केली रूपांतरण: Difference between revisions

From Vigyanwiki
(text)
(text)
Line 43: Line 43:


== आव्यूह मानचित्र ==
== आव्यूह मानचित्र ==
[[वास्तविक संख्या]] पर n×n [[स्क्वायर मैट्रिक्स|स्क्वायर आव्यूह]] के बीच, I '''पहचान आव्यूह के साथ''', A को कोई विषम सममित आव्यूह होने दें (ताकि A<sup>टी</सुप> = -ए).
[[वास्तविक संख्या]] पर n×n [[स्क्वायर मैट्रिक्स|वर्गाकार आव्यूह]] के बीच, I अस्मिता आव्यूह के साथ, A को कोई विषम सममित आव्यूह होने दें (ताकि ''A''<sup>T</sup> = −''A)''


फिर I + A [[उलटा मैट्रिक्स|उलटा आव्यूह]] है, और केली ट्रांसफॉर्म है
फिर I + A [[उलटा मैट्रिक्स|इन्वेर्टिबल आव्यूह]] है, और केली रूपांतरण है
:<math> Q = (I - A)(I + A)^{-1} \,\!</math>
:<math> Q = (I - A)(I + A)^{-1} \,\!</math>
एक [[ऑर्थोगोनल मैट्रिक्स|लांबिक आव्यूह]] उत्पन्न करता है, Q (ताकि Q<sup>टी</sup>क्यू = मैं)। ऊपर क्यू की परिभाषा में आव्यूह गुणन क्रमविनिमेय है, इसलिए क्यू को वैकल्पिक रूप से परिभाषित किया जा सकता है <math> Q = (I + A)^{-1}(I - A)</math>. वास्तव में, क्यू में निर्धारक +1 होना चाहिए, इसलिए विशेष ऑर्थोगोनल है।
वह [[ऑर्थोगोनल मैट्रिक्स|लांबिक आव्यूह]] उत्पन्न करता है, Q (ताकि ''Q''<sup>T</sup>''Q'' = ''I'')। ऊपर Q की परिभाषा में आव्यूह गुणन क्रमविनिमेय है, इसलिए Q को वैकल्पिक रूप से <math> Q = (I + A)^{-1}(I - A)</math> परिभाषित किया जा सकता है। वस्तुतः, Q में निर्धारक +1 होना चाहिए, इसलिए विशेष आयतीय है।


इसके विपरीत, Q को कोई भी लांबिक आव्यूह होने दें, जिसमें -1 एक [[eigenvalue]] के रूप में नहीं है; तब
इसके विपरीत, Q को कोई भी लांबिक आव्यूह होने दें, जिसमें -1 एक [[eigenvalue|आईजेनवैल्यू]] के रूप में नहीं है; तब
:<math> A = (I - Q)(I + Q)^{-1} \,\!</math>
:<math> A = (I - Q)(I + Q)^{-1} \,\!</math>
एक तिरछा-सममित मैट्रिक्स है।  {{see also|Involution (mathematics){{!}}involution}} क्यू पर शर्त स्वचालित रूप से निर्धारक -1 के साथ मेट्रिसेस को बाहर करती है, लेकिन कुछ विशेष ऑर्थोगोनल मेट्रिसेस को भी बाहर करती है।
एक विषम सममित आव्यूह है।  {{see also|प्रत्यावर्तन (mathematics){{!}}प्रत्यावर्तन}}
 
Q पर शर्त स्वचालित रूप से निर्धारक -1 के साथ आव्यूह को बाहर करती है, लेकिन कुछ विशेष आयतीय आव्यूह को भी बाहर करती है।


