल एकवचन भाग पर विचार करता है, तो वह लाई कंफर्मल बीजगणित की परिभाषा पर पहुंचता है। चूंकि अक्सर ओपीई के एकवचन भाग के साथ ही संबंध होता है, यह लाई अनुरूप बीजगणित को अध्ययन करने के लिए एक प्राकृतिक वस्तु बनाता है। ओपीई के नियमित भाग को भूलने वाले शीर्ष बीजगणितीय से [[झूठ अनुरूप बीजगणित]] तक एक फ़ैक्टर है, और इसमें एक बायां जोड़ है, जिसे यूनिवर्सल शीर्ष बीजगणितीय फ़ंक्टर कहा जाता है। | * यदि कोई शीर्ष बीजगणित में ओपीई के केवल एकवचन भाग पर विचार करता है, तो वह लाई कंफर्मल बीजगणित की परिभाषा पर पहुंचता है। चूंकि अक्सर ओपीई के एकवचन भाग के साथ ही संबंध होता है, यह लाई अनुरूप बीजगणित को अध्ययन करने के लिए एक प्राकृतिक वस्तु बनाता है। ओपीई के नियमित भाग को भूलने वाले शीर्ष बीजगणितीय से [[झूठ अनुरूप बीजगणित]] तक एक फ़ैक्टर है, और इसमें एक बायां जोड़ है, जिसे यूनिवर्सल शीर्ष बीजगणितीय फ़ंक्टर कहा जाता है। संबंध के एसी-मूडी बीजगणित और विरासोरो शीर्ष बीजगणित के वैक्यूम मापांक सार्वभौमिक शीर्ष बीजगणित हैं, और विशेष रूप से, पृष्ठभूमि सिद्धांत विकसित होने के बाद उन्हें बहुत संक्षेप में वर्णित किया जा सकता है। | ||
* साहित्य में शीर्ष बीजगणित की धारणा के अनेक सामान्यीकरण हैं। कुछ हल्के सामान्यीकरणों में मोनोड्रोमी की अनुमति देने के लिए इलाके के स्वयंसिद्ध को कमजोर करना सम्मिलित है, उदाहरण के लिए, डोंग और लेपोव्स्की के एबेलियन इंटरवेटिंग बीजगणित। मोटे तौर पर ग्रेडेड सदिश रिक्त स्थान के ब्रेडेड | * साहित्य में शीर्ष बीजगणित की धारणा के अनेक सामान्यीकरण हैं। कुछ हल्के सामान्यीकरणों में मोनोड्रोमी की अनुमति देने के लिए इलाके के स्वयंसिद्ध को कमजोर करना सम्मिलित है, उदाहरण के लिए, डोंग और लेपोव्स्की के एबेलियन इंटरवेटिंग बीजगणित। मोटे तौर पर ग्रेडेड सदिश रिक्त स्थान के ब्रेडेड प्रदिश श्रेणी में शीर्ष बीजगणित वस्तुओं के रूप में देखा जा सकता है, ठीक उसी प्रकार जैसे सुपर सदिश रिक्त स्थान की श्रेणी में एक शीर्ष सुपरलेजेब्रा ऐसी वस्तु है। अधिक जटिल सामान्यीकरण क्यू-विरूपण और क्वांटम समूहों के प्रतिनिधित्व से संबंधित हैं, जैसे कि फ्रेनकेल-रेशेतिखिन, ईटिंगोफ़-काज़दान और ली के काम में। | ||
* बेइलिन्सन और ड्रिनफेल्ड ने चिरल बीजगणित की एक शीफ-सैद्धांतिक धारणा प्रस्तुत की जो शीर्ष बीजगणित की धारणा से निकटता से संबंधित है, परन्तु किसी भी दृश्य शक्ति श्रृंखला का उपयोग किए बिना परिभाषित किया गया है। एक [[बीजगणितीय वक्र]] X को देखते हुए, X पर एक चिरल बीजगणित एक D है<sub>X</sub>-मापांक ए एक गुणन ऑपरेशन से लैस है <math>j_*j^*(A \boxtimes A) \to \Delta_* A</math> X×X पर जो एक साहचर्य शर्त को संतुष्ट करता है। उन्होंने गुणनखंड बीजगणित की एक समतुल्य धारणा भी प्रस्तुत की जो कि वक्र के सभी परिमित उत्पादों पर क्वासिकोहेरेंट शेवों की एक प्रणाली है, साथ में एक अनुकूलता की स्थिति जिसमें विभिन्न विकर्णों के पूरक के लिए पुलबैक सम्मिलित हैं। एफिन लाइन पर किसी भी अनुवाद-समतुल्य चिरल बीजगणित को एक बिंदु पर फाइबर ले कर शीर्ष बीजगणित के साथ अभिज्ञाना जा सकता है, और किसी भी शीर्ष प्रचालक बीजगणित को चिकनी बीजगणितीय वक्र पर चिरल बीजगणित संलग्न करने का एक प्राकृतिक तरीका है। | * बेइलिन्सन और ड्रिनफेल्ड ने चिरल बीजगणित की एक शीफ-सैद्धांतिक धारणा प्रस्तुत की जो शीर्ष बीजगणित की धारणा से निकटता से संबंधित है, परन्तु किसी भी दृश्य शक्ति श्रृंखला का उपयोग किए बिना परिभाषित किया गया है। एक [[बीजगणितीय वक्र]] X को देखते हुए, X पर एक चिरल बीजगणित एक D है<sub>X</sub>-मापांक ए एक गुणन ऑपरेशन से लैस है <math>j_*j^*(A \boxtimes A) \to \Delta_* A</math> X×X पर जो एक साहचर्य शर्त को संतुष्ट करता है। उन्होंने गुणनखंड बीजगणित की एक समतुल्य धारणा भी प्रस्तुत की जो कि वक्र के सभी परिमित उत्पादों पर क्वासिकोहेरेंट शेवों की एक प्रणाली है, साथ में एक अनुकूलता की स्थिति जिसमें विभिन्न विकर्णों के पूरक के लिए पुलबैक सम्मिलित हैं। एफिन लाइन पर किसी भी अनुवाद-समतुल्य चिरल बीजगणित को एक बिंदु पर फाइबर ले कर शीर्ष बीजगणित के साथ अभिज्ञाना जा सकता है, और किसी भी शीर्ष प्रचालक बीजगणित को चिकनी बीजगणितीय वक्र पर चिरल बीजगणित संलग्न करने का एक प्राकृतिक तरीका है। | ||
Revision as of 07:22, 6 March 2023
String theory |
---|
Fundamental objects |
Perturbative theory |
Non-perturbative results |
Phenomenology |
Mathematics |
गणित में, शीर्ष प्रचालक बीजगणित (VOA) एक बीजगणितीय संरचना है जो द्वि-आयामी अनुरूप क्षेत्र सिद्धांत और स्ट्वलय सिद्धांत में महत्वपूर्ण भूमिका निभाता है। भौतिक अनुप्रयोगों के अतिरिक्त, शीर्ष प्रचालक बीजगणित विशुद्ध रूप से गणितीय संदर्भों जैसे अपरूप कल्पना और ज्यामितीय लैंगलैंड पत्राचार में उपयोगी प्रतिपादित हुए हैं।
