हार तरंगिका: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:


[[Image:Haar wavelet.svg|thumb|right|बाल तरंगिका]]गणित में, हार [[ छोटा लहर | छोटा लहर]] पुनर्वर्धित वर्ग-आकार के कार्यों का क्रम है जो साथ तरंगिका परिवार या आधार बनाते हैं। तरंगिका विश्लेषण [[फूरियर विश्लेषण]] के समान है जिसमें यह अंतराल पर लक्ष्य कार्य को ऑर्थोनॉर्मल आधार के रूप में प्रदर्शित करने की अनुमति देता है। हार अनुक्रम अब पहले ज्ञात तरंगिका आधार के रूप में पहचाना जाता है और बड़े पैमाने पर शिक्षण उदाहरण के रूप में उपयोग किया जाता है।
[[Image:Haar wavelet.svg|thumb|right|बाल तरंगिका]]गणित में, हार [[ छोटा लहर | तरंगिका]] पुनर्वर्धित वर्ग-आकार के कार्यों का क्रम है जो एक साथ तरंगिका परिवार या आधार बनाते हैं। तरंगिका विश्लेषण [[फूरियर विश्लेषण]] के समान है जिसमें यह अंतराल पर लक्ष्य कार्य को ऑर्थोनॉर्मल आधार के रूप में प्रदर्शित करने की अनुमति देता है। हार अनुक्रम अब पहले ज्ञात तरंगिका आधार के रूप में पहचाना जाता है और बड़े पैमाने पर शिक्षण उदाहरण के रूप में उपयोग किया जाता है।


1909 में अल्फ्रेड हार द्वारा हार अनुक्रम प्रस्तावित किया गया था।<ref>see p.&nbsp;361 in {{harvtxt|Haar|1910}}.</ref> हार ने इन कार्यों का उपयोग [[इकाई अंतराल]] [0, 1] पर वर्ग-पूर्णांक कार्यों के स्थान के लिए ऑर्थोनॉर्मल प्रणाली का उदाहरण देने के लिए किया था। तरंगिकाओं का अध्ययन, और यहां तक ​​कि तरंगिका शब्द भी बहुत बाद तक नहीं आया था था। [[Daubechies तरंगिका|डोबेचीज तरंगिका]] के एक विशेष मामले के रूप में, हार तरंगिका को Db1 के रूप में भी जाना जाता है।
1909 में अल्फ्रेड हार द्वारा हार अनुक्रम प्रस्तावित किया गया था।<ref>see p.&nbsp;361 in {{harvtxt|Haar|1910}}.</ref> हार ने इन कार्यों का उपयोग [[इकाई अंतराल]] [0, 1] पर वर्ग-पूर्णांक कार्यों के स्थान के लिए ऑर्थोनॉर्मल प्रणाली का उदाहरण देने के लिए किया था। तरंगिकाओं का अध्ययन, और यहां तक ​​कि तरंगिका शब्द भी बहुत बाद तक नहीं आया था था। [[Daubechies तरंगिका|डोबेचीज तरंगिका]] के एक विशेष स्थिति के रूप में, हार तरंगिका को Db1 के रूप में भी जाना जाता है।


हर तरंगिका भी सबसे सरल संभव तरंगिका है। हर तरंगिका का प्रौद्योगिक हानि यह है कि यह [[निरंतर कार्य]] नहीं करता है, और इसलिए व्युत्पन्न नहीं है। हालांकि, यह गुण अचानक संक्रमण ([[डिजिटल सिग्नल (सिग्नल प्रोसेसिंग)]]), जैसे मशीनों में उपकरण की विफलता की निगरानी के साथ संकेतों के विश्लेषण के लिए लाभ हो सकती है।<ref>{{cite journal |first1=B. |last1=Lee |first2=Y. S. |last2=Tarng |title=स्पिंडल मोटर करंट का उपयोग करके एंड मिलिंग में उपकरण की विफलता की निगरानी के लिए असतत तरंगिका परिवर्तन का अनुप्रयोग|journal=International Journal of Advanced Manufacturing Technology |year=1999 |volume=15 |issue=4 |pages=238–243 |doi=10.1007/s001700050062 |s2cid=109908427 }}</ref>
हर तरंगिका भी सबसे सरल संभव तरंगिका है। हर तरंगिका का प्रौद्योगिक हानि यह है कि यह [[निरंतर कार्य]] नहीं करता है, और इसलिए व्युत्पन्न नहीं है। हालांकि, यह गुण अचानक संक्रमण ([[डिजिटल सिग्नल (सिग्नल प्रोसेसिंग)]]), जैसे मशीनों में उपकरण की विफलता की निगरानी के साथ संकेतों के विश्लेषण के लिए लाभ हो सकती है।<ref>{{cite journal |first1=B. |last1=Lee |first2=Y. S. |last2=Tarng |title=स्पिंडल मोटर करंट का उपयोग करके एंड मिलिंग में उपकरण की विफलता की निगरानी के लिए असतत तरंगिका परिवर्तन का अनुप्रयोग|journal=International Journal of Advanced Manufacturing Technology |year=1999 |volume=15 |issue=4 |pages=238–243 |doi=10.1007/s001700050062 |s2cid=109908427 }}</ref>
Line 17: Line 17:


== हार कार्य और हार प्रणाली ==
== हार कार्य और हार प्रणाली ==
पूर्णांकों की प्रत्येक जोड़ी n, k के लिए <math>\mathbb{Z}</math>, हार फ़ंक्शन ''ψ'<sub>''n'',''k''</sub> [[वास्तविक रेखा]] पर परिभाषित किया गया है <math>\mathbb{R}</math> सूत्र द्वारा
<math>\mathbb{Z}</math> में पूर्णांकों की प्रत्येक जोड़ी n, k के लिए, हार फलन ''ψ'''n'',''k को सूत्र द्वारा'' [[वास्तविक रेखा]] <math>\mathbb{R}</math> पर परिभाषित किया गया है''
:<math> \psi_{n,k}(t) = 2^{n / 2} \psi(2^n t-k), \quad t \in \mathbb{R}.</math>
:<math> \psi_{n,k}(t) = 2^{n / 2} \psi(2^n t-k), \quad t \in \mathbb{R}.</math>
यह फ़ंक्शन [[ अर्ध-खुला अंतराल ]] | राइट-ओपन इंटरवल पर समर्थित है {{nowrap| ''I''<sub>''n'',''k''</sub> {{=}}}} {{nowrap|[ ''k''2<sup>&minus;''n''</sup>, (''k''+1)2<sup>&minus;''n''</sup>)}}, यानी, यह उस अंतराल के बाहर किसी फ़ंक्शन का शून्य है। [[हिल्बर्ट अंतरिक्ष]] एलपी स्पेस में इसका इंटीग्रल 0 और नॉर्म 1 है। एल<sup>2</sup>(<math>\mathbb{R}</math>),
यह फलन [[ अर्ध-खुला अंतराल ]]{{nowrap| ''I''<sub>''n'',''k''</sub> {{=}}}} {{nowrap|[ ''k''2<sup>&minus;''n''</sup>, (''k''+1)2<sup>&minus;''n''</sup>)}} पर समर्थित है, अर्थात्, यह उस अंतराल के बाहर किसी फलन का शून्य है। [[हिल्बर्ट अंतरिक्ष|हिल्बर्ट स्पेस]] L<sup>2</sup>(<math>\mathbb{R}</math>) में इसका  इंटीग्रल 0 और नॉर्म 1 है,
:<math> \int_{\mathbb{R}} \psi_{n, k}(t) \, d t = 0, \quad \|\psi_{n, k}\|^2_{L^2(\mathbb{R})} = \int_{\mathbb{R}} \psi_{n, k}(t)^2 \, d t = 1.</math>
:<math> \int_{\mathbb{R}} \psi_{n, k}(t) \, d t = 0, \quad \|\psi_{n, k}\|^2_{L^2(\mathbb{R})} = \int_{\mathbb{R}} \psi_{n, k}(t)^2 \, d t = 1.</math>
हार फ़ंक्शन जोड़ीदार ऑर्थोगोनलिटी#ऑर्थोगोनल फ़ंक्शन हैं,
हार फलन युग्‍मानूसार लंबकोणीय फलन हैं,
:<math> \int_{\mathbb{R}} \psi_{n_1, k_1}(t) \psi_{n_2, k_2}(t) \, d t = \delta_{n_1n_2} \delta_{k_1k_2}, </math>
:<math> \int_{\mathbb{R}} \psi_{n_1, k_1}(t) \psi_{n_2, k_2}(t) \, d t = \delta_{n_1n_2} \delta_{k_1k_2}, </math>
कहाँ <math>\delta_{ij}</math> [[क्रोनकर डेल्टा]] का प्रतिनिधित्व करता है। यहाँ रूढ़िवादिता का कारण है: जब दो सहायक अंतराल <math>I_{n_1, k_1}</math> और <math>I_{n_2, k_2}</math> बराबर नहीं हैं, तो वे या तो अलग हैं, या फिर दो में से छोटा समर्थन करता है, मान लीजिए <math>I_{n_1, k_1}</math>, दूसरे अंतराल के निचले या ऊपरी भाग में समाहित है, जिस पर कार्य करता है <math>\psi_{n_2, k_2}</math> स्थिर रहता है। इस मामले में यह इस प्रकार है कि इन दो हार कार्यों का उत्पाद पहले हार फ़ंक्शन का गुणक है, इसलिए उत्पाद का पूर्णांक 0 है।
जहाँ <math>\delta_{ij}</math> [[क्रोनकर डेल्टा]] का प्रतिनिधित्व करता है। यहाँ रूढ़िवादिता का कारण है: जब दो सहायक अंतराल <math>I_{n_1, k_1}</math> और <math>I_{n_2, k_2}</math> समान नहीं होते हैं, तो वे या तो अलग हो जाते हैं, या फिर दो में से छोटा समर्थन करता है, मान लीजिए <math>I_{n_1, k_1}</math>, दूसरे अंतराल के निचले या ऊपरी भाग में समाहित है, जिस पर फलन <math>\psi_{n_2, k_2}</math> स्थिर रहता है। इस स्थिति में यह इस प्रकार है कि इन दो हार कार्यों का उत्पाद पहले हार फलन का गुणक है, इसलिए उत्पाद का पूर्णांक 0 है।


वास्तविक रेखा पर हार प्रणाली कार्यों का समूह है
वास्तविक रेखा पर हार प्रणाली कार्यों का समूह है
:<math>\{1\} \cup \{ \psi_{n,k}(t) \; : \; n \in \mathbb{Z}, \; k \in \mathbb{Z} \}.</math>
:<math>\{1\} \cup \{ \psi_{n,k}(t) \; : \; n \in \mathbb{Z}, \; k \in \mathbb{Z} \}.</math>
यह एल में ऑर्थोनॉर्मल आधार है<sup>2</sup>(<math>\mathbb{R}</math>): लाइन पर हार प्रणाली एल में असामान्य आधार है<sup>2</sup>(<math>\mathbb{R}</math>).
यह L<sup>2</sup>(<math>\mathbb{R}</math>) में ऑर्थोनॉर्मल आधार है: लाइन पर हार प्रणाली L<sup>2</sup>(<math>\mathbb{R}</math>) में असामान्य आधार है।


== हर तरंगिका गुण ==
== हर तरंगिका गुण ==
Line 65: Line 65:
इस लेख में [0, 1] पर हार प्रणाली कहा जाता है, इसमें हर तरंगिका्स के सबसेट को परिभाषित किया गया है
इस लेख में [0, 1] पर हार प्रणाली कहा जाता है, इसमें हर तरंगिका्स के सबसेट को परिभाषित किया गया है
:<math>\{ t \in [0, 1] \mapsto \psi_{n,k}(t) \; : \; n \in \N \cup \{0\}, \; 0 \leq k < 2^n\},</math>
:<math>\{ t \in [0, 1] \mapsto \psi_{n,k}(t) \; : \; n \in \N \cup \{0\}, \; 0 \leq k < 2^n\},</math>
[0, 1] पर स्थिर फ़ंक्शन 1 को जोड़ने के साथ।
[0, 1] पर स्थिर फलन 1 को जोड़ने के साथ।