थोड़ा अलग रूप भी देखने को मिलता है,<ref>{{Citation | last1=Golub | first1=Gene H. | author1-link=Gene H. Golub | last2=Van Loan | first2=Charles F. | author2-link=Charles F. Van Loan | title=Matrix Computations  | edition=3rd  | publisher=[[Johns Hopkins University Press]] | year=1996 | isbn=978-0-8018-5414-9}}</ref><ref>F. Chong (1971) "A Geometric Note on the Cayley Transform", pages 84,5 in ''A Spectrum of Mathematics: Essays Presented to H. G. Forder'', [[John C. Butcher]] editor, [[Auckland University Press]]</ref> प्रत्येक दिशा में अलग-अलग प्रतिचित्रण की आवश्यकता होती है,
थोड़ा अलग रूप भी देखने को मिलता है,<ref>{{Citation | last1=Golub | first1=Gene H. | author1-link=Gene H. Golub | last2=Van Loan | first2=Charles F. | author2-link=Charles F. Van Loan | title=Matrix Computations  | edition=3rd  | publisher=[[Johns Hopkins University Press]] | year=1996 | isbn=978-0-8018-5414-9}}</ref><ref>F. Chong (1971) "A Geometric Note on the Cayley Transform", pages 84,5 in ''A Spectrum of Mathematics: Essays Presented to H. G. Forder'', [[John C. Butcher]] editor, [[Auckland University Press]]</ref> प्रत्येक दिशा में अलग-अलग प्रतिचित्रण की आवश्यकता होती है,
Line 58: Line 60:
  A &{}= (Q - I)(Q + I)^{-1}
  A &{}= (Q - I)(Q + I)^{-1}
\end{align} .</math>
\end{align} .</math>
प्रतिचित्रण को उलटे कारकों के क्रम के साथ भी लिखा जा सकता है;<ref>{{Citation| last1=Courant| first1=Richard| author1-link=Richard Courant| last2=Hilbert| first2=David| author2-link=David Hilbert| title=Methods of Mathematical Physics| volume=1| edition=1st English| publisher=Wiley-Interscience  | year=1989  | pages=536, 7  | place=New York  | isbn=978-0-471-50447-4}} Ch.VII,&nbsp;§7.2</ref><ref>[[Howard Eves]] (1966) ''Elementary Matrix Theory'', § 5.4A Cayley’s Construction of Real Orthogonal Matrices, pages 365–7, [[Allyn & Bacon]]</ref> हालांकि, हमेशा (μI ± A) के साथ यात्रा करता है<sup>-1</sup>, इसलिए पुनर्क्रमित करने से परिभाषा प्रभावित नहीं होती है।
प्रतिचित्रण को उलटे कारकों के क्रम के साथ भी लिखा जा सकता है;<ref>{{Citation| last1=Courant| first1=Richard| author1-link=Richard Courant| last2=Hilbert| first2=David| author2-link=David Hilbert| title=Methods of Mathematical Physics| volume=1| edition=1st English| publisher=Wiley-Interscience  | year=1989  | pages=536, 7  | place=New York  | isbn=978-0-471-50447-4}} Ch.VII,&nbsp;§7.2</ref><ref>[[Howard Eves]] (1966) ''Elementary Matrix Theory'', § 5.4A Cayley’s Construction of Real Orthogonal Matrices, pages 365–7, [[Allyn & Bacon]]</ref> हालांकि, A<sup>-1</sup> हमेशा (μI ± A) के साथ यात्रा करता है, इसलिए पुनर्क्रमित करने से परिभाषा प्रभावित नहीं होती है।


=== उदाहरण ===
=== उदाहरण ===
2×2 मामले में, हमारे पास है
2×2 स्तिथि में, हमारे पास निम्न है
:<math>
:<math>
\begin{bmatrix} 0 & \tan \frac{\theta}{2} \\ -\tan \frac{\theta}{2} & 0 \end{bmatrix}
\begin{bmatrix} 0 & \tan \frac{\theta}{2} \\ -\tan \frac{\theta}{2} & 0 \end{bmatrix}
Line 67: Line 69:
\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} .
\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} .
</math>
</math>
180° क्रमावर्तन आव्यूह, -I, को बाहर रखा गया है, हालांकि यह टैन के रूप में सीमा है<sup>θ</sup>⁄<sub>2</sub> अनंत तक जाता है।
180° क्रमावर्तन आव्यूह, -I, को बाहर रखा गया है, हालांकि यह सीमा है क्योंकि tan θ⁄2 अनंत तक जाता है।