शीर्ष बीजगणित से संबंधित धारणा 1986 में रिचर्ड बोरचर्ड्स द्वारा प्रस्तुत की गई थी, जो इगोर फ्रेनकेल के कारण एक अनंत-आयामी लाई बीजगणित के निर्माण से प्रेरित थी। इस निर्माण के समय, एक फॉक स्थान नियोजित करता है जो जालक सदिश से संलग्न शीर्ष प्रचालकों की कार्यकलाप को स्वीकार करता है। बोरचर्ड्स ने शीर्ष बीजगणित की धारणा को जालक शीर्ष प्रचालकों के मध्य संबंधों को स्वयंसिद्ध करके उद्यत किया, एक बीजगणितीय संरचना का निर्माण किया जो फ्रेनकेल की विधि का पालन करके नए ले बीजगणित का निर्माण करने की अनुमति देता है।
शीर्ष प्रचालक बीजगणित की धारणा को शीर्ष बीजगणित की धारणा के एक संशोधन के रूप में प्रस्तुत किया गया था, 1988 में फ्श्रेणीेल, जेम्स लेपोव्स्की और अर्ने म्योरमैन द्वारा के निर्माण के लिए उनकी परियोजना के भाग के रूप में, उन्होंने देखा कि प्रकृति में दिखाई देने वाले अनेक शीर्ष बीजगणितों में एक उपयोगी अतिरिक्त संरचना (विरासोरो बीजगणित की एक क्रिया) होती है, और एक ऊर्जा प्रचालक के संबंध में एक संपत्ति के नीचे बाध्य को संतुष्ट करती है। इस अवलोकन से प्रेरित होकर, उन्होंने वीरासोरो क्रिया और संपत्ति के नीचे बाध्य को स्वयंसिद्धि के रूप में जोड़ा था।
अब हमारे पास भौतिकी से इन धारणाओं के लिए पोस्ट-हॉक प्रेरणा है, साथ में स्वयंसिद्धों की अनेक व्याख्याएं हैं जो प्रारंभ में ज्ञात नहीं थीं। शारीरिक रूप से, द्वि-आयामी अनुरूप क्षेत्र सिद्धांत में पूर्णसममितिक क्षेत्र सम्मिलन से उत्पन्न होने वाले शीर्ष प्रचालक सम्मिलन टकराने पर प्रचालक उत्पाद विस्तार को स्वीकार करते हैं, और ये शीर्ष प्रचालक बीजगणित की परिभाषा में निर्दिष्ट संबंधों को सटीक रूप से संतुष्ट करते हैं। वास्तव में, शीर्ष प्रचालक बीजगणित के सिद्धांत एक औपचारिक बीजगणितीय व्याख्या हैं, जिसे भौतिक विज्ञानी चिरल बीजगणित, या चिरल समरूपता के बीजगणित कहते हैं, जहां ये समरूपता एक दिए गए अनुरूप क्षेत्र सिद्धांत द्वारा संतुष्ट प्रतिपाल्य अभिज्ञान का वर्णन करती है, जिसमें अनुरूप आक्रमण भी सम्मिलित है। शीर्ष बीजगणित के स्वयंसिद्धों के अन्य योगों में बोरचर्ड्स का बाद में एकवचन क्रमविनिमेय वलयो पर किया गया कार्य, हुआंग, क्रिज़ और अन्य द्वारा प्रारंभ किए गए वक्र पर कुछ संकार्य पर बीजगणित, और डी-मापांक सैद्धांतिक वस्तुएं जिन्हें चिरल बीजगणित कहा जाता है,जिन्हें अलेक्जेंडर बीलिन्सन और व्लादिमीर ड्रिनफेल्ड द्वारा प्रस्तुत किया गया। संबंधित होने पर, ये चिराल बीजगणित भौतिकविदों द्वारा उपयोग किए जाने वाले समान नाम वाली वस्तुओं के समान नहीं हैं।
शीर्ष प्रचालक बीजगणित के महत्वपूर्ण आधारभूत उदाहरणों में जालक वीओएएस (प्रतिरूपण जालक अनुरूप क्षेत्र सिद्धांत), संबंध काक-मूडी बीजगणित (वेस-ज़ुमिनो-विटन प्रतिरूप से) के प्रतिनिधित्व द्वारा दिए गए वीओएएस, विरासोरो वीओएएस (अर्थात, वीओएएस प्रतिनिधित्व के अनुरूप) सम्मिलित हैं,और कल्पना मापांक V♮, जो अपने भीमकाय समरूपता से भिन्न है। ज्यामितीय प्रतिनिधित्व सिद्धांत और गणितीय भौतिकी में अधिक परिष्कृत उदाहरण जैसे कि संबंध डब्ल्यू-बीजगणितीय और जटिल बहुविध पर चिराल डी रम परिसर उत्पन्न होते हैं।
औपचारिक परिभाषा
शीर्ष बीजगणित
एक शीर्ष बीजगणित आँकड़े का एक संग्रह है जो कुछ स्वयंसिद्धों को संतुष्ट करता है।
आँकड़े
- एक सदिश स्थल , राज्यों का स्थान कहा जाता है। अंतर्निहित क्षेत्र को सामान्यतः जटिल संख्या के रूप में लिया जाता है, हालांकि बोरचर्ड्स के मूल सूत्रीकरण को यादृच्छिक माध्यम से क्रमविनिमेय वलयो के लिए अनुमति दी जाती है।
- एक अभिज्ञान तत्व , या एक निर्वात स्थिति इंगित करने के लिए कभी-कभी लिखा जाता है।
- एक एंडोमोर्फिज्म , "अनुवाद" कहा जाता है। (बोरचर्ड्स के मूल सूत्रीकरण में विभाजित शक्तियों की एक प्रणाली सम्मिलित थी , क्योंकि उन्होंने यह नहीं माना था कि तलस्थ वलय विभाज्य है।)
- एक रैखिक गुणन मानचित्र , जहां में गुणांकों के साथ सभी औपचारिक लॉरेंट श्रृंखला का स्थान है। यह संरचना वैकल्पिक रूप से द्विरैखिक उत्पादों के अनंत संग्रह के रूप में प्रस्तुत की जाती है , या वाम गुणन मानचित्र के रूप में , जिसे राज्य-क्षेत्र पत्राचार कहा जाता है। प्रत्येक के लिए , प्रचालक-मूल्यवान औपचारिक वितरण शीर्ष प्रचालक या क्षेत्र (शून्य पर डाला गया) कहा जाता है, और इसका गुणांक संचालिका है, गुणन के लिए मानक अंकन है
सिद्धांत
निम्नलिखित स्वयंसिद्धों को पूर्ण करने के लिए इन आंकड़ों की आवश्यकता होती है:
- अभिज्ञान, अन्य के लिए और होती है।
- अनुवाद, , और किसी के लिए होती है,
- क्षेत्र (जैकोबी अभिज्ञान, या बोरचर्ड्स अभिज्ञान), अन्य के लिए , एक सकारात्मक पूर्णांक N उपस्थित है जैसे कि:
स्थानीयता स्वयंसिद्ध के समान सूत्र
क्षेत्र स्वयंसिद्ध के साहित्य में अनेक समान सूत्र हैं, उदाहरण के लिए, फ्रेंकेल-लेपोव्स्की-मेरमैन ने जैकोबी अभिज्ञान की उत्पति की:
जहाँ हम औपचारिक डेल्टा श्रृंखला को परिभाषित करते हैं:
बोरचर्ड्स[1] ने प्रारंभ में निम्नलिखित दो सर्वसमिकाओं का उपयोग किया: हमारे पास उपस्थित किसी भी सदिश u, v, और w, और पूर्णांक m और n के लिए है।
और
- .