हिल्बर्ट अंतरिक्ष शब्दों में, [0, 1] पर यह हार प्रणाली पूर्ण ऑर्थोनॉर्मल प्रणाली है, ''यानी'', ऑर्थोनॉर्मल आधार, स्पेस ''एल'' के लिए<sup>2</sup>([0, 1]) इकाई अंतराल पर वर्ग समाकलनीय फ़ंक्शन।
हिल्बर्ट अंतरिक्ष शब्दों में, [0, 1] पर यह हार प्रणाली पूर्ण ऑर्थोनॉर्मल प्रणाली है, ''अर्थात्'', ऑर्थोनॉर्मल आधार, स्पेस ''एल'' के लिए<sup>2</sup>([0, 1]) इकाई अंतराल पर वर्ग समाकलनीय फलन।


[0, 1] पर हार प्रणाली - पहले तत्व के रूप में स्थिर कार्य 1 के साथ, बाद में हार कार्यों के साथ जोड़े के शब्दकोष क्रम के अनुसार आदेश दिया गया {{nowrap|(''n'', ''k'')}}— स्पेस एलपी स्पेस के लिए स्कॉडर बेसिस#प्रॉपर्टीज स्कॉडर बेसिस है|एल<sup>पी</sup>([0, 1]) कब {{nowrap|1 ≤ ''p'' &lt; ∞}}.<ref name="L. Tzafriri, 1977">see p.&nbsp;3 in [[Joram Lindenstrauss|J. Lindenstrauss]], L. Tzafriri, (1977), "Classical Banach Spaces I, Sequence Spaces", Ergebnisse der Mathematik und ihrer Grenzgebiete '''92''', Berlin: Springer-Verlag, {{ISBN|3-540-08072-4}}.</ref> यह आधार Schauder आधार है#बिना शर्त जब {{nowrap|1 &lt; ''p'' &lt; ∞}}.<ref>The result is due to [[Raymond Paley|R. E. Paley]], ''A remarkable series of orthogonal functions (I)'', Proc. London Math. Soc. '''34''' (1931) pp. 241-264. See also p.&nbsp;155 in J. Lindenstrauss, L. Tzafriri, (1979), "Classical Banach spaces II, Function spaces". Ergebnisse der Mathematik und ihrer Grenzgebiete '''97''', Berlin: Springer-Verlag, {{ISBN|3-540-08888-1}}.</ref>
[0, 1] पर हार प्रणाली - पहले तत्व के रूप में स्थिर कार्य 1 के साथ, बाद में हार कार्यों के साथ जोड़े के शब्दकोष क्रम के अनुसार आदेश दिया गया {{nowrap|(''n'', ''k'')}}— स्पेस एलपी स्पेस के लिए स्कॉडर बेसिस#प्रॉपर्टीज स्कॉडर बेसिस है|एल<sup>पी</sup>([0, 1]) कब {{nowrap|1 ≤ ''p'' &lt; ∞}}.<ref name="L. Tzafriri, 1977">see p.&nbsp;3 in [[Joram Lindenstrauss|J. Lindenstrauss]], L. Tzafriri, (1977), "Classical Banach Spaces I, Sequence Spaces", Ergebnisse der Mathematik und ihrer Grenzgebiete '''92''', Berlin: Springer-Verlag, {{ISBN|3-540-08072-4}}.</ref> यह आधार Schauder आधार है#बिना शर्त जब {{nowrap|1 &lt; ''p'' &lt; ∞}}.<ref>The result is due to [[Raymond Paley|R. E. Paley]], ''A remarkable series of orthogonal functions (I)'', Proc. London Math. Soc. '''34''' (1931) pp. 241-264. See also p.&nbsp;155 in J. Lindenstrauss, L. Tzafriri, (1979), "Classical Banach spaces II, Function spaces". Ergebnisse der Mathematik und ihrer Grenzgebiete '''97''', Berlin: Springer-Verlag, {{ISBN|3-540-08888-1}}.</ref>
Line 86: Line 86:
C([0, 1]) में प्रत्येक f के लिए, आंशिक योग
C([0, 1]) में प्रत्येक f के लिए, आंशिक योग
:<math> f_{n+1} = a_0 s_0 + a_1 s_1 + \sum_{m = 0}^{n-1} \Bigl( \sum_{k=0}^{2^m - 1} a_{m,k} s_{m, k} \Bigr) \in C([0, 1])</math>
:<math> f_{n+1} = a_0 s_0 + a_1 s_1 + \sum_{m = 0}^{n-1} \Bigl( \sum_{k=0}^{2^m - 1} a_{m,k} s_{m, k} \Bigr) \in C([0, 1])</math>
Faber-Schauder प्रणाली में f के [[श्रृंखला विस्तार]] का निरंतर टुकड़ा-वार रैखिक कार्य है जो f के साथ सहमत है {{nowrap|2<sup>''n''</sup> + 1}} अंक {{nowrap|''k''2<sup>&minus;''n''</sup>}}, कहाँ {{nowrap| 0 ≤ ''k'' ≤ 2<sup>''n''</sup>}}. अगला, सूत्र
Faber-Schauder प्रणाली में f के [[श्रृंखला विस्तार]] का निरंतर टुकड़ा-वार रैखिक कार्य है जो f के साथ सहमत है {{nowrap|2<sup>''n''</sup> + 1}} अंक {{nowrap|''k''2<sup>&minus;''n''</sup>}}, जहाँ {{nowrap| 0 ≤ ''k'' ≤ 2<sup>''n''</sup>}}. अगला, सूत्र
:<math> f_{n+2} - f_{n+1} = \sum_{k=0}^{2^n - 1} \bigl( f(x_{n,k}) - f_{n+1}(x_{n, k}) \bigr) s_{n, k} = \sum_{k=0}^{2^n - 1} a_{n, k} s_{n, k} </math>
:<math> f_{n+2} - f_{n+1} = \sum_{k=0}^{2^n - 1} \bigl( f(x_{n,k}) - f_{n+1}(x_{n, k}) \bigr) s_{n, k} = \sum_{k=0}^{2^n - 1} a_{n, k} s_{n, k} </math>
चरण दर चरण f के विस्तार की गणना करने का तरीका देता है। चूँकि f हीन-बोरेल प्रमेय है, अनुक्रम {f<sub>''n''</sub>} समान रूप से f में परिवर्तित हो जाता है। यह इस प्रकार है कि f का Faber-Schauder श्रृंखला विस्तार C([0, 1]) में अभिसरित होता है, और इस श्रृंखला का योग f के बराबर है।
चरण दर चरण f के विस्तार की गणना करने का तरीका देता है। चूँकि f हीन-बोरेल प्रमेय है, अनुक्रम {f<sub>''n''</sub>} समान रूप से f में परिवर्तित हो जाता है। यह इस प्रकार है कि f का Faber-Schauder श्रृंखला विस्तार C([0, 1]) में अभिसरित होता है, और इस श्रृंखला का योग f के बराबर है।
Line 97: Line 97:


:<math> \left\{ f : x \in [0, \pi] \rightarrow \sum_{n=0}^\infty a_n \cos(n x) \right\} \longrightarrow \left\{ T(f) : z \rightarrow \sum_{n=0}^\infty a_n z^n, \quad |z| \le 1 \right\}.</math>
:<math> \left\{ f : x \in [0, \pi] \rightarrow \sum_{n=0}^\infty a_n \cos(n x) \right\} \longrightarrow \left\{ T(f) : z \rightarrow \sum_{n=0}^\infty a_n z^n, \quad |z| \le 1 \right\}.</math>
A(D) के लिए Bočkarev का आधार [0, π] पर फ्रेंकलिन प्रणाली में कार्यों के T के तहत छवियों द्वारा बनाया गया है। मैपिंग T के लिए Bočkarev का समकक्ष विवरण f को सम और विषम फ़ंक्शन लिप्सचिट्ज़ फ़ंक्शन g तक विस्तारित करके शुरू होता है<sub>1</sub> [−π, π] पर, [[यूनिट सर्कल]] T पर लिपशिट्ज फ़ंक्शन के साथ पहचाना गया। अगला, चलो ''जी''<sub>2</sub> g का [[हार्डी अंतरिक्ष संयुग्म समारोह]] हो<sub>1</sub>, और T(f) को A(D) में फ़ंक्शन के रूप में परिभाषित करें जिसका मान D की सीमा 'T' के बराबर है{{nowrap|''g''<sub>1</sub> + i''g''<sub>2</sub>}}.
A(D) के लिए Bočkarev का आधार [0, π] पर फ्रेंकलिन प्रणाली में कार्यों के T के तहत छवियों द्वारा बनाया गया है। मैपिंग T के लिए Bočkarev का समकक्ष विवरण f को सम और विषम फलन लिप्सचिट्ज़ फलन g तक विस्तारित करके शुरू होता है<sub>1</sub> [−π, π] पर, [[यूनिट सर्कल]] T पर लिपशिट्ज फलन के साथ पहचाना गया। अगला, चलो ''जी''<sub>2</sub> g का [[हार्डी अंतरिक्ष संयुग्म समारोह]] हो<sub>1</sub>, और T(f) को A(D) में फलन के रूप में परिभाषित करें जिसका मान D की सीमा 'T' के बराबर है{{nowrap|''g''<sub>1</sub> + i''g''<sub>2</sub>}}.


1-आवधिक निरंतर कार्यों के साथ काम करते समय, या बल्कि [0, 1] पर निरंतर कार्यों के साथ काम करते हैं {{nowrap|''f''(0) {{=}} ''f''(1)}}, कोई फ़ंक्शन को हटा देता है {{nowrap| ''s''<sub>1</sub>(''t'') {{=}} ''t''}} फैबर-शौडर प्रणाली से, आवधिक फैबर-शौडर प्रणाली प्राप्त करने के लिए। आवधिक फ्रैंकलिन प्रणाली आवधिक फैबर-शौडर प्रणाली से ऑर्थोनॉर्मलाइजेशन द्वारा प्राप्त की जाती है।<ref name="Prz">See p.&nbsp;161, III.D.20 and p.&nbsp;192, III.E.17 in {{citation
1-आवधिक निरंतर कार्यों के साथ काम करते समय, या बल्कि [0, 1] पर निरंतर कार्यों के साथ काम करते हैं {{nowrap|''f''(0) {{=}} ''f''(1)}}, कोई फलन को हटा देता है {{nowrap| ''s''<sub>1</sub>(''t'') {{=}} ''t''}} फैबर-शौडर प्रणाली से, आवधिक फैबर-शौडर प्रणाली प्राप्त करने के लिए। आवधिक फ्रैंकलिन प्रणाली आवधिक फैबर-शौडर प्रणाली से ऑर्थोनॉर्मलाइजेशन द्वारा प्राप्त की जाती है।<ref name="Prz">See p.&nbsp;161, III.D.20 and p.&nbsp;192, III.E.17 in {{citation
  | last=Wojtaszczyk | first= Przemysław
  | last=Wojtaszczyk | first= Przemysław
  | title = Banach spaces for analysts
  | title = Banach spaces for analysts
Line 126: Line 126:


: <math> H_{2N} = \begin{bmatrix} H_{N} \otimes [1, 1] \\ I_{N} \otimes [1, -1] \end{bmatrix}</math>
: <math> H_{2N} = \begin{bmatrix} H_{N} \otimes [1, 1] \\ I_{N} \otimes [1, -1] \end{bmatrix}</math>
:कहाँ <math>I_{N} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}</math> और <math>\otimes</math> [[क्रोनकर उत्पाद]] है।
:जहाँ <math>I_{N} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}</math> और <math>\otimes</math> [[क्रोनकर उत्पाद]] है।


क्रोनकर का उत्पाद <math>A \otimes B</math>, कहाँ <math>A</math> एम × एन मैट्रिक्स है और <math>B</math> p×q मैट्रिक्स है, के रूप में व्यक्त किया गया है
क्रोनकर का उत्पाद <math>A \otimes B</math>, जहाँ <math>A</math> एम × एन मैट्रिक्स है और <math>B</math> p×q मैट्रिक्स है, के रूप में व्यक्त किया गया है


