समदूरस्थ: Difference between revisions
(Created page with "{{redirect|Equidistance|the principle in maritime boundary claims|Equidistance principle}} {{more citations needed|date=August 2012}} {{wiktionary}} File:Perpendicular bise...") |
No edit summary |
||
(7 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{redirect| | {{redirect|समदूरस्थ|समुद्री सीमा दावों में सिद्धांत|समदूरस्थ सिद्धांत}}{{wiktionary}} | ||
[[File:Perpendicular bisector.gif|right|thumb|रेखा खंड का लंबवत द्विभाजक। वह बिंदु जहां लाल रेखा काली रेखा खंड को प्रतिच्छेद करती है, काली रेखा एक खंड के दो अंतिम बिंदुओं से समान दूरी पर होती है।]] | |||
[[File:Circumscribed Polygon.svg|thumb|[[चक्रीय बहुभुज]] P, वृत्त C द्वारा परिबद्ध वृत्त है। परिकेन्द्र O वृत्त पर प्रत्येक बिंदु के समान दूरी पर है, और बहुभुज के प्रत्येक शीर्ष के लिए किला है।]]एक बिंदु को वस्तुओं के सेट से [[दूरी|समान दूरी]] पर कहा जाता है यदि उस बिंदु और सेट में प्रत्येक वस्तु के बीच की दूरी बराबर होती है।<ref>{{cite book | |||
{{wiktionary}} | |||
[[File:Perpendicular bisector.gif|right|thumb| | |||
[[File:Circumscribed Polygon.svg|thumb|[[चक्रीय बहुभुज]] P, वृत्त C द्वारा परिबद्ध वृत्त है। परिकेन्द्र O वृत्त पर प्रत्येक बिंदु के समान दूरी पर है, और बहुभुज के प्रत्येक शीर्ष के लिए | |||
|title=The concise Oxford dictionary of mathematics | |title=The concise Oxford dictionary of mathematics | ||
|first1= Christopher |last1=Clapham | |first1= Christopher |last1=Clapham | ||
Line 14: | Line 11: | ||
|url=https://books.google.com/books?id=UTCenrlmVW4C&pg=PT164 | |url=https://books.google.com/books?id=UTCenrlmVW4C&pg=PT164 | ||
}}</ref> | }}</ref> | ||
द्वि-आयामी [[यूक्लिडियन ज्यामिति]] में, दो दिए गए (विभिन्न) बिंदुओं से समदूरस्थ बिंदुओं का स्थान | द्वि-आयामी [[यूक्लिडियन ज्यामिति]] में, दो दिए गए(विभिन्न) बिंदुओं से समदूरस्थ बिंदुओं का स्थान उनका लंबवत द्विभाजक होता है। तीन आयामों में, दो दिए गए बिंदुओं से समदूरस्थ बिंदुओं का स्थान समतल है, और आगे सामान्यीकरण करते हुए, n-आयामी स्थान में, n-अंतराल में दो बिंदुओं से समदूरस्थ बिंदुओं का स्थान (n−1)-अंतराल है। | ||
त्रिभुज के लिए परिकेन्द्र तीन शीर्षों में से प्रत्येक से समदूरस्थ बिंदु होता है। प्रत्येक गैर-पतित त्रिभुज में एक ऐसा बिंदु होता है। इस परिणाम को चक्रीय बहुभुजों के लिए सामान्यीकृत किया जा सकता है: परिकेन्द्र प्रत्येक शीर्ष से समान दूरी पर होता है। इसी प्रकार, त्रिभुज या किसी अन्य [[स्पर्शरेखा बहुभुज]] का अंतःकेंद्र [[वृत्त]] के साथ बहुभुज की भुजाओं के स्पर्शरेखा के बिंदुओं से समान दूरी पर होता है। किसी त्रिभुज या अन्य बहुभुज की एक भुजा के लंब समद्विभाजक पर प्रत्येक बिंदु उस भुजा के सिरों पर स्थित दो शीर्षों से समान दूरी पर होता है। किसी भी बहुभुज के कोण के समद्विभाजक पर प्रत्येक बिंदु उस कोण से निकलने वाली दो भुजाओं से समान दूरी पर होता है। | |||
[[आयत]] का केंद्र सभी चार शीर्षों से समान दूरी पर होता है, और यह दो विपरीत पक्षों से समान दूरी पर होता है और अन्य दो विपरीत पक्षों से भी समान दूरी पर होता है। [[पतंग (ज्यामिति)|पतंग]] की सममिति के अक्ष पर एक बिंदु दो पक्षों के बीच समदूरस्थ होता है। | |||
वृत्त का केंद्र वृत्त के प्रत्येक बिंदु से समान दूरी पर होता है। इसी प्रकार गोले का केंद्र गोले के प्रत्येक बिंदु से समान दूरी पर होता है। | |||
[[ परवलय |परवलय]] निश्चित बिंदु ([[फोकस (ज्यामिति)|फोकस]]) और निश्चित रेखा (डायरेक्ट्रिक्स) से समदूरस्थ समतल में बिंदुओं का समूह है, जहां डायरेक्ट्रिक्स से दूरी को डायरेक्ट्रिक्स के लंबवत रेखा के साथ मापा जाता है। | |||
[[आकार|आकृति]] विश्लेषण में, सांस्थितिकीय कंकाल या किसी आकृति का [[औसत दर्जे का अक्ष]] उस आकार का पतला संस्करण है जो इसकी [[सीमा (टोपोलॉजी)|सीमा]] से समान दूरी पर है। | |||