पश्चात् उन्होंने एक अधिक विस्तृत संस्करण दिया जो समतुल्य है परन्तु उपयोग में सरल है: हमारे पास उपस्थित किसी भी सदिश u, v, और w, और पूर्णांक m, n, और q के लिए है।
अंत में, क्षेत्र का औपचारिक कार्य संस्करण है: किसी के लिए , एक तत्व है।
ऐसा है कि और ,तथा में और के संगत विस्तार हैं।
शीर्ष प्रचालक बीजगणित
एक शीर्ष प्रचालक बीजगणित एक शीर्ष बीजगणित है जो एक अनुरूप तत्व से सुसज्जित है, जैसे कि शीर्ष प्रचालक भार दो विरासोरो क्षेत्र है:
और निम्नलिखित गुणों को संतुष्ट करता है:
- , जहां एक स्थिरांक है जिसे केंद्रीय आवेश या कोटि कहा जाता है। विशेष रूप से, इस शीर्ष प्रचालक के गुणांक और केंद्रीय प्रभार के साथ विरासोरो बीजगणित की एक क्रिया के साथ संपन्न होते हैं।
- अर्द्ध सरलता से कार्य करता है,और पूर्णांक इगनवेल्यूज़ के साथ जो नीचे बंधे हुए हैं।
- इगनवेल्यूज़ द्वारा प्रदान की गई श्रेणीकरण के अंतर्गत , गुणन पर सजातीय इस अर्थ में है कि यदि और सजातीय हैं, तो डिग्री का समरूप है,इसलिये: है।
- अभिज्ञान डिग्री 0 है, और अनुरूप तत्व डिग्री 2 है।
शीर्ष बीजगणित का एक समरूपता अंतर्निहित सदिश रिक्त स्थान का एक प्रतिचित्र है जो अतिरिक्त अभिज्ञान, अनुवाद और गुणन संरचना का आदर करता है। शीर्ष प्रचालक बीजगणित के समरूपता के कमजोर और प्रभावशाली रूप हैं, यह इस बात पर निर्भर करता है कि वे अनुरूप सदिश का आदर करते हैं या नहीं।
क्रमविनिमेय शीर्ष बीजगणित
शीर्ष बीजगणित क्रमविनिमेय है यदि सभी शीर्ष संचालक एक दूसरे के साथ आवागमन करते हैं। यह सभी उत्पादों की संपत्ति के समान है, लाई में , या वह है ।इस प्रकार, क्रमविनिमेय शीर्ष बीजगणित के लिए एक वैकल्पिक परिभाषा वह है जिसमें सभी शीर्ष संचालक होते हैं,जोकि पर नियमित हैं,इसलिये है।[2]
एक क्रमविनिमेय शीर्ष बीजगणित को देखते हुए, गुणन की निरंतर शर्तें एक क्रमविनिमेय और साहचर्य वलय संरचना के साथ सदिश स्थान प्रदान करती हैं, निर्वात सदिश एक इकाई है और एक व्युत्पत्ति है। इसलिए क्रमविनिमेय शीर्ष बीजगणित और व्युत्पत्ति के साथ एक क्रमविनिमेय एकात्मक बीजगणित की संरचना सज्जित करता है। इसके विपरीत, कोई भी क्रमविनिमेय वलय व्युत्पत्ति के साथ एक विहित शीर्ष बीजगणित संरचना है, जहां हम, को व्यवस्थित करते हैं, ताकि एक मानचित्र तक ही सीमित और साथ बीजगणित गुणनफल जो गुणन मानचित्र है। यदि व्युत्पत्ति विलुप्त हो जाता है, तो हम डिग्री शून्य में केंद्रित शीर्ष प्रचालक बीजगणित प्राप्त करने के लिए व्यवस्थित कर सकते हैं।
कोई भी परिमित-विम शीर्ष बीजगणित क्रमविनिमेय होता है।
प्रमाण |
---|
This follows from the translation axiom. From and expanding the vertex operator as a power series one obtains
Then
From here, we fix to always be non-negative. For , we have .
Now since is finite dimensional, so is , and all the are elements of . So a finite number of the span the vector subspace of spanned by all the . Therefore there's an such that for all . But also,
and the left hand side is zero, while the coefficient in front of is non-zero. So . So is regular.
|
इस प्रकार गैर-अनुक्रमिक शीर्ष बीजगणित के सबसे छोटे उदाहरणों के लिए भी महत्वपूर्ण परिचय की आवश्यकता होती है।
मूल गुण
अनुवाद संचालक एक शीर्ष बीजगणित में उत्पाद संरचना पर अतिसूक्ष्म समरूपता को प्रेरित करता है, और निम्नलिखित गुणों को संतुष्ट करता है:
- , इसलिए इसके द्वारा निर्धारित किया जाता है।
- (तिर्यक्-समरूपता)
शीर्ष प्रचालक बीजगणित के लिए, अन्य वीरासोरो प्रचालक समान गुणों को पूर्ण करते हैं:
- (अर्ध-अनुरूपता) सभी के लिए .
- (साहचर्य, या चचेरे भाई की संपत्ति): अन्य के लिए तत्व ,
परिभाषा में दी गई का भी विस्तार होता है, में
शीर्ष बीजगणित की सहयोगीता संपत्ति इस तथ्य से अनुसरण करती है कि क्रमविनिमयक और की परिमित शक्ति द्वारा नष्ट कर दिया जाता है, अर्थात, कोई इसे औपचारिक डेल्टा अभिलक्षक के व्युत्पादित परिमित रैखिक संयोजन , में गुणांक के साथ के रूप में विस्तारित कर सकता है।
पुनर्निर्माण: एक शीर्ष बीजगणित हो, और के संबंधित क्षेत्रों के साथ सदिशों का, एक समूह हो। यदि क्षेत्र के धनात्मक भार गुणांकों (अर्थात, प्रचालकों के परिमित उत्पाद) में एकपदी द्वारा प्रसारित है, के लिए आवेदन किया , जहां ऋणात्मक है), तो हम इस प्रकार के एकपदी के प्रचालक उत्पाद को क्षेत्र के विभाजित शक्ति व्युत्पादित के सामान्य क्रम के रूप में लिख सकते हैं (यहां, सामान्य क्रम का अर्थ है कि बाईं ओर ध्रुवीय प्रतिबंध को दाईं ओर ले जाया जाता है)। विशेष रूप से,
अधिक सामान्यतः, यदि किसी को सदिश स्थान दिया जाता है, एंडोमोर्फिज्म के साथ , और सदिश , और एक सदिश के एक समुच्चय को निर्धारित करता है। क्षेत्रो का एक समुच्चय जो पारस्परिक रूप से स्थानीय हैं, जिनके सकारात्मक भार गुणांक उत्पन्न होते हैं, और जो अभिज्ञान और अनुवाद के प्रतिबंधों को पूर्ण करता है, तो पिछला सूत्र शीर्ष बीजगणित संरचना का वर्णन करता है।
उदाहरण
हाइजेनबर्ग शीर्ष प्रचालक बीजगणित
गैर-क्रमानुक्रमिक शीर्ष बीजगणित का एक मूल उदाहरण श्रेणी 1 मुक्त बोसॉन है, जिसे हाइजेनबर्ग शीर्ष प्रचालक बीजगणित भी कहा जाता है। यह एक सदिश b द्वारा उत्पन्न होता है, इस अर्थ में कि क्षेत्र b(z) = Y(b,z) के गुणांकों को सदिश 1 पर आवेदन करने से, हम एक विस्तरित हुए समुच्चय को प्राप्त करते हैं। अंतर्निहित सदिश स्थान अनंत-चर बहुपद वलय C[x1,x2,...] है, जहां धनात्मक n के लिए Y(b,z),का गुणांक b–n xn द्वारा गुणन, और bn xn में आंशिक अवकलज के n गुणन के रूप में कार्य करता है। b0 की कार्यकलाप शून्य से गुणन है, गति शून्य फॉक प्रतिनिधित्व V0 का उत्पादन करता है, हाइजेनबर्ग लाइ बीजगणित का (bn द्वारा उत्पन्न पूर्णांक n के लिए, क्रमविनिमय संबंधों के साथ [bn,bm]=n δn,–m), अर्थात, bn द्वारा विस्तरित किये गए उप-बीजगणितीय के साधारण प्रतिनिधित्व, n ≥ 0 से प्रेरित है।
फॉक स्थान V0 निम्नलिखित पुनर्निर्माण द्वारा शीर्ष बीजगणित में बनाया जा सकता है:
जहाँ :..: सामान्य क्रम को (अर्थात x में सभी व्युत्पादित को दाईं ओर ले जाना) दर्शाता है। शीर्ष प्रचालकों को एक बहुविकल्पीय अभिलक्षक f के कार्यात्मक के रूप में भी लिखा जा सकता है:
यदि हम स्वीकार करते हैं कि f के विस्तार में प्रत्येक पद प्रसामान्य क्रमित है।
श्रेणी 1 मुक्त बोसोन के एन-गुना प्रदिश उत्पाद को लेकर श्रेणी एन मुक्त बोसॉन दिया जाता है। एन-आयामी स्थान में किसी भी सदिश बी के लिए, किसी के पास एक क्षेत्र बी (z) होता है, जिसके गुणांक श्रेणी एन हाइजेनबर्ग बीजगणित के तत्व होते हैं, जिनके क्रमविनिमय संबंधों में एक अतिरिक्त आंतरिक उत्पाद [bn,cm]=n (b,c) δn,–m संबंध होता है:
विरासोरो शीर्ष प्रचालक बीजगणित
विरासोरो शीर्ष प्रचालक बीजगणितदो कारणों से महत्वपूर्ण हैं: सर्वप्रथम, शीर्ष प्रचालक बीजगणित में अनुरूप तत्व विरासोरो शीर्ष प्रचालक बीजगणित से एक समरूपता को विहित रूप से प्रेरित करता है, इसलिए वे सिद्धांत में एक सार्वभौमिक भूमिका निभाते हैं। द्वितीय, वे वीरसोरो बीजगणित के एकात्मक प्रतिनिधित्व के सिद्धांत से घनिष्ठ रूप से संलग्न हुए हैं, और ये अनुरूप क्षेत्र सिद्धांत में एक प्रमुख भूमिका निभाते हैं। विशेष रूप से, एकात्मक विरासोरो न्यूनतम प्रतिरूप इन शीर्ष बीजगणितों के सरल भागफल हैं, और उनके प्रदिश उत्पाद संयुक्त रूप से अधिक जटिल शीर्ष प्रचालक बीजगणित का निर्माण करने का एक माध्यम प्रदान करते हैं।
विरासोरो शीर्ष प्रचालक बीजगणित को विरासोरो बीजगणित के एक प्रेरित प्रतिनिधित्व के रूप में परिभाषित किया गया है: यदि हम एक केंद्रीय चार्ज सी चयनित करते हैं, तो उप-बीजगणितीय C[z]∂z + K के लिए अद्वितीय एक-आयामी मापांक है। जिसके लिए K cId द्वारा, और 'C'[z]∂z साधारण रूप से कार्य करता है, और इसी प्रेरित मापांक को L–n = –z−n–1∂z में बहुपदों द्वारा विस्तरित किया जाता है, जैसा कि n 1 से अधिक पूर्णांकों पर होता है। मापांक में तब विभाजन कार्य होता है
इस स्थान में एक शीर्ष प्रचालक बीजगणित संरचना है, जहाँ शीर्ष प्रचालक द्वारा परिभाषित किया गया है:
और तथ्य यह है कि विरासोरो क्षेत्र एल (z) स्वयं के संबंध में स्थानीय है, इसके स्व-क्रमविनिमयक के सूत्र से घटाया जा सकता है:
जहाँ c केंद्रीय प्रभार है।
केंद्रीय आवेश c के विरासोरो शीर्ष बीजगणित से किसी अन्य शीर्ष बीजगणित के शीर्ष बीजगणित समरूपता को देखते हुए, ω के प्रतिरूप से जुड़ा शीर्ष प्रचालक स्वचालित रूप से विरासोरो संबंधों को संतुष्ट करता है, अर्थात, ω का प्रतिरूप एक अनुरूप सदिश है। इसके विपरीत, शीर्ष बीजगणित में कोई भी अनुरूप सदिश कुछ वीरासोरो शीर्ष संचालक बीजगणित से एक विशिष्ट शीर्ष बीजगणित समरूपता को प्रेरित करता है।
विरासोरो शीर्ष प्रचालक बीजगणित सरल हैं, अतिरिक्त इसके कि जब c का रूप1–6(p–q)2/pq होता है,तो सह अभाज्य पूर्णांक p,q 1 से दृढ़ता से अधिक होता है- यह Kac के निर्धारक सूत्र से होता है। इन असाधारण स्थितियों में, एक अद्वितीय अधिकतम आदर्श होता है, और संबंधित भागफल को न्यूनतम प्रतिरूप कहा जाता है। जब p = q+1, शीर्ष बीजगणित विरासोरो के एकात्मक निरूपण होते हैं, और उनके मापांक असतत श्रृंखला निरूपण के रूप में जाने जाते हैं। वे भाग में अनुरूप क्षेत्र सिद्धांत में एक महत्वपूर्ण भूमिका निभाते हैं क्योंकि वे असामान्य रूप से विनयशील हैं, और छोटे पी के लिए, वे महत्वपूर्णता पर प्रसिद्ध सांख्यिकीय यांत्रिकी प्रणालियों के अनुरूप हैं, उदाहरण के लिए, द्वि-आयामी महत्वपूर्ण ईज़िंग प्रतिरूप, त्रि-महत्वपूर्ण ईज़िंग प्रतिरूप वेइकांग वांग के कार्य से, और तीन-राज्य पॉट्स प्रतिरूप आदि[3] संलयन नियमों के संबंध में, हमारे पास एकात्मक न्यूनतम प्रतिरूप की प्रदिश श्रेणियों का पूर्ण विवरण है। उदाहरण के लिए, जब c=1/2 (Ising) होता है, तो निम्नतम L के साथ तीन अपुनःस्थाप्य मापांक L0- भार 0, 1/2, और 1/16 होते हैं, और इसका संलयन वलय Z[x,y]/(x2–1, y2–x–1, xy–y) है।
संबंध शीर्ष बीजगणित
हाइजेनबर्ग लाइ बीजगणित को एक अनट्विस्टेड संबंध लाइ बीजगणित के साथ परिवर्तित कर | संबंध केसी-मूडी लाइ बीजगणित (अर्थात, एक परिमित-आयामी सरल लाई बीजगणित पर लूप बीजगणित का सार्वभौमिक केंद्रीय विस्तार (गणित)), कोई निर्वात प्रतिनिधित्व का निर्माण कर सकता है ठीक उसी प्रकार जैसे मुक्त बोसॉन शीर्ष बीजगणित का निर्माण किया जाता है। यह बीजगणित वेस-ज़ुमिनो-विटन प्रतिरूप के वर्तमान बीजगणित के रूप में उत्पन्न होता है, जो विसंगति (भौतिकी) का उत्पादन करता है जिसे केंद्रीय विस्तार के रूप में व्याख्या किया जाता है।
ठोस रूप से, केंद्रीय विस्तार को वापस खींच रहा है
समावेशन के साथ एक विभाजित विस्तार उत्पन्न करता है, और निर्वात मापांक बाद के एक आयामी प्रतिनिधित्व से प्रेरित होता है, जिस पर एक केंद्रीय आधार तत्व कुछ चुने हुए स्थिरांक द्वारा कार्य करता है जिसे स्तर कहा जाता है। चूंकि केंद्रीय तत्वों को परिमित प्रकार के बीजगणित पर अपरिवर्तनीय आंतरिक उत्पादों के साथ अभिज्ञाना जा सकता है , एक सामान्यतः स्तर को सामान्य करता है ताकि मारक रूप में दोहरी कॉक्व्यवस्थितर संख्या का स्तर दोगुना हो। समतुल्य रूप से, स्तर एक आंतरिक उत्पाद देता है जिसके लिए सबसे लंबी जड़ का मानदंड 2 है। यह लूप बीजगणित सम्मेलन से मेल खाता है, जहां स्तरों को बस संलग्न हुए कॉम्पैक्ट लाई समूहों के तीसरे कोहोलॉजी द्वारा पृथक किया जाता है।
आधार चयन कर Ja परिमित प्रकार का लाई बीजगणित, कोई J का उपयोग करके संबंध लाई बीजगणित का आधार बना सकता है,Jan = Ja एक केंद्रीय तत्व K के साथ मिलकर। पुनर्निर्माण के द्वारा, हम क्षेत्र के व्युत्पादित के सामान्य ऑर्डर किए गए उत्पादों द्वारा शीर्ष प्रचालकों का वर्णन कर सकते हैं
जब स्तर गैर-महत्वपूर्ण होता है, अर्थात, आंतरिक उत्पाद किलिंग फॉर्म का आधा हिस्सा नहीं होता है, तो वैक्यूम प्रतिनिधित्व में एक अनुरूप तत्व होता है, जो सुगवारा निर्माण द्वारा दिया जाता है।[lower-alpha 1] दोहरे आधारों के किसी भी विकल्प के लिए Ja, जेa स्तर 1 आंतरिक उत्पाद के संबंध में, अनुरूप तत्व है
और एक शीर्ष प्रचालक बीजगणित उत्पन्न करता है जिसका केंद्रीय प्रभार है . महत्वपूर्ण स्तर पर, अनुरूप संरचना नष्ट हो जाती है, क्योंकि भाजक शून्य है, परन्तु कोई प्रचालक एल उत्पन्न कर सकता हैn n ≥ –1 के लिए एक सीमा लेकर जब k क्रांतिकता की ओर अग्रसर होता है।
इस निर्माण को श्रेणी 1 मुक्त बोसोन के लिए काम करने के लिए परिवर्तिता जा सकता है। वास्तव में, विरासोरो सदिश एक-पैरामीटर परिवार ω बनाते हैंs = 1/2 एक्स12 + एस एक्स2, परिणामी शीर्ष प्रचालक बीजगणित को केंद्रीय प्रभार 1−12s2 के साथ प्रदान करना जब s = 0, हमारे पास श्रेणीबद्ध आयाम के लिए निम्न सूत्र होता है:
इसे विभाजन कार्य (क्वांटम क्षेत्र सिद्धांत) के लिए जनरेटिंग अभिलक्षक के रूप में जाना जाता है, और इसे q के रूप में भी लिखा जाता हैवजन का 1/24 गुना −1/2 मापांकर रूप 1/η (डेडेकाइंड और फंक्शन)। श्रेणी एन मुक्त बोसोन में विरासोरो सदिश का एन पैरामीटर परिवार होता है, और जब वे पैरामीटर शून्य होते हैं, तो चरित्र क्यू होता हैn/24 वजन का गुणा −n/2 मापांकर रूप η-एन</सुप>.