: <math>A \otimes B = \begin{bmatrix} a_{11}B & \dots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \dots & a_{mn}B\end{bmatrix}.</math>
: <math>A \otimes B = \begin{bmatrix} a_{11}B & \dots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \dots & a_{mn}B\end{bmatrix}.</math>
Line 142: Line 142:


==हार परिवर्तन ==
==हार परिवर्तन ==
हार रूपांतरण [[तरंगिका रूपांतरण]]ों में सबसे सरल है। यह विभिन्न पारियों और स्ट्रेच के साथ हर तरंगिका के खिलाफ फ़ंक्शन को क्रॉस-मल्टीप्लाय करता है, जैसे फूरियर ट्रांसफ़ॉर्म फ़ंक्शन को साइन वेव के विरुद्ध दो चरणों और कई हिस्सों के साथ क्रॉस-मल्टीप्लाई करता है।<ref>[http://sepwww.stanford.edu/public/docs/sep75/ray2/paper_html/node4.html The Haar Transform<!-- Bot generated title -->]</ref>{{clarify|Is this comparing the kernels being integrated over, and decomposing exponentials into sine and cosine to treat the Fourier kernel as a space of sines, changing the parametrization accordingly? If so, we can give more specific, linkable language than "cross-multiplies", talk about inner products or projections and integrating them, and then lucidly compare that to a convolutional treatment.|date=June 2018}}
हार रूपांतरण [[तरंगिका रूपांतरण]]ों में सबसे सरल है। यह विभिन्न पारियों और स्ट्रेच के साथ हर तरंगिका के खिलाफ फलन को क्रॉस-मल्टीप्लाय करता है, जैसे फूरियर ट्रांसफ़ॉर्म फलन को साइन वेव के विरुद्ध दो चरणों और कई हिस्सों के साथ क्रॉस-मल्टीप्लाई करता है।<ref>[http://sepwww.stanford.edu/public/docs/sep75/ray2/paper_html/node4.html The Haar Transform<!-- Bot generated title -->]</ref>{{clarify|Is this comparing the kernels being integrated over, and decomposing exponentials into sine and cosine to treat the Fourier kernel as a space of sines, changing the parametrization accordingly? If so, we can give more specific, linkable language than "cross-multiplies", talk about inner products or projections and integrating them, and then lucidly compare that to a convolutional treatment.|date=June 2018}}


=== परिचय ===
=== परिचय ===
Line 161: Line 161:
# गुणन की कोई ज़रूरत नहीं है। इसके लिए केवल परिवर्धन की आवश्यकता होती है और हार मैट्रिक्स में शून्य मान वाले कई तत्व होते हैं, इसलिए गणना का समय कम होता है। यह वॉल्श ट्रांसफ़ॉर्म से तेज़ है, जिसका मैट्रिक्स +1 और -1 से बना है।
# गुणन की कोई ज़रूरत नहीं है। इसके लिए केवल परिवर्धन की आवश्यकता होती है और हार मैट्रिक्स में शून्य मान वाले कई तत्व होते हैं, इसलिए गणना का समय कम होता है। यह वॉल्श ट्रांसफ़ॉर्म से तेज़ है, जिसका मैट्रिक्स +1 और -1 से बना है।
# इनपुट और आउटपुट की लंबाई समान है। हालाँकि, लंबाई 2 की शक्ति होनी चाहिए, अर्थात। <math>N = 2^k,  k\in \mathbb{N}</math>.
# इनपुट और आउटपुट की लंबाई समान है। हालाँकि, लंबाई 2 की शक्ति होनी चाहिए, अर्थात। <math>N = 2^k,  k\in \mathbb{N}</math>.
# इसका उपयोग संकेतों की स्थानीय विशेषता का विश्लेषण करने के लिए किया जा सकता है। हार फ़ंक्शन की [[ओर्थोगोनल]] गुण के कारण, इनपुट सिग्नल की आवृत्ति घटकों का विश्लेषण किया जा सकता है।
# इसका उपयोग संकेतों की स्थानीय विशेषता का विश्लेषण करने के लिए किया जा सकता है। हार फलन की [[ओर्थोगोनल]] गुण के कारण, इनपुट सिग्नल की आवृत्ति घटकों का विश्लेषण किया जा सकता है।


=== हेयर ट्रांसफॉर्मेशन और इनवर्स हेयर ट्रांसफॉर्म ===
=== हेयर ट्रांसफॉर्मेशन और इनवर्स हेयर ट्रांसफॉर्म ===
द हार ट्रांसफॉर्म वाई<sub>''n''</sub> एन-इनपुट फ़ंक्शन x का<sub>''n''</sub> है
द हार ट्रांसफॉर्म वाई<sub>''n''</sub> एन-इनपुट फलन x का<sub>''n''</sub> है


: <math> y_n = H_n x_n</math>
: <math> y_n = H_n x_n</math>
हार ट्रांसफ़ॉर्म मैट्रिक्स वास्तविक और ऑर्थोगोनल है। इस प्रकार, व्युत्क्रम हार परिवर्तन निम्नलिखित समीकरणों द्वारा प्राप्त किया जा सकता है।
हार ट्रांसफ़ॉर्म मैट्रिक्स वास्तविक और लंबकोणीय है। इस प्रकार, व्युत्क्रम हार परिवर्तन निम्नलिखित समीकरणों द्वारा प्राप्त किया जा सकता है।


: <math> H = H^*, H^{-1} = H^T, \text{ i.e. } HH^T = I </math>
: <math> H = H^*, H^{-1} = H^T, \text{ i.e. } HH^T = I </math>
: कहाँ <math>I</math> पहचान मैट्रिक्स है। उदाहरण के लिए, जब n = 4
: जहाँ <math>I</math> पहचान मैट्रिक्स है। उदाहरण के लिए, जब n = 4