3×3 मामले में, हमारे पास है
3×3 स्तिथि में, हमारे पास है
:<math>
:<math>
\begin{bmatrix} 0 & z & -y \\ -z & 0 & x \\ y & -x & 0 \end{bmatrix}
\begin{bmatrix} 0 & z & -y \\ -z & 0 & x \\ y & -x & 0 \end{bmatrix}
Line 80: Line 82:
\end{bmatrix} ,
\end{bmatrix} ,
</math>
</math>
जहां के = डब्ल्यू<sup>2</sup> + x<sup>2</sup> + और<sup>2</sup> + के साथ<sup>2</sup>, और जहाँ w = 1। इसे हम चतुर्धातुक के अनुरूप क्रमावर्तन आव्यूह के रूप में पहचानते हैं
जहां ''K'' = ''w''<sup>2</sup> + ''x''<sup>2</sup> + ''y''<sup>2</sup> + ''z''<sup>2</sup>, और जहाँ w = 1। इसे हम चतुर्धातुक के अनुरूप क्रमावर्तन आव्यूह के रूप में पहचानते हैं


:<math> w + \mathbf{i} x + \mathbf{j} y + \mathbf{k} z \,\!</math>
:<math> w + \mathbf{i} x + \mathbf{j} y + \mathbf{k} z \,\!</math>
(एक सूत्र के अनुसार केली ने एक साल पहले प्रकाशित किया था), सिवाय स्केल किए हुए ताकि सामान्य स्केलिंग के बजाय w = 1 ताकि w<sup>2</sup> + x<sup>2</sup> + और<sup>2</sup> + के साथ<sup>2</sup> = 1. इस प्रकार सदिश (x,y,z) क्रमावर्तन की इकाई अक्ष है जिसे tan द्वारा स्केल किया गया है<sup>θ</sup>⁄<sub>2</sub>. फिर से बहिष्कृत 180 डिग्री क्रमावर्तन हैं, जो इस मामले में सभी क्यू हैं जो [[सममित मैट्रिक्स|सममित आव्यूह]] हैं (ताकि क्यू<sup>टी</sup> = क्यू).
(एक सूत्र के अनुसार केली ने एक साल पहले प्रकाशित किया था), सिवाय पर्पटित किए हुए w = 1 ताकि सामान्य प्रवर्धन के स्थान पर ''w''<sup>2</sup> + ''x''<sup>2</sup> + ''y''<sup>2</sup> + ''z''<sup>2</sup> = 1 हो। इस प्रकार सदिश (x,y,z) क्रमावर्तन की इकाई अक्ष है जिसे tan<sup>θ</sup>⁄<sub>2</sub> द्वारा पर्पटित किया गया है। फिर से बहिष्कृत 180 डिग्री क्रमावर्तन हैं, जो इस स्तिथि में सभी Q हैं जो [[सममित मैट्रिक्स|सममित आव्यूह]] हैं (ताकि ''Q''<sup>T</sup> = ''Q'').


=== अन्य आव्यूह ===
=== अन्य आव्यूह ===
ओर्थोगोनल और [[तिरछा-हर्मिटियन मैट्रिक्स|तिरछा-हर्मिटियन आव्यूह]] के लिए [[एकात्मक मैट्रिक्स|एकात्मक आव्यूह]] को प्रतिस्थापित करके प्रतिचित्रण को [[जटिल संख्या|सम्मिश्र संख्या]] मेट्रिसेस तक बढ़ाया जा सकता है। तिरछा-सममित के लिए तिरछा-हर्मिटियन, अंतर यह है कि स्थानान्तरण (·<sup>T</sup>) संयुग्मी स्थानांतरण द्वारा प्रतिस्थापित किया जाता है (·<sup>एच</सुप>). यह मानक वास्तविक आंतरिक उत्पाद को मानक सम्मिश्र आंतरिक उत्पाद के साथ बदलने के अनुरूप है। वास्तव में, ट्रांसपोज़ या कॉन्जुगेट ट्रांसपोज़ के अलावा हर्मिटियन के विकल्पों के साथ परिभाषा को और आगे बढ़ाया जा सकता है।
आयतीय और [[तिरछा-हर्मिटियन मैट्रिक्स|तिर्यक्-हर्मिटियन आव्यूह]] के लिए [[एकात्मक मैट्रिक्स|एकात्मक आव्यूह]] को प्रतिस्थापित करके प्रतिचित्रण को [[जटिल संख्या|सम्मिश्र संख्या]] आव्यूह तक बढ़ाया जा सकता है। तिर्यक्-सममित के लिए तिर्यक्-हर्मिटियन, अंतर यह है कि स्थानान्तरण (·<sup>T</sup>) संयुग्मी स्थानांतरण (·<sup>H</sup>) द्वारा प्रतिस्थापित किया जाता है। यह मानक वास्तविक आंतरिक उत्पाद को मानक सम्मिश्र आंतरिक उत्पाद के साथ बदलने के अनुरूप है। वस्तुतः, स्थानांतर या संयुग्मन स्थानांतर के अलावा हर्मिटियन अभिसम्युक्त के विकल्पों के साथ परिभाषा को और आगे बढ़ाया जा सकता है।  