=== शीर्ष प्रचालक बीजगणित एक समान जालक === द्वारा परिभाषित
जालक शीर्ष बीजगणित निर्माण शीर्ष बीजगणित को परिभाषित करने के लिए मूल प्रेरणा थी। इसका निर्माण जालक सदिशों के संगत मुक्त बोसोन के लिए अलघुकरणीय मापांकों का योग लेकर और उनके मध्य आपस में गुंथे संचालकों को निर्दिष्ट करके गुणन संक्रिया को परिभाषित करके किया गया है। अर्थात यदि Λ एक समान जालक है, जालक शीर्ष बीजगणित VΛ मुक्त बोसोनिक मापांक में विघटित होता है:
जालक शीर्ष एल्जेब्रा कैनोनिक रूप से जालक के बजाय यूनिमापांकर जालक के दोहरे कवर से संलग्न होते हैं। जबकि इस प्रकार के प्रत्येक जालक में आइसोमोर्फिज़्म तक एक अद्वितीय जालक शीर्ष बीजगणित होता है, शीर्ष बीजगणित निर्माण क्रियात्मक नहीं होता है, क्योंकि जालक ऑटोमोर्फिज्म में उठाने में अस्पष्टता होती है।[1]
प्रश्न में डबल कवर विशिष्ट रूप से निम्नलिखित नियम द्वारा आइसोमोर्फिज्म तक निर्धारित होते हैं: तत्वों का रूप होता है ±eα जालक सदिश के लिए α ∈ Λ (अर्थात, एकप्रतिचित्र है Λ भेजना eα से α जो संकेतों को भूल जाता है), और गुणा संबंधों को संतुष्ट करता है,eαeβ = (-1)(α,β)eβeα. इसका वर्णन करने का एक और तरीका यह है कि एक भी जाली Λ दिया गया है, वहाँ एक अद्वितीय (कोबाउंड्री तक) सामान्यीकृत कोसायकल ε(α, β) है जिसमें मान ±1 ऐसा है कि (−1)(α,β) = ε(α, β) ε(β, α), जहां सामान्यीकरण की स्थिति यह है कि ε(α, 0) = ε(0, α) = 1 सभी α ∈ Λ के लिए। यह चक्र क्रम 2 के एक समूह द्वारा Λ के एक केंद्रीय विस्तार को प्रेरित करता है, और हम आधार eα (α ∈ Λ) और गुणन नियम eαeβ = ε(α, β)eα+β - के साथ एक मुड़ समूह वलय Cε[Λ] प्राप्त करते हैं - ε पर चक्रीय स्थिति अंगूठी की संबद्धता सुनिश्चित करती है।[4]
शीर्ष प्रचालक सबसे कम वज़न वाले सदिश से जुड़ा हुआ है vλ फॉक स्थान में Vλ है
कहाँ zλ रेखीय मानचित्र के लिए एक आशुलिपि है जो α-Fock स्थान के किसी भी तत्व को लेता है Vα एकपदी के लिए z(λ,α). फ़ॉक स्थान के अन्य तत्वों के लिए शीर्ष प्रचालक को पुनर्निर्माण द्वारा निर्धारित किया जाता है।
जैसा कि मुक्त बोसोन की स्थिति में, किसी के पास सदिश स्थान के एक तत्व s द्वारा दिए गए अनुरूप सदिश का विकल्प होता है Λ ⊗ C, परन्तु शर्त यह है कि अतिरिक्त फॉक रिक्त स्थान में पूर्णांक एल है0 eigenvalues एस की पसंद को विवश करता है: एक अलौकिक आधार के लिए xi, सदिश 1/2 xi,12 + एस2 संतुष्ट करना चाहिए (s, λ) ∈ Z सभी के लिए λ ∈ Λ, अर्थात, s दोहरे जालक में स्थित है।
यदि जालक भी Λ इसके स्थिर सदिश (उन संतोषजनक (α, α) = 2) द्वारा उत्पन्न होता है, और किसी भी दो स्थिर सदिश को स्थिर सदिश की एक श्रृंखला से जोड़ा जाता है, जिसमें लगातार आंतरिक उत्पाद गैर-शून्य होते हैं, फिर शीर्ष प्रचालक बीजगणित अद्वितीय सरल भागफल होता है स्तर एक पर समान सरल रूप से सज्जित सरल लाई बीजगणित के एफिन केएसी-मूडी बीजगणित का वैक्यूम मापांक। इसे फ्रेनकेल-केएसी (या इगोर फ्रेनकेल-विक्टर केसी- ग्रीम सहगल) निर्माण के रूप में जाना जाता है, और यह दोहरे अनुनाद प्रतिरूप में टैचियन के सर्जियो फुबिनो और गेब्रियल विनीशियन द्वारा पहले के निर्माण पर आधारित है। अन्य विशेषताओं के अतिरिक्त, स्थिर सदिश के अनुरूप शीर्ष प्रचालकों के शून्य मोड अंतर्निहित सरल लाई बीजगणित का निर्माण करते हैं, जो मूल रूप से जैक्स स्तन के कारण प्रस्तुति से संबंधित है। विशेष रूप से, सभी ADE प्रकार के लाई समूहों का निर्माण सीधे उनके स्थिर जालक से प्राप्त होता है। और यह सामान्यतः 248-आयामी समूह ई बनाने का सबसे सरल तरीका माना जाता है8.[4][5]
अतिरिक्त उदाहरण
- राक्षस शीर्ष बीजगणित (जिसे मूनशाइन मापांक भी कहा जाता है), अपरूप कल्पना अनुमानों के बोरचर्ड्स के प्रमाण की कुंजी, 1988 में फ्रेंकेल, लेपोव्स्की और मेउरमैन द्वारा निर्मित किया गया था। यह उल्लेखनीय है क्योंकि इसका विभाजन कार्य मापांकर इनवेरिएंट j-744 है, और इसका ऑटोमोर्फिज्म समूह है। सबसे बड़ा छिटपुट सरल समूह है, जिसे राक्षस समूह के रूप में जाना जाता है। मूल में जोंक जालक को प्रतिबिंबित करके प्रेरित 2 ऑटोमोर्फिज्म के क्रम से जोंक जालक VOA की परिक्रमा करके इसका निर्माण किया गया है। यही है, एक मुड़ मापांक के साथ जोंक जालक VOA का प्रत्यक्ष योग बनाता है, और एक प्रेरित इनवोल्यूशन के तहत निश्चित बिंदुओं को लेता है। फ्रेंकेल, लेपोव्स्की और मेउरमैन ने 1988 में अनुमान लगाया था कि सेंट्रल चार्ज 24 और पार्टीशन फंक्शन j-744 के साथ अद्वितीय होलोमॉर्फिक शीर्ष प्रचालक बीजगणित है। यह अनुमान अभी भी खुला है।
- चिराल दे रहम जटिल: मलिकोव, शेचटमैन, और वेनट्रोब ने दिखाया कि स्थानीयकरण की एक विधि द्वारा, एक बीसी βγ (बोसोन-फर्मियन सुपरक्षेत्र) प्रणाली को एक चिकनी जटिल बहुविध से जोड़ा जा सकता है। ढेरों के इस परिसर में एक विशिष्ट अंतर है, और वैश्विक सह-विज्ञान एक शीर्ष सुपरलेजेब्रा है। बेन-ज़्वी, हेलुआनी और स्ज़ेज़ेस्नी ने दिखाया कि अनेक गुना पर एक रिमेंनियन मीट्रिक एक N=2 सुपरकॉन्फॉर्मल संरचना को प्रेरित करता है, जिसे N=2 संरचना में प्रचारित किया जाता है यदि मीट्रिक काहलर और रिक्की-फ्लैट है, और एक हाइपरकेहलर संरचना एक एन को प्रेरित करती है, N=4 संरचना। बोरिसोव और लिबगॉबर ने दिखाया कि चिराल डी रम के कोहोलॉजी से अनेक गुना सुगठित जटिल बहुविध के दो-चर अण्डाकार जीन प्राप्त कर सकते हैं- यदि अनेक गुना कैलाबी-यॉ है, तो यह जीनस एक कमजोर जैकोबी रूप है।[6]
मापांक