: <math> H_4^{T}H_4 = \frac{1}{2}\begin{bmatrix} 1&1&\sqrt{2}&0 \\ 1&1&-\sqrt{2}&0 \\ 1&-1&0&\sqrt{2} \\ 1&-1&0&-\sqrt{2}\end{bmatrix}
: <math> H_4^{T}H_4 = \frac{1}{2}\begin{bmatrix} 1&1&\sqrt{2}&0 \\ 1&1&-\sqrt{2}&0 \\ 1&-1&0&\sqrt{2} \\ 1&-1&0&-\sqrt{2}\end{bmatrix}
Line 244: Line 244:
{{DEFAULTSORT:Haar Wavelet}}
{{DEFAULTSORT:Haar Wavelet}}


श्रेणी:ऑर्थोगोनल तरंगिका्स
श्रेणी:लंबकोणीय तरंगिका्स




[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 03/03/2023]]
[[Category:Created On 03/03/2023]]

Revision as of 07:08, 15 March 2023

बाल तरंगिका

गणित में, हार तरंगिका पुनर्वर्धित वर्ग-आकार के कार्यों का क्रम है जो एक साथ तरंगिका परिवार या आधार बनाते हैं। तरंगिका विश्लेषण फूरियर विश्लेषण के समान है जिसमें यह अंतराल पर लक्ष्य कार्य को ऑर्थोनॉर्मल आधार के रूप में प्रदर्शित करने की अनुमति देता है। हार अनुक्रम अब पहले ज्ञात तरंगिका आधार के रूप में पहचाना जाता है और बड़े पैमाने पर शिक्षण उदाहरण के रूप में उपयोग किया जाता है।

1909 में अल्फ्रेड हार द्वारा हार अनुक्रम प्रस्तावित किया गया था।[1] हार ने इन कार्यों का उपयोग इकाई अंतराल [0, 1] पर वर्ग-पूर्णांक कार्यों के स्थान के लिए ऑर्थोनॉर्मल प्रणाली का उदाहरण देने के लिए किया था। तरंगिकाओं का अध्ययन, और यहां तक ​​कि तरंगिका शब्द भी बहुत बाद तक नहीं आया था था। डोबेचीज तरंगिका के एक विशेष स्थिति के रूप में, हार तरंगिका को Db1 के रूप में भी जाना जाता है।

हर तरंगिका भी सबसे सरल संभव तरंगिका है। हर तरंगिका का प्रौद्योगिक हानि यह है कि यह निरंतर कार्य नहीं करता है, और इसलिए व्युत्पन्न नहीं है। हालांकि, यह गुण अचानक संक्रमण (डिजिटल सिग्नल (सिग्नल प्रोसेसिंग)), जैसे मशीनों में उपकरण की विफलता की निगरानी के साथ संकेतों के विश्लेषण के लिए लाभ हो सकती है।[2]

हर तरंगिका का मदर तरंगिका फलन के रूप में वर्णित किया जा सकता है

इसके स्केलिंग फलन के रूप में वर्णित किया जा सकता है


हार कार्य और हार प्रणाली

में पूर्णांकों की प्रत्येक जोड़ी n, k के लिए, हार फलन ψ'n,k को सूत्र द्वारा वास्तविक रेखा पर परिभाषित किया गया है

यह फलन अर्ध-खुला अंतराल In,k = [ k2n, (k+1)2n) पर समर्थित है, अर्थात्, यह उस अंतराल के बाहर किसी फलन का शून्य है। हिल्बर्ट स्पेस L2() में इसका इंटीग्रल 0 और नॉर्म 1 है,

हार फलन युग्‍मानूसार लंबकोणीय फलन हैं,

जहाँ क्रोनकर डेल्टा का प्रतिनिधित्व करता है। यहाँ रूढ़िवादिता का कारण है: जब दो सहायक अंतराल और समान नहीं होते हैं, तो वे या तो अलग हो जाते हैं, या फिर दो में से छोटा समर्थन करता है, मान लीजिए , दूसरे अंतराल के निचले या ऊपरी भाग में समाहित है, जिस पर फलन स्थिर रहता है। इस स्थिति में यह इस प्रकार है कि इन दो हार कार्यों का उत्पाद पहले हार फलन का गुणक है, इसलिए उत्पाद का पूर्णांक 0 है।

वास्तविक रेखा पर हार प्रणाली कार्यों का समूह है

यह L2() में ऑर्थोनॉर्मल आधार है: लाइन पर हार प्रणाली L2() में असामान्य आधार है।

हर तरंगिका गुण

हर तरंगिका में कई उल्लेखनीय गुण हैं:

  1. Any continuous real function with compact support can be approximated uniformly by linear combinations of and their shifted functions. This extends to those function spaces where any function therein can be approximated by continuous functions.
  2. Any continuous real function on [0, 1] can be approximated uniformly on [0, 1] by linear combinations of the constant function 1, and their shifted functions.[3]
  3. Orthogonality in the form
    Here, represents the Kronecker delta. The dual function of ψ(t) is ψ(t) itself.
  4. Wavelet/scaling functions with different scale n have a functional relationship:[4] since
    it follows that coefficients of scale n can be calculated by coefficients of scale n+1:
    If
    and
    then

इकाई अंतराल और संबंधित प्रणालियों पर हार प्रणाली

इस खंड में, चर्चा इकाई अंतराल [0, 1] और हार कार्यों तक सीमित है जो [0, 1] पर समर्थित हैं। 1910 में हार द्वारा मानी गई कार्यों की प्रणाली,[5] इस लेख में [0, 1] पर हार प्रणाली कहा जाता है, इसमें हर तरंगिका्स के सबसेट को परिभाषित किया गया है

[0, 1] पर स्थिर फलन 1 को जोड़ने के साथ।

हिल्बर्ट अंतरिक्ष शब्दों में, [0, 1] पर यह हार प्रणाली पूर्ण ऑर्थोनॉर्मल प्रणाली है, अर्थात्, ऑर्थोनॉर्मल आधार, स्पेस एल के लिए2([0, 1]) इकाई अंतराल पर वर्ग समाकलनीय फलन।