औपचारिक रूप से, परिभाषा के लिए केवल कुछ अपरिवर्त्यता की आवश्यकता होती है, इसलिए क्यू के लिए किसी भी आव्यूह एम को स्थानापन्न किया जा सकता है, जिसके आइगेनवेल्यू में -1 शामिल नहीं है। उदाहरण के लिए,
औपचारिक रूप से, परिभाषा के लिए केवल कुछ अपरिवर्त्यता की आवश्यकता होती है, इसलिए Q के लिए किसी भी आव्यूह m को स्थानापन्न किया जा सकता है, जिसके आइगेनवेल्यू में -1 सम्मिलित नहीं है। उदाहरण के लिए,
:<math>
:<math>
\begin{bmatrix} 0 & -a & ab - c \\ 0 & 0 & -b \\ 0 & 0 & 0 \end{bmatrix}
\begin{bmatrix} 0 & -a & ab - c \\ 0 & 0 & -b \\ 0 & 0 & 0 \end{bmatrix}
Line 94: Line 96:
\begin{bmatrix} 1 & 2a & 2c \\ 0 & 1 & 2b \\ 0 & 0 & 1 \end{bmatrix} .
\begin{bmatrix} 1 & 2a & 2c \\ 0 & 1 & 2b \\ 0 & 0 & 1 \end{bmatrix} .
</math>
</math>
ध्यान दें कि ए तिरछा-सममित (क्रमशः, तिरछा-हर्मिटियन) है अगर और केवल अगर क्यू ओर्थोगोनल (क्रमशः, एकात्मक) है जिसका कोई आइगेनवैल्यू -1 नहीं है।
ध्यान दें कि a तिर्यक्-सममित (क्रमशः, तिर्यक्-हर्मिटियन) है यदि और केवल यदि Q आयतीय (क्रमशः, एकात्मक) है जिसका कोई आइगेनवैल्यू -1 नहीं है।


== ऑपरेटर मानचित्र ==
== संचालक मानचित्र ==
एक [[आंतरिक उत्पाद स्थान]] का एक अनंत-आयामी संस्करण हिल्बर्ट स्थान है, और कोई अब [[मैट्रिक्स (गणित)|आव्यूह (गणित)]] के बारे में बात नहीं कर सकता है। हालाँकि, मैट्रिसेस केवल रैखिक ऑपरेटरों का प्रतिनिधित्व करते हैं, और इनका उपयोग किया जा सकता है। इसलिए, आव्यूह प्रतिचित्रण और सम्मिश्र प्लेन प्रतिचित्रण दोनों को सामान्यीकृत करते हुए, कोई ऑपरेटरों के केली ट्रांसफॉर्म को परिभाषित कर सकता है।
एक [[आंतरिक उत्पाद स्थान]] का एक अनंत-आयामी संस्करण हिल्बर्ट स्थान है, और कोई अब [[मैट्रिक्स (गणित)|आव्यूह (गणित)]] के बारे में बात नहीं कर सकता है। हालाँकि, आव्यूह केवल रैखिक संचालकों का प्रतिनिधित्व करते हैं, और इनका उपयोग किया जा सकता है। इसलिए, आव्यूह प्रतिचित्रण और सम्मिश्र तल प्रतिचित्रण दोनों को सामान्यीकृत करते हुए, कोई संचालकों के केली रूपांतरण को परिभाषित कर सकता है।
:<math>\begin{align}
:<math>\begin{align}
  U &{}= (A - \mathbf{i}I) (A + \mathbf{i}I)^{-1} \\
  U &{}= (A - \mathbf{i}I) (A + \mathbf{i}I)^{-1} \\
  A &{}= \mathbf{i}(I + U) (I - U)^{-1}
  A &{}= \mathbf{i}(I + U) (I - U)^{-1}
\end{align}</math>
\end{align}</math>
यहाँ U, dom U, का डोमेन (A+'i'I) dom A है। अधिक जानकारी के लिए सेल्फ़-एडजॉइंट ऑपरेटर#एक्सटेंशन ऑफ़ सिमेट्रिक ऑपरेटर्स|सेल्फ़-एडज्वाइंट ऑपरेटर देखें।
यहाँ U, dom U, का कार्यक्षेत्र (A+'i'I) dom A है। अधिक जानकारी के लिए स्वतः-अभिसम्युक्त संचालक देखें।