साधारण वलयों की प्रकार, शीर्ष बीजगणित मापांक या प्रतिनिधित्व की धारणा को स्वीकार करते हैं। अनुरूप क्षेत्र सिद्धांत में मापांक एक महत्वपूर्ण भूमिका निभाते हैं, जहां उन्हें अक्सर सेक्टर कहा जाता है। भौतिकी साहित्य में एक मानक धारणा यह है कि एक अनुरूप क्षेत्र सिद्धांत का पूर्ण हिल्बर्ट अंतरिक्ष बाएँ-चलने वाले और दाएँ-चलने वाले क्षेत्रों के प्रदिश उत्पादों के योग में विघटित हो जाता है:
यही, एक अनुरूप क्षेत्र सिद्धांत में बाएं-चलने वाली चिराल समरूपता का एक शीर्ष प्रचालक बीजगणित होता है, दाहिनी ओर चलने वाली चिरल समरूपता का एक शीर्ष प्रचालक बीजगणित होता है, और किसी दिए गए दिशा में चलने वाले सेक्टर संबंधित शीर्ष प्रचालक बीजगणित के लिए मापांक होते हैं।
गुणन Y के साथ एक शीर्ष बीजगणित V दिया गया है, एक V-मापांक एक सदिश स्थान M है जो क्रिया Y से सुसज्जित हैM: V ⊗ M → M((z)), निम्नलिखित प्रतिबंध को पूर्ण करते हैं:
- (अभिज्ञान) वाईम(1,z) = IdM
- (साहचर्य, या जैकोबी सर्वसमिका) किसी भी u, v ∈ V, w ∈ M के लिए एक अवयव है के संगत विस्तार हैं
ऐसा है कि YM(u,z)YM(v,x)w and YM(Y(u,z–x)v,x)w
एम ((जेड)) ((एक्स)) और एम ((एक्स)) ((जेड-एक्स)) में। समतुल्य रूप से, निम्नलिखित जैकोबी अभिज्ञान रखती है:
शीर्ष बीजगणित के मापांक एक एबेलियन श्रेणी बनाते हैं। शीर्ष प्रचालक बीजगणित के साथ काम करते समय, पिछली परिभाषा को कमजोर मापांक नाम दिया गया है, और अतिरिक्त स्थिति को पूर्ण करने के लिए वी-मापांक की आवश्यकता होती है जो एल0 ज़ेड के प्रत्येक सहसमुच्चय में नीचे परिमित-आयामी आइगेनस्थान और ईजेनवैल्यूज़ के साथ सेमीसिंपली कार्य करता है। हुआंग, लेपोव्स्की, मियामोटो और झांग के कार्य[citation needed] ने व्यापकता के विभिन्न स्तरों पर दिखाया है कि शीर्ष प्रचालक बीजगणित के मापांक एक फ्यूजन प्रदिश उत्पाद संचालन को स्वीकार करते हैं, और एक ब्रेडेड प्रदिश श्रेणी बनाते हैं।
जब वी-मापांक की श्रेणी (गणित) सूक्ष्म रूप से अनेक अलघुकरणीय वस्तुओं के साथ अर्ध-सरल होती है, तो शीर्ष प्रचालक बीजगणित वी को तर्कसंगत कहा जाता है। तर्कसंगत शीर्ष प्रचालक बीजगणित एक अतिरिक्त परिमितता परिकल्पना को संतुष्ट करता है (झू के सी के रूप में जाना जाता है2-संबद्धता की स्थिति) विशेष रूप से अच्छी प्रकार से व्यवहार करने के लिए जाने जाते हैं, और नियमित कहलाते हैं। उदाहरण के लिए, झू के 1996 के मापांकर इनवेरिएंस प्रमेय का दावा है कि नियमित वीओए के मापांक के वर्ण एसएल के सदिश-मूल्यवान प्रतिनिधित्व का निर्माण करते हैं।2(जेड)। विशेष रूप से, यदि कोई VOA होलोमॉर्फिक है, अर्थात इसकी प्रतिनिधित्व श्रेणी सदिश रिक्त स्थान के समान है, तो इसका विभाजन कार्य SL है2(जेड) - एक स्थिर तक अपरिवर्तनीय। हुआंग ने दिखाया कि एक नियमित वीओए के मापांक की श्रेणी एक मापांकर प्रदिश श्रेणी है, और इसके संलयन नियम वर्लिंडे सूत्र को संतुष्ट करते हैं।
हमारे पहले उदाहरण से जुड़ने के लिए, श्रेणी 1 फ्री बोसोन के इरेड्यूसिबल मापांक फॉक स्थान वी द्वारा दिए गए हैं।λ कुछ निश्चित गति के साथ λ, अर्थात हाइजेनबर्ग लाइ बीजगणित के प्रेरित प्रतिनिधित्व, जहां तत्व बी0 λ द्वारा अदिश गुणन द्वारा कार्य करता है। अंतरिक्ष को C[x के रूप में लिखा जा सकता है1,एक्स2,...]मेंλ, जहां विλ एक विशिष्ट भू-राज्य सदिश है। मापांक श्रेणी अर्ध-सरल नहीं है, क्योंकि कोई एबेलियन लाइ बीजगणित के प्रतिनिधित्व को प्रेरित कर सकता है जहां बी0 एक गैर-तुच्छ जॉर्डन ब्लॉक द्वारा कार्य करता है। श्रेणी एन फ्री बोसोन के लिए, एक इरेड्यूसिबल मापांक वी हैλ जटिल एन-आयामी अंतरिक्ष में प्रत्येक सदिश λ के लिए। प्रत्येक सदिश b ∈ 'C'n से प्रचालक b प्राप्त होता है0, और फॉक स्थान वीλ संपत्ति से अलग है कि प्रत्येक ऐसे बी0 आंतरिक उत्पाद (बी, λ) द्वारा अदिश गुणन के रूप में कार्य करता है।
साधारण वलयो के विपरीत, शीर्ष बीजगणित एक ऑटोमोर्फिज्म से संलग्न मुड़े हुए मापांक की धारणा को स्वीकार करते हैं। आदेश N के एक ऑटोमोर्फिज़्म σ के लिए, क्रिया का रूप V ⊗ M → M((z1/N)), निम्नलिखित मोनोड्रोमी स्थिति के साथ: यदि u ∈ V संतुष्ट करता है σ u = exp(2πik/N)u, तो un = 0 जब तक n n+k/N ∈ 'Z' को संतुष्ट नहीं करता है (विशेषज्ञों के मध्य संकेतों के बारे में कुछ असहमति है)। ज्यामितीय रूप से, मुड़े हुए मापांक को बीजगणितीय वक्र पर शाखा बिंदुओं से जोड़ा जा सकता है, जिसमें रामिफिकेशन (गणित) गैलोज़ कवर होता है। अनुरूप क्षेत्र सिद्धांत साहित्य में, मुड़े हुए मापांक को मुड़ क्षेत्र कहा जाता है, और orbifold पर स्ट्वलय सिद्धांत से घनिष्ठ रूप से जुड़ा हुआ है।
शीर्ष प्रचालक सुपरलेजेब्रस
अंतर्निहित सदिश स्थान को एक सुपरस्थान (अर्थात, एक Z/2Z-वर्गीकृत सदिश स्थान) होने की अनुमति देकर ) एक शीर्ष बीजगणित के रूप में एक ही आँकड़े द्वारा एक शीर्ष सुपरलेजेब्रा को परिभाषित किया जा सकता है, जिसमें वी में 1 है+ और टी एक भी प्रचालक। स्वयंसिद्ध अनिवार्य रूप से समान हैं, परन्तु स्थानीयता स्वयंसिद्ध, या समकक्ष योगों में से एक में उपयुक्त संकेतों को सम्मिलित करना चाहिए। अर्थात्, यदि a और b सजातीय हैं, तो Y(a,z)Y(b,w) की तुलना εY(b,w)Y(a,z) से की जाती है, जहां ε -1 है यदि a और b दोनों विषम हैं और 1 अन्यथा। यदि इसके अतिरिक्त V के सम भाग में एक विरासोरो तत्व ω है2, और सामान्य ग्रेडिंग प्रतिबंध संतुष्ट हैं, तो V को शीर्ष प्रचालक सुपरलेजेब्रा कहा जाता है।