[0, 1] पर हार प्रणाली - पहले तत्व के रूप में स्थिर कार्य 1 के साथ, बाद में हार कार्यों के साथ जोड़े के शब्दकोष क्रम के अनुसार आदेश दिया गया (n, k)— स्पेस एलपी स्पेस के लिए स्कॉडर बेसिस#प्रॉपर्टीज स्कॉडर बेसिस है|एलपी([0, 1]) कब 1 ≤ p < ∞.[6] यह आधार Schauder आधार है#बिना शर्त जब 1 < p < ∞.[7] संबंधित रैडेमाकर प्रणाली है जिसमें हार कार्यों के योग शामिल हैं,

ध्यान दें कि | आरn(टी) | = 1 पर [0, 1). यह अलौकिक प्रणाली है लेकिन यह पूर्ण नहीं है।[8][9] संभाव्यता सिद्धांत की भाषा में, रैडेमाकर अनुक्रम स्वतंत्रता के अनुक्रम का उदाहरण है (संभाव्यता सिद्धांत) बर्नौली वितरण यादृच्छिक चर माध्य 0 के साथ। खिंचिन असमानता इस तथ्य को व्यक्त करती है कि सभी स्थानों में Lपी([0, 1]), 1 ≤ p < ∞, रैडेमाकर अनुक्रम शाउडर आधार है#ℓ में इकाई सदिश आधार की परिभाषाएं2</उप>।[10] विशेष रूप से, एल में रैडेमाकर अनुक्रम का रेखीय विस्तार#बंद रेखीय विस्तारपी([0, 1]), 1 ≤ p < ∞, आइसोमॉर्फिक नॉर्म्ड स्पेस से ℓ है2</उप>।

फैबर-शॉडर प्रणाली

फैबर-शाउडर प्रणाली[11][12][13] [0, 1] पर निरंतर कार्यों का परिवार है, जिसमें निरंतर कार्य 1 शामिल है, और [0, 1] पर हार प्रणाली में कार्यों के antiderivative के गुणकों का समान मानदंड में मानदंड 1 के लिए चुना गया है। यह प्रणाली से शुरू होता है0= 1, फिर s1(t) = t फलन 1 के 0 पर गायब होने वाला अनिश्चितकालीन इंटीग्रल है, [0, 1] पर हार प्रणाली का पहला तत्व। अगला, प्रत्येक पूर्णांक के लिए n ≥ 0, कार्य करता है sn,k सूत्र द्वारा परिभाषित हैं

ये कार्य sn,k अंतराल द्वारा समर्थित निरंतर, टुकड़े-टुकड़े रैखिक कार्य हैं In,k जो समर्थन भी करता है ψn,k. कार्यक्रम sn,k मध्यबिंदु पर 1 के बराबर है xn,k अंतराल का In,k, उस अंतराल के दोनों हिस्सों पर रैखिक। यह हर जगह 0 और 1 के बीच मान लेता है।

Faber-Schauder प्रणाली [0, 1] पर निरंतर कार्यों के स्थान C([0, 1]) के लिए Schauder आधार है।[6] C([0, 1]) में प्रत्येक f के लिए, आंशिक योग

Faber-Schauder प्रणाली में f के श्रृंखला विस्तार का निरंतर टुकड़ा-वार रैखिक कार्य है जो f के साथ सहमत है 2n + 1 अंक k2n, जहाँ 0 ≤ k ≤ 2n. अगला, सूत्र

चरण दर चरण f के विस्तार की गणना करने का तरीका देता है। चूँकि f हीन-बोरेल प्रमेय है, अनुक्रम {fn} समान रूप से f में परिवर्तित हो जाता है। यह इस प्रकार है कि f का Faber-Schauder श्रृंखला विस्तार C([0, 1]) में अभिसरित होता है, और इस श्रृंखला का योग f के बराबर है।

फ्रेंकलिन प्रणाली

फ्रैंकलिन प्रणाली फैबर-शौडर प्रणाली से ग्राम-श्मिट प्रक्रिया द्वारा प्राप्त की जाती है। ग्राम-श्मिट ऑर्थोनॉर्मलाइजेशन प्रक्रिया।[14][15] चूंकि फ्रेंकलिन प्रणाली में फैबर-शौडर प्रणाली के समान रैखिक फैलाव है, इसलिए यह फैलाव C([0, 1]) में सघन है, इसलिए L में2([0, 1])। फ्रैंकलिन प्रणाली इसलिए एल के लिए अलौकिक आधार है2([0, 1]), जिसमें निरंतर टुकड़े-टुकड़े रैखिक कार्य होते हैं। पी. फ्रेंकलिन ने 1928 में सिद्ध किया कि यह प्रणाली C([0, 1]) के लिए शाउडर आधार है।[16] फ्रेंकलिन प्रणाली अंतरिक्ष एल के लिए बिना शर्त शॉडर आधार भी हैपी([0, 1]) कब 1 < p < ∞.[17] फ्रैंकलिन प्रणाली डिस्क बीजगणित ए (डी) में स्कॉडर आधार प्रदान करता है।[17]यह 1974 में बोकारेव द्वारा सिद्ध किया गया था, डिस्क बीजगणित के लिए आधार के अस्तित्व के चालीस से अधिक वर्षों तक खुला रहने के बाद।[18] A(D) में बोकेरेव का शाउडर आधार का निर्माण इस प्रकार है: मान लीजिए कि [0, π] पर जटिल मूल्यवान लिप्सचिट्ज़ निरंतरता है; तो f निरपेक्ष अभिसरण गुणांक वाली फूरियर श्रृंखला का योग है। मान लें कि T(f) समान गुणांक वाली जटिल घात श्रृंखला द्वारा परिभाषित A(D) का तत्व है,

A(D) के लिए Bočkarev का आधार [0, π] पर फ्रेंकलिन प्रणाली में कार्यों के T के तहत छवियों द्वारा बनाया गया है। मैपिंग T के लिए Bočkarev का समकक्ष विवरण f को सम और विषम फलन लिप्सचिट्ज़ फलन g तक विस्तारित करके शुरू होता है1 [−π, π] पर, यूनिट सर्कल T पर लिपशिट्ज फलन के साथ पहचाना गया। अगला, चलो जी2 g का हार्डी अंतरिक्ष संयुग्म समारोह हो1, और T(f) को A(D) में फलन के रूप में परिभाषित करें जिसका मान D की सीमा 'T' के बराबर हैg1 + ig2.