== यह भी देखें ==
== यह भी देखें ==
* बिलिनियर परिवर्तन
* द्विरैखिक रूपांतरण
* [[सममित ऑपरेटरों के एक्सटेंशन]]
* [[सममित ऑपरेटरों के एक्सटेंशन|सममित संचालकों के विस्तारण]]


== संदर्भ ==
== संदर्भ ==

Revision as of 17:47, 16 March 2023

गणित में, आर्थर केली के नाम पर केली रूपांतरण, संबंधित चीजों का एक समूह है। जैसा कि मूल रूप से केली (1846) द्वारा वर्णित है, केली रूपांतरण विषम सममित आव्यूह और विशेष लांबिक आव्यूह के बीच एक मानचित्रण है। परिवर्तन वास्तविक विश्लेषण, सम्मिश्र विश्लेषण और चतुष्कोणीय विश्लेषण में प्रयुक्त एक होमोग्राफी है। हिल्बर्ट रिक्त स्थान के सिद्धांत में, केली रूपांतरण रैखिक संचालक के बीच एक मानचित्रण (Nikol’skii 2001) है

यथार्थ होमोग्राफी

केली रूपांतरण वास्तविक प्रक्षेपी रेखा का एक स्वसमाकृतिकता है जो अनुक्रम में {1, 0, -1, ∞} के तत्वों को क्रमबद्ध करता है। उदाहरण के लिए, यह सकारात्मक वास्तविक संख्याओं को अंतराल [−1, 1] में प्रतिचित्रित करता है। इस प्रकार केली रूपांतरण का उपयोग लिजेंड्रे बहुपदों को अनुकूल बनाने के लिए किया जाता है ताकि लेजेंड्रे तर्कसंगत कार्यों के साथ सकारात्मक वास्तविक संख्याओं पर उपयोग किया जा सके।

वास्तविक होमोग्राफी के रूप में, बिंदुओं को प्रक्षेपीय निर्देशांक के साथ वर्णित किया गया है, और निम्न प्रतिचित्रण है


सम्मिश्र होमोग्राफी

यूनिट डिस्क में अपर कॉम्प्लेक्स हाफ-प्लेन का केली रूपांतरण

रीमैन क्षेत्र पर, केली रूपांतरण है:[1][2]

चूँकि {∞, 1, –1 } को {1, –i, i } में प्रतिचित्र किया जाता है, और मोबियस रूपांतरण सम्मिश्र समतल में सामान्यीकृत वृत्त को अनुमति देता है, f वास्तविक रेखा को एकल वृत्त में प्रतिचित्र करता है। इसके अलावा, चूँकि f निरंतर प्रतिचित्रण है और i को f द्वारा 0 पर ले जाया जाता है, ऊपरी अर्ध समतल को एकल चक्रिका पर प्रतिचित्र किया जाता है।

अतिशयोक्तिपूर्ण ज्यामिति के गणितीय प्रतिरूप के संदर्भ में, यह केली रूपांतरण पॉइनकेयर अर्ध समतल प्रतिरूप को पॉइंकेयर चक्रिका प्रतिरूप से संबंधित करता है। विद्युत अभियांत्रिकी में केली रूपांतरण का उपयोग संचरण लाइन के प्रतिबाधा मिलान के लिए उपयोग किए जाने वाले स्मिथ चार्ट के विद्युत प्रतिघात अर्ध-विमान को प्रतिचित्र करने के लिए किया गया है।