सबसे सरल उदाहरणों में से एक एकल मुक्त फ़र्मियन ψ द्वारा उत्पन्न शीर्ष प्रचालक सुपरलेजेब्रा है। विरासोरो प्रतिनिधित्व के रूप में, इसका केंद्रीय प्रभार 1/2 है, और सबसे कम वजन 0 और 1/2 के ईज़िंग मापांक के प्रत्यक्ष योग के रूप में विघटित होता है। कोई इसे द्विघात स्थान टी पर क्लिफर्ड बीजगणित के स्पिन प्रतिनिधित्व के रूप में भी वर्णित कर सकता है1/2सी[टी,टी-1](दिनांक)1/2 अवशेष पेयवलय के साथ। शीर्ष प्रचालक सुपरलेजेब्रा पूर्णसममितिक है, इस अर्थ में कि सभी मापांक स्वयं के प्रत्यक्ष योग हैं, अर्थात, मापांक श्रेणी सदिश रिक्त स्थान की श्रेणी के समान है।
मुक्त फ़र्मियन के प्रदिश वर्ग को मुक्त आवेशित फ़र्मियन कहा जाता है, और बोसोन-फ़र्मियन पत्राचार द्वारा, यह विषम जालक Z से संलग्न जालक शीर्ष सुपरलेजेब्रा के लिए आइसोमोर्फिक है।[4] इस पत्राचार का उपयोग डेट-जिंबो-काशीवारा-मिवा द्वारा गैर-रैखिक पीडीई के केपी पदानुक्रम के लिए सॉलिटन समाधान बनाने के लिए किया गया है।
सुपरकॉन्फॉर्मल संरचनाएं
वीरासोरो बीजगणित में कुछ सुपरसिमेट्री है जो स्वाभाविक रूप से सुपरकॉन्फॉर्मल क्षेत्र थ्योरी और सुपरस्ट्वलय सिद्धांत में दिखाई देती है। N=1, 2, और 4 सुपरकॉन्फॉर्मल बीजगणित का विशेष महत्व है।
एक supercurve का इनफिनिटिमल होलोमॉर्फिक सुपरकॉन्फॉर्मल ट्रांसफॉर्मेशन (एक समान स्थानीय निर्देशांक z और N विषम स्थानीय निर्देशांक θ के साथ)1,...,मैंN) एक सुपर-स्ट्रेस-एनर्जी प्रदिश टी (z, θ) के गुणांक द्वारा उत्पन्न होते हैं1, ..., मैंN).
जब N=1, टी में विरासोरो क्षेत्र L(z) द्वारा दिया गया अजीब हिस्सा होता है, और यहां तक कि एक क्षेत्र द्वारा दिया गया हिस्सा भी होता है
रूपांतरण संबंधों के अधीन
प्रचालक उत्पादों की समरूपता की जांच करके, कोई पाता है कि क्षेत्र जी के लिए दो संभावनाएं हैं: सूचकांक एन या तो सभी पूर्णांक हैं, रामोंड बीजगणित उत्पन्न करते हैं, या सभी आधे-पूर्णांक, नेवू-श्वार्ज़ बीजगणित उत्पन्न करते हैं। इन बीजगणितों में केंद्रीय आवेश पर एकात्मक असतत श्रृंखला निरूपण है
और 3/2 से अधिक सभी c के लिए एकात्मक प्रतिनिधित्व, सबसे कम वजन h के साथ केवल h≥ 0 द्वारा Neveu-Schwarz और h ≥ c/24 के लिए रामोंड के लिए विवश है।
केंद्रीय आवेश c वाले शीर्ष संचालक बीजगणित V में एक N=1 सुपरकॉन्फ़ॉर्मल सदिश 3/2 भार का एक विषम तत्व τ ∈ V है, जैसे कि
जी−1/2τ = ω, और G(z) के गुणांक केंद्रीय आवेश c पर N=1 Neveu-Schwarz बीजगणित की एक क्रिया उत्पन्न करते हैं।
एन = 2 सुपरसिममेट्री के लिए, एल (जेड) और जे (जेड), और अजीब क्षेत्र जी भी क्षेत्र प्राप्त करता है+(z) और जी−(z). क्षेत्र J(z) हाइजेनबर्ग बीजगणित (भौतिकविदों द्वारा U(1) वर्तमान के रूप में वर्णित) की एक क्रिया उत्पन्न करता है। रामोंड और नेवू-श्वार्ज़ एन=2 सुपरकॉन्फॉर्मल बीजगणित दोनों हैं, यह इस बात पर निर्भर करता है कि जी क्षेत्रों पर अनुक्रमण अभिन्न है या अर्ध-अभिन्न है। हालांकि, यू (1) वर्तमान आइसोमोर्फिक सुपरकॉन्फॉर्मल बीजगणित के एक-पैरामीटर परिवार को रामोंड और नेवू-श्वार्टज़ के मध्य प्रक्षेपित करता है, और संरचना के इस विरूपण को वर्णक्रमीय प्रवाह के रूप में जाना जाता है। एकात्मक अभ्यावेदन असतत श्रृंखला द्वारा केंद्रीय आवेश c = 3-6 / m के साथ पूर्णांक m कम से कम 3 के लिए दिया जाता है, और c> 3 के लिए सबसे कम भार का एक निरंतरता है।
शीर्ष प्रचालक बीजगणित पर एक N=2 सुपरकॉन्फॉर्मल संरचना विषम तत्वों τ की एक जोड़ी है+, वी− वजन 3/2, और वजन 1 का एक सम तत्व μ जैसे कि τ± जी उत्पन्न करें±(z), और μ J(z) उत्पन्न करता है।
एन = 3 और 4 के लिए, एकात्मक अभ्यावेदन में केवल असतत परिवार में क्रमशः सी = 3k/2 और 6k के साथ केंद्रीय शुल्क होते हैं, क्योंकि k धनात्मक पूर्णांक से अधिक होता है।
अतिरिक्त निर्माण
- नियत बिन्दु उप-बीजगणितीय: एक शीर्ष प्रचालक बीजगणित पर समरूपता समूह की एक क्रिया को देखते हुए, फिक्स्ड सदिश का उप-बीजगणितीय भी एक शीर्ष प्रचालक बीजगणित है। 2013 में, मियामोटो ने प्रतिपादित किया कि दो महत्वपूर्ण परिमित गुण, अर्थात् झू की स्थिति सी2 और नियमितता, परिमित हल करने योग्य समूह क्रियाओं के तहत निश्चित बिंदुओं को लेते समय संरक्षित किया जाता है।
- वर्तमान विस्तार: एक शीर्ष प्रचालक बीजगणित और इंटीग्रल कन्फर्मल वेट के कुछ मापांक दिए गए हैं, कोई भी अनुकूल परिस्थितियों में प्रत्यक्ष योग पर एक शीर्ष प्रचालक बीजगणित संरचना का वर्णन कर सकता है। जालक शीर्ष बीजगणित इसका एक मानक उदाहरण है। उदाहरणों का एक अन्य परिवार वीओए तैयार किया जाता है, जो ईज़िंग प्रतिरूप के प्रदिश उत्पादों से प्रारंभ होता है, और ऐसे मापांक जोड़ता है जो उपयुक्त रूप से कोड के अनुरूप होते हैं।
- ऑर्बिफोल्ड्स: एक पूर्णसममितिक वीओए पर कार्य करने वाले एक परिमित चक्रीय समूह को देखते हुए, यह अनुमान लगाया जाता है कि एक दूसरे पूर्णसममितिक वीओए का निर्माण इरेड्यूसिबल ट्विस्टेड मापांक से जुड़कर और एक प्रेरित ऑटोमोर्फिज्म के तहत निश्चित बिंदुओं को लेकर कर सकता है, जब तक कि ट्विस्टेड मापांक में उपयुक्त अनुरूप वजन हो। यह विशेष मामलों में सच माना जाता है, उदाहरण के लिए, जालक वीओएएस पर अभिनय करने वाले अधिकतम 3 आदेशों के समूह।