1-आवधिक निरंतर कार्यों के साथ काम करते समय, या बल्कि [0, 1] पर निरंतर कार्यों के साथ काम करते हैं f(0) = f(1), कोई फलन को हटा देता है s1(t) = t फैबर-शौडर प्रणाली से, आवधिक फैबर-शौडर प्रणाली प्राप्त करने के लिए। आवधिक फ्रैंकलिन प्रणाली आवधिक फैबर-शौडर प्रणाली से ऑर्थोनॉर्मलाइजेशन द्वारा प्राप्त की जाती है।[19] ए(डी) पर बोकारेव के परिणाम को साबित करके साबित किया जा सकता है कि [0, 2π] पर आवधिक फ्रैंकलिन प्रणाली बैनाच स्पेस ए के लिए आधार हैr ए (डी) के लिए आइसोमोर्फिक।[19] अंतरिक्ष एr यूनिट सर्कल टी पर जटिल निरंतर कार्य होते हैं जिसका हार्मोनिक संयुग्म भी निरंतर होता है।

हार मैट्रिक्स

हर तरंगिका के साथ जुड़ा हुआ 2×2 हार मैट्रिक्स है

असतत तरंगिका परिवर्तन का उपयोग करके, कोई भी अनुक्रम रूपांतरित कर सकता है दो-घटक-वैक्टरों के अनुक्रम में समान लंबाई का . यदि कोई प्रत्येक वेक्टर को मैट्रिक्स के साथ सही-गुणा करता है , फल मिलता है तेज हार-तरंगिका परिवर्तन के चरण में। आम तौर पर कोई अनुक्रम एस और डी को अलग करता है और अनुक्रम एस को बदलने के साथ जारी रहता है। अनुक्रम s को अक्सर औसत भाग के रूप में जाना जाता है, जबकि d को विवरण भाग के रूप में जाना जाता है।[20] यदि किसी के पास लंबाई का अनुक्रम चार में से है, तो कोई 4 तत्वों के ब्लॉक बना सकता है और उन्हें 4×4 हार मैट्रिक्स के साथ समान तरीके से बदल सकता है।

जो तेज हार-तरंगिका ट्रांसफॉर्म के दो चरणों को जोड़ती है।

वॉल्श मैट्रिक्स से तुलना करें, जो गैर-स्थानीयकृत 1/-1 मैट्रिक्स है।

आम तौर पर, 2N×2N हार मैट्रिक्स निम्नलिखित समीकरण द्वारा प्राप्त किया जा सकता है।

जहाँ और क्रोनकर उत्पाद है।

क्रोनकर का उत्पाद , जहाँ एम × एन मैट्रिक्स है और p×q मैट्रिक्स है, के रूप में व्यक्त किया गया है

गैर-सामान्यीकृत 8-बिंदु हार मैट्रिक्स नीचे दिखाया गया है

ध्यान दें कि, उपरोक्त मैट्रिक्स गैर-सामान्यीकृत हार मैट्रिक्स है। हार रूपांतरण के लिए आवश्यक हार मैट्रिक्स को सामान्यीकृत किया जाना चाहिए।

हार मैट्रिक्स की परिभाषा से , कोई यह देख सकता है कि, फूरियर रूपांतरण के विपरीत, केवल वास्तविक तत्व हैं (अर्थात, 1, -1 या 0) और गैर-सममित है।

8-पॉइंट हार मैट्रिक्स लें उदहारण के लिए। की पहली पंक्ति औसत मूल्य, और की दूसरी पंक्ति को मापता है इनपुट वेक्टर के कम आवृत्ति घटक को मापता है। अगली दो पंक्तियाँ क्रमशः इनपुट वेक्टर के पहले और दूसरे भाग के प्रति संवेदनशील हैं, जो मध्यम आवृत्ति घटकों से मेल खाती हैं। शेष चार पंक्तियाँ इनपुट वेक्टर के चार खंडों के प्रति संवेदनशील हैं, जो उच्च आवृत्ति घटकों से मेल खाती हैं।[21]


हार परिवर्तन

हार रूपांतरण तरंगिका रूपांतरणों में सबसे सरल है। यह विभिन्न पारियों और स्ट्रेच के साथ हर तरंगिका के खिलाफ फलन को क्रॉस-मल्टीप्लाय करता है, जैसे फूरियर ट्रांसफ़ॉर्म फलन को साइन वेव के विरुद्ध दो चरणों और कई हिस्सों के साथ क्रॉस-मल्टीप्लाई करता है।[22][clarification needed]

परिचय

1910 में हंगरी के गणितज्ञ अल्फ्रेड हार द्वारा प्रस्तावित हार रूपांतरण सबसे पुराने रूपांतरण कार्यों में से है। यह इलेक्ट्रिकल और कंप्यूटर इंजीनियरिंग में सिग्नल और इमेज कंप्रेशन जैसे अनुप्रयोगों में प्रभावी पाया जाता है क्योंकि यह सिग्नल के स्थानीय पहलुओं का विश्लेषण करने के लिए सरल और कम्प्यूटेशनल रूप से कुशल दृष्टिकोण प्रदान करता है।

हार रूपांतरण हार मैट्रिक्स से लिया गया है। 4×4 हार रूपांतरण मैट्रिक्स का उदाहरण नीचे दिखाया गया है।

हार रूपांतरण को नमूनाकरण प्रक्रिया के रूप में माना जा सकता है जिसमें परिवर्तन मैट्रिक्स की पंक्तियाँ महीन और महीन रिज़ॉल्यूशन के नमूने के रूप में कार्य करती हैं।

वॉल्श रूपांतरण से तुलना करें, जो 1/-1 भी है, लेकिन गैर-स्थानीयकृत है।

गुण

हार रूपांतरण में निम्नलिखित गुण होते हैं

  1. गुणन की कोई ज़रूरत नहीं