चतुष्कोण होमोग्राफी

चतुष्कोणों के चार आयामी स्थान में q = a + b i + c j + d k, छंद

इकाई 3-गोला बनाएँ।

चूंकि चतुष्कोण गैर-क्रम विनिमय हैं, वलय के ऊपर इसकी प्रक्षेप्य रेखा के तत्वों में U (a, b) लिखे गए सजातीय निर्देशांक हैं, यह इंगित करने के लिए कि सजातीय कारक बाईं ओर गुणा करता है। चतुष्कोणीय परिवर्तन निम्न है

ऊपर वर्णित वास्तविक और सम्मिश्र समरूपता क्वाटरनियन होमोग्राफी के उदाहरण हैं जहां θ क्रमशः शून्य या π/2 है।

स्पष्ट रूप से परिवर्तन u → 0 → -1 लेता है और -u → ∞ → 1 लेता है।

q = 1 पर इस होमोग्राफी का मूल्यांकन वर्सर u को अपनी धुरी में प्रतिचित्र करता है:

लेकिन

इस प्रकार

इस रूप में केली रूपांतरण को क्रमावर्तन के तर्कसंगत प्राचलीकरण के रूप में वर्णित किया गया है: सम्मिश्र संख्या पहचान में t = tan φ/2 दें[3]

जहाँ दाहिनी ओर t i का रूपांतर है और बाएँ हाथ की ओर नकारात्मक φ रेडियन द्वारा समतल के घूर्णन का प्रतिनिधित्व करता है।

उलटा

मान लीजिये तब से

जहां चतुष्कोणों पर प्रक्षेपी रैखिक समूह में समतुल्यता है, निम्न f(u, 1) का व्युत्क्रम कार्य है

चूंकि समरूपताएं आपत्तियां हैं, सदिश चतुष्कोणों को छंदों के 3-क्षेत्रों में प्रतिचित्र करता है। जैसा कि छंद 3-समष्टि में घुमावों का प्रतिनिधित्व करते हैं, होमोग्राफी f −13 में गेंद से घुमाव उत्पन्न करता है।

आव्यूह मानचित्र

वास्तविक संख्या पर n×n वर्गाकार आव्यूह के बीच, I अस्मिता आव्यूह के साथ, A को कोई विषम सममित आव्यूह होने दें (ताकि AT = −A)

फिर I + A इन्वेर्टिबल आव्यूह है, और केली रूपांतरण है

वह लांबिक आव्यूह उत्पन्न करता है, Q (ताकि QTQ = I)। ऊपर Q की परिभाषा में आव्यूह गुणन क्रमविनिमेय है, इसलिए Q को वैकल्पिक रूप से परिभाषित किया जा सकता है। वस्तुतः, Q में निर्धारक +1 होना चाहिए, इसलिए विशेष आयतीय है।

इसके विपरीत, Q को कोई भी लांबिक आव्यूह होने दें, जिसमें -1 एक आईजेनवैल्यू के रूप में नहीं है; तब

एक विषम सममित आव्यूह है।

Q पर शर्त स्वचालित रूप से निर्धारक -1 के साथ आव्यूह को बाहर करती है, लेकिन कुछ विशेष आयतीय आव्यूह को भी बाहर करती है।

थोड़ा अलग रूप भी देखने को मिलता है,[4][5] प्रत्येक दिशा में अलग-अलग प्रतिचित्रण की आवश्यकता होती है,

प्रतिचित्रण को उलटे कारकों के क्रम के साथ भी लिखा जा सकता है;[6][7] हालांकि, A-1 हमेशा (μI ± A) के साथ यात्रा करता है, इसलिए पुनर्क्रमित करने से परिभाषा प्रभावित नहीं होती है।

उदाहरण

2×2 स्तिथि में, हमारे पास निम्न है

180° क्रमावर्तन आव्यूह, -I, को बाहर रखा गया है, हालांकि यह सीमा है क्योंकि tan θ⁄2 अनंत तक जाता है।

3×3 स्तिथि में, हमारे पास है

जहां K = w2 + x2 + y2 + z2, और जहाँ w = 1। इसे हम चतुर्धातुक के अनुरूप क्रमावर्तन आव्यूह के रूप में पहचानते हैं

(एक सूत्र के अनुसार केली ने एक साल पहले प्रकाशित किया था), सिवाय पर्पटित किए हुए w = 1 ताकि सामान्य प्रवर्धन के स्थान पर w2 + x2 + y2 + z2 = 1 हो। इस प्रकार सदिश (x,y,z) क्रमावर्तन की इकाई अक्ष है जिसे tanθ2 द्वारा पर्पटित किया गया है। फिर से बहिष्कृत 180 डिग्री क्रमावर्तन हैं, जो इस स्तिथि में सभी Q हैं जो सममित आव्यूह हैं (ताकि QT = Q).

अन्य आव्यूह

आयतीय और तिर्यक्-हर्मिटियन आव्यूह के लिए एकात्मक आव्यूह को प्रतिस्थापित करके प्रतिचित्रण को सम्मिश्र संख्या आव्यूह तक बढ़ाया जा सकता है। तिर्यक्-सममित के लिए तिर्यक्-हर्मिटियन, अंतर यह है कि स्थानान्तरण (·T) संयुग्मी स्थानांतरण (·H) द्वारा प्रतिस्थापित किया जाता है। यह मानक वास्तविक आंतरिक उत्पाद को मानक सम्मिश्र आंतरिक उत्पाद के साथ बदलने के अनुरूप है। वस्तुतः, स्थानांतर या संयुग्मन स्थानांतर के अलावा हर्मिटियन अभिसम्युक्त के विकल्पों के साथ परिभाषा को और आगे बढ़ाया जा सकता है।

औपचारिक रूप से, परिभाषा के लिए केवल कुछ अपरिवर्त्यता की आवश्यकता होती है, इसलिए Q के लिए किसी भी आव्यूह m को स्थानापन्न किया जा सकता है, जिसके आइगेनवेल्यू में -1 सम्मिलित नहीं है। उदाहरण के लिए,

ध्यान दें कि a तिर्यक्-सममित (क्रमशः, तिर्यक्-हर्मिटियन) है यदि और केवल यदि Q आयतीय (क्रमशः, एकात्मक) है जिसका कोई आइगेनवैल्यू -1 नहीं है।

संचालक मानचित्र

एक आंतरिक उत्पाद स्थान का एक अनंत-आयामी संस्करण हिल्बर्ट स्थान है, और कोई अब आव्यूह (गणित) के बारे में बात नहीं कर सकता है। हालाँकि, आव्यूह केवल रैखिक संचालकों का प्रतिनिधित्व करते हैं, और इनका उपयोग किया जा सकता है। इसलिए, आव्यूह प्रतिचित्रण और सम्मिश्र तल प्रतिचित्रण दोनों को सामान्यीकृत करते हुए, कोई संचालकों के केली रूपांतरण को परिभाषित कर सकता है।

यहाँ U, dom U, का कार्यक्षेत्र (A+'i'I) dom A है। अधिक जानकारी के लिए स्वतः-अभिसम्युक्त संचालक देखें।

यह भी देखें

संदर्भ

  1. Robert Everist Green & Steven G. Krantz (2006) Function Theory of One Complex Variable, page 189, Graduate Studies in Mathematics #40, American Mathematical Society ISBN 9780821839621
  2. Erwin Kreyszig (1983) Advanced Engineering Mathematics, 5th edition, page 611, Wiley ISBN 0471862517
  3. See Tangent half-angle formula
  4. Golub, Gene H.; Van Loan, Charles F. (1996), Matrix Computations (3rd ed.), Johns Hopkins University Press, ISBN 978-0-8018-5414-9
  5. F. Chong (1971) "A Geometric Note on the Cayley Transform", pages 84,5 in A Spectrum of Mathematics: Essays Presented to H. G. Forder, John C. Butcher editor, Auckland University Press
  6. Courant, Richard; Hilbert, David (1989), Methods of Mathematical Physics, vol. 1 (1st English ed.), New York: Wiley-Interscience, pp. 536, 7, ISBN 978-0-471-50447-4 Ch.VII, §7.2
  7. Howard Eves (1966) Elementary Matrix Theory, § 5.4A Cayley’s Construction of Real Orthogonal Matrices, pages 365–7, Allyn & Bacon
  • Gilbert Helmberg (1969) Introduction to Spectral Theory in Hilbert Space, page 288, § 38: The Cayley Transform, Applied Mathematics and Mechanics #6, North Holland
  • Henry Ricardo (2010) A Modern Introduction to Linear Algebra, page 504, CRC Press ISBN 978-1-4398-0040-9 .


बाहरी संबंध