रोमानोव्स्की बहुपद: Difference between revisions

From Vigyanwiki
No edit summary
Line 221: Line 221:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 03/03/2023]]
[[Category:Created On 03/03/2023]]
[[Category:Vigyan Ready]]

Revision as of 12:11, 17 March 2023

गणित में, रोमानोव्स्की बहुपद वास्तविक लंबकोणीय बहुपदों के तीन परिमित उपसमुच्चयों में से एक हैं।[1] जो सांख्यिकी में संभाव्यता वितरण फलनों के संदर्भ में वसेवोलॉड रोमानोव्स्की (फ्रेंच प्रतिलेखन में रोमनोव्स्की) द्वारा खोजे गए हैं। वे 1884 में एडवर्ड राउत द्वारा प्रस्तुत किए गए अल्प-ज्ञात रूथ बहुपदों के अधिक सामान्य वर्ग का एक लंबकोणीय उपसमुच्चय बनाते हैं।[2] रोमानोव्स्की बहुपद शब्द रैपोसो द्वारा,[3] लेस्की की वर्गीकरण योजना में तथाकथित 'छद्म-जैकोबी बहुपद' के संदर्भ में आगे रखा गया था।[4] रोमानोव्स्की-रूथ बहुपद के रूप में उन्हें संदर्भित करने के लिए यह अधिक सुसंगत लगता है, रोमानोव्स्की-बेसेल और रोमानोव्स्की-जैकोबी के साथ सादृश्य द्वारा लेस्की द्वारा लंबकोणीय बहुपद के दो अन्य समुच्चयों के लिए उपयोग किया जाता है।

मानक उत्कृष्ट लंबकोणीय बहुपदों के कुछ विपरीत, विचाराधीन बहुपद भिन्न होते हैं, जहां तक ​​एकपक्षीय पैरामीटर के लिए केवल उनमें से एक परिमित संख्या लंबकोणीय (ओर्थोगोनल) हैं, जैसा कि नीचे अधिक विस्तार से चर्चा की गई है।

रोमनोवस्की बहुपदों के लिए अवकल समीकरण

रोमानोव्स्की बहुपद अतिज्यामितीय अंतर समीकरण के निम्नलिखित संस्करण को संशोधित करते हैं

 

 

 

 

(1)

विचित्र रूप से, उन्हें गणितीय भौतिकी[5][6] और गणित में[7][8] विशेष फलनों पर मानक पाठ्यपुस्तकों से हटा दिया गया है और गणितीय साहित्य में कहीं और अपेक्षाकृत दुर्लभ उपस्थिति है।[9][10][11]

स्टर्म-लिउविल सिद्धांत हैं

 

 

 

 

(2)

वे पियर्सन के अवकल समीकरण को संशोधित करते हैं

 

 

 

 

(3)

जो अतिज्यामितीय के अवकल समीकरण के अवकल संक्रियक के स्व-आसन्न होने का आश्वासन देता है।

α = 0 और β < 0,के लिए रोमानोव्स्की बहुपदों का भार फलन लोरेंत्ज़ वितरण का आकार लेता है, जहाँ संबंधित बहुपदों को[12] यादृच्छिक मैट्रिक्स सिद्धांत में उनके अनुप्रयोगों में[13] कॉची बहुपदों के रूप में भी दर्शाया जाता है।

रोड्रिग्स सूत्र बहुपद R(α,β)
n
(x)
को इस रूप में निर्दिष्ट करता है

 

 

 

 

(4)

जहाँ Nn एक सामान्यीकरण स्थिरांक है। यह स्थिरांक बहुपद R(α,β)
n
(x)
में घात n के पद के गुणांक cn से व्यंजक द्वारा संबंधित है

 

 

 

 

(5)

जो n ≥ 1 के लिए है।

रोमानोव्स्की और जैकोबी के बहुपदों के बीच संबंध

जैसा कि एस्के द्वारा दिखाया गया है कि वास्तविक लंबकोणीय बहुपदों के इस परिमित अनुक्रम को काल्पनिक तर्क के जैकोबी बहुपदों के संदर्भ में व्यक्त किया जा सकता है और इस तरह इसे प्रायः जटिल जैकोबी बहुपद कहा जाता है।[14] अर्थात्, रोमानोव्स्की समीकरण (1) औपचारिक रूप से जैकोबी समीकरण से प्राप्त किया जा सकता है,[15]

 

 

 

 

(6)

प्रतिस्थापन के माध्यम से, वास्तविक x के लिए,

 

 

 

 

(7)

जिस स्थिति में कोई पाता है

 

 

 

 

(8)

जेकोबी बहुपदों के लिए उपयुक्त रूप से चयन किए गए सामान्यीकरण स्थिरांक के साथ और कुइजलर्स एट अल में दाईं ओर जटिल जैकोबी बहुपदों को (1.1) के माध्यम से परिभाषित किया गया है।[16] (2003) मे जो आश्वस्त करता है कि (8) x में वास्तविक बहुपद हैं। चूंकि उद्धृत लेखक गैर-हर्मिटियन (जटिल) लंबकोणीय स्थितियों पर चर्चा करते हैं, केवल वास्तविक जैकोबी अनुक्रमणिका (इंडेक्स) के लिए उनके विश्लेषण और रोमानोव्स्की बहुपदों की परिभाषा (8) के बीच केवल परस्पर व्याप्त α = 0 सम्मिलित है। हालांकि इस विशिष्ट स्थिति की जांच के लिए इस लेख की सीमाओं से अधिक जांच की आवश्यकता होती है। व्युत्क्रमणीयता पर ध्यान दें (8) समीकरण के अनुसार

 

 

 

 

(9)

जहाँ P(α,β)
n
(x)
वास्तविक जैकोबी बहुपद है और

जटिल रोमानोव्स्की बहुपद होगा।

रोमनोवस्की बहुपदों के गुण

स्पष्ट निर्माण

वास्तविक α, β और n = 0, 1, 2, ..., के लिए फलन R(α,β)
n
(x)
को समीकरण (4) में रोड्रिग्स सूत्र द्वारा परिभाषित किया जा सकता है

 

 

 

 

(10)

जहाँ w(α,β) वही भार फलन है जो कि (2) समीकरण मे है, और s(x) = 1 + x2 अतिज्यामितीय अवकल समीकरण के दूसरे अवकलज का गुणांक है जैसा कि (1) समीकरण में है।

ध्यान दें कि हमने सामान्यीकरण स्थिरांक Nn = 1 चयन किया है, जो बहुपद में उच्चतम घात के गुणांक के विकल्प के बराबर है, जैसा कि समीकरण (5) द्वारा दिया गया है। यह व्यंजक लेता है

 

 

 

 

(11)

यह भी ध्यान दें कि गुणांक cn पैरामीटर α पर निर्भर नहीं करता है, लेकिन केवल β पर और, β के विशेष मानों के लिए cn लुप्त हो जाता है (अर्थात, सभी मूल्यों के लिए

जहाँ k = 0, ..., n − 1) यह अवलोकन नीचे संबोधित एक समस्या उत्पन्न करता है।

बाद के संदर्भ के लिए, हम स्पष्ट रूप से 0, 1, और 2 घात के बहुपदों को लिखते हैं,