- सह समुच्चय निर्माण (गोडार्ड, केंट, और ओलिव के कारण): केंद्रीय आवेश c के शीर्ष प्रचालक बीजगणित V और सदिश के एक व्यवस्थित S को देखते हुए, कम्यूटेंट C (V, S) को सदिश v के उप-स्थान के रूप में परिभाषित किया जा सकता है। S से आने वाले सभी क्षेत्रों के साथ सख्ती से परिवर्तन करें, जैसे कि Y(s,z)v ∈ Vz सभी s ∈ S के लिए। यह एक शीर्ष निकला Subalgebra, Y, T, और V से विरासत में मिली अभिज्ञान के साथ और यदि S केंद्रीय आवेश c का VOA हैS, कम्यूटेंट केंद्रीय चार्ज c-c का VOA हैS. उदाहरण के लिए, स्तर k+1 पर SU(2) को दो SU(2) बीजगणित के प्रदिश उत्पाद में k और 1 के स्तर पर एम्बेड करने से p=k+2, q=k+3, और के साथ विरासोरो असतत श्रृंखला प्राप्त होती है। इसका उपयोग 1980 के दशक में उनके अस्तित्व को प्रतिपादित करने के लिए किया गया था। फिर से SU(2) के साथ, स्तर k+2 को स्तर k और स्तर 2 के प्रदिश उत्पाद में एम्बेड करने से N=1 सुपरकॉन्फॉर्मल असतत श्रृंखला प्राप्त होती है।
- बीआरएसटी न्यूनीकरण: किसी भी डिग्री 1 सदिश v संतोषजनक v के लिए02=0, इस प्रचालक की कोहोलॉजी में ग्रेडेड शीर्ष सुपरएलजेब्रा संरचना है। अधिक सामान्यतः, कोई भी वजन 1 क्षेत्र का उपयोग कर सकता है जिसका अवशेष वर्ग शून्य है। सामान्य विधि फ़र्मियन के साथ प्रदिश है, क्योंकि तब एक में एक विहित अंतर होता है। एक महत्वपूर्ण विशेष मामला क्वांटम ड्रिनफेल्ड-सोकोलोव रिडक्शन है जो एफिन केएसी-मूडी बीजगणित पर आवेदन होता है ताकि एफाइन डब्ल्यू-बीजगणितीय को डिग्री 0 कोहोलॉजी के रूप में प्राप्त किया जा सके। ये डब्ल्यू बीजगणित भी स्क्रीनिंग प्रचालकों के गुठली द्वारा दिए गए मुक्त बोसोन के शीर्ष सबलजेब्रस के रूप में निर्माण को स्वीकार करते हैं।
संबंधित बीजगणितीय संरचनाएं
- यदि कोई शीर्ष बीजगणित में ओपीई के केवल एकवचन भाग पर विचार करता है, तो वह लाई कंफर्मल बीजगणित की परिभाषा पर पहुंचता है। चूंकि अक्सर ओपीई के एकवचन भाग के साथ ही संबंध होता है, यह लाई अनुरूप बीजगणित को अध्ययन करने के लिए एक प्राकृतिक वस्तु बनाता है। ओपीई के नियमित भाग को भूलने वाले शीर्ष बीजगणितीय से झूठ अनुरूप बीजगणित तक एक फ़ैक्टर है, और इसमें एक बायां जोड़ है, जिसे यूनिवर्सल शीर्ष बीजगणितीय फ़ंक्टर कहा जाता है। संबंध के एसी-मूडी बीजगणित और विरासोरो शीर्ष बीजगणित के वैक्यूम मापांक सार्वभौमिक शीर्ष बीजगणित हैं, और विशेष रूप से, पृष्ठभूमि सिद्धांत विकसित होने के बाद उन्हें बहुत संक्षेप में वर्णित किया जा सकता है।
- साहित्य में शीर्ष बीजगणित की धारणा के अनेक सामान्यीकरण हैं। कुछ हल्के सामान्यीकरणों में मोनोड्रोमी की अनुमति देने के लिए इलाके के स्वयंसिद्ध को कमजोर करना सम्मिलित है, उदाहरण के लिए, डोंग और लेपोव्स्की के एबेलियन इंटरवेटिंग बीजगणित। मोटे तौर पर ग्रेडेड सदिश रिक्त स्थान के ब्रेडेड प्रदिश श्रेणी में शीर्ष बीजगणित वस्तुओं के रूप में देखा जा सकता है, ठीक उसी प्रकार जैसे सुपर सदिश रिक्त स्थान की श्रेणी में एक शीर्ष सुपरलेजेब्रा ऐसी वस्तु है। अधिक जटिल सामान्यीकरण क्यू-विरूपण और क्वांटम समूहों के प्रतिनिधित्व से संबंधित हैं, जैसे कि फ्रेनकेल-रेशेतिखिन, ईटिंगोफ़-काज़दान और ली के काम में।
- बेइलिन्सन और ड्रिनफेल्ड ने चिरल बीजगणित की एक शीफ-सैद्धांतिक धारणा प्रस्तुत की जो शीर्ष बीजगणित की धारणा से निकटता से संबंधित है, परन्तु किसी भी दृश्य शक्ति श्रृंखला का उपयोग किए बिना परिभाषित किया गया है। एक बीजगणितीय वक्र X को देखते हुए, X पर एक चिरल बीजगणित एक D हैX-मापांक ए एक गुणन ऑपरेशन से लैस है X×X पर जो एक साहचर्य शर्त को संतुष्ट करता है। उन्होंने गुणनखंड बीजगणित की एक समतुल्य धारणा भी प्रस्तुत की जो कि वक्र के सभी परिमित उत्पादों पर क्वासिकोहेरेंट शेवों की एक प्रणाली है, साथ में एक अनुकूलता की स्थिति जिसमें विभिन्न विकर्णों के पूरक के लिए पुलबैक सम्मिलित हैं। एफिन लाइन पर किसी भी अनुवाद-समतुल्य चिरल बीजगणित को एक बिंदु पर फाइबर ले कर शीर्ष बीजगणित के साथ अभिज्ञाना जा सकता है, और किसी भी शीर्ष प्रचालक बीजगणित को चिकनी बीजगणितीय वक्र पर चिरल बीजगणित संलग्न करने का एक प्राकृतिक तरीका है।
यह भी देखें
- संचालिका बीजगणित
टिप्पणियाँ
उद्धरण
स्रोत
- Borcherds, Richard (1986), "Vertex algebras, Kac-Moody algebras, and the Monster", Proceedings of the National Academy of Sciences of the United States of America, 83 (10): 3068–3071, Bibcode:1986PNAS...83.3068B, doi:10.1073/pnas.83.10.3068, PMC 323452, PMID 16593694
- Borisov, Lev A.; Libgober, Anatoly (2000), "Elliptic genera of toric varieties and applications to mirror symmetry", Inventiones Mathematicae, 140 (2): 453–485, arXiv:math/9904126, Bibcode:2000InMat.140..453B, doi:10.1007/s002220000058, MR 1757003, S2CID 8427026
- Frenkel, Edward; Ben-Zvi, David (2001), Vertex algebras and Algebraic Curves, Mathematical Surveys and Monographs, American Mathematical Society, ISBN 0-8218-2894-0
- Frenkel, Igor; Lepowsky, James; Meurman, Arne (1988), Vertex operator algebras and the Monster, Pure and Applied Mathematics, vol. 134, Academic Press, ISBN 0-12-267065-5
- Kac, Victor (1998), Vertex algebras for beginners, University Lecture Series, vol. 10 (2nd ed.), American Mathematical Society, ISBN 0-8218-1396-X
- Wang, Weiqiang (1993), "Rationality of Virasoro vertex operator algebras", International Mathematics Research Notices, 1993 (7): 197, doi:10.1155/S1073792893000212
- Xu, Xiaoping (1998), Introduction to vertex operator superalgebras and their modules, Springer, ISBN 079235242-4
श्रेणी:अनुरूप क्षेत्र सिद्धांत श्रेणी:झूठे बीजगणित श्रेणी:गैर-सहयोगी बीजगणित