यूक्लिडियन ज्यामिति में, समानांतर रेखाएँ(वे रेखाएँ जो कभी भी दूसरे को नहीं काटती हैं) इस अर्थ में समान दूरी पर होती हैं कि रेखा पर किसी भी बिंदु की दूरी दूसरी रेखा के निकटतम बिंदु से सभी बिंदुओं के लिए समान होती है। | |||
[[अतिशयोक्तिपूर्ण ज्यामिति|अतिपरवलयिक ज्यामिति]] में दिए गए रेखा के तरफ और उससे समान दूरी पर स्थित बिंदुओं का समूह अतिचक्र(जो रेखा नहीं वक्र है) का निर्माण करता है ।<ref>{{citation|first=James R.|last=Smart|title=Modern Geometries|edition=5th|publisher=Brooks/Cole|year=1997|isbn=0-534-35188-3|page=392}}</ref> | |||
== यह भी देखें == | == यह भी देखें == | ||
* समतुल्य सेट | * समतुल्य सेट | ||
Line 36: | Line 31: | ||
==संदर्भ== | ==संदर्भ== | ||
{{reflist}} | {{reflist}} | ||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page]] | ||
[[Category:Articles with redirect hatnotes needing review]] | |||
[[Category:Created On 28/02/2023]] | [[Category:Created On 28/02/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:प्राथमिक ज्यामिति]] |
Latest revision as of 13:27, 18 March 2023
एक बिंदु को वस्तुओं के सेट से समान दूरी पर कहा जाता है यदि उस बिंदु और सेट में प्रत्येक वस्तु के बीच की दूरी बराबर होती है।[1]
द्वि-आयामी यूक्लिडियन ज्यामिति में, दो दिए गए(विभिन्न) बिंदुओं से समदूरस्थ बिंदुओं का स्थान उनका लंबवत द्विभाजक होता है। तीन आयामों में, दो दिए गए बिंदुओं से समदूरस्थ बिंदुओं का स्थान समतल है, और आगे सामान्यीकरण करते हुए, n-आयामी स्थान में, n-अंतराल में दो बिंदुओं से समदूरस्थ बिंदुओं का स्थान (n−1)-अंतराल है।
त्रिभुज के लिए परिकेन्द्र तीन शीर्षों में से प्रत्येक से समदूरस्थ बिंदु होता है। प्रत्येक गैर-पतित त्रिभुज में एक ऐसा बिंदु होता है। इस परिणाम को चक्रीय बहुभुजों के लिए सामान्यीकृत किया जा सकता है: परिकेन्द्र प्रत्येक शीर्ष से समान दूरी पर होता है। इसी प्रकार, त्रिभुज या किसी अन्य स्पर्शरेखा बहुभुज का अंतःकेंद्र वृत्त के साथ बहुभुज की भुजाओं के स्पर्शरेखा के बिंदुओं से समान दूरी पर होता है। किसी त्रिभुज या अन्य बहुभुज की एक भुजा के लंब समद्विभाजक पर प्रत्येक बिंदु उस भुजा के सिरों पर स्थित दो शीर्षों से समान दूरी पर होता है। किसी भी बहुभुज के कोण के समद्विभाजक पर प्रत्येक बिंदु उस कोण से निकलने वाली दो भुजाओं से समान दूरी पर होता है।
आयत का केंद्र सभी चार शीर्षों से समान दूरी पर होता है, और यह दो विपरीत पक्षों से समान दूरी पर होता है और अन्य दो विपरीत पक्षों से भी समान दूरी पर होता है। पतंग की सममिति के अक्ष पर एक बिंदु दो पक्षों के बीच समदूरस्थ होता है।
वृत्त का केंद्र वृत्त के प्रत्येक बिंदु से समान दूरी पर होता है। इसी प्रकार गोले का केंद्र गोले के प्रत्येक बिंदु से समान दूरी पर होता है।
परवलय निश्चित बिंदु (फोकस) और निश्चित रेखा (डायरेक्ट्रिक्स) से समदूरस्थ समतल में बिंदुओं का समूह है, जहां डायरेक्ट्रिक्स से दूरी को डायरेक्ट्रिक्स के लंबवत रेखा के साथ मापा जाता है।
आकृति विश्लेषण में, सांस्थितिकीय कंकाल या किसी आकृति का औसत दर्जे का अक्ष उस आकार का पतला संस्करण है जो इसकी सीमा से समान दूरी पर है।
यूक्लिडियन ज्यामिति में, समानांतर रेखाएँ(वे रेखाएँ जो कभी भी दूसरे को नहीं काटती हैं) इस अर्थ में समान दूरी पर होती हैं कि रेखा पर किसी भी बिंदु की दूरी दूसरी रेखा के निकटतम बिंदु से सभी बिंदुओं के लिए समान होती है।
अतिपरवलयिक ज्यामिति में दिए गए रेखा के तरफ और उससे समान दूरी पर स्थित बिंदुओं का समूह अतिचक्र(जो रेखा नहीं वक्र है) का निर्माण करता है ।[2]
यह भी देखें
- समतुल्य सेट
संदर्भ
- ↑ Clapham, Christopher; Nicholson, James (2009). The concise Oxford dictionary of mathematics. Oxford University Press. pp. 164–165. ISBN 978-0-19-923594-0.
- ↑ Smart, James R. (1997), Modern Geometries (5th ed.), Brooks/Cole, p. 392, ISBN 0-534-35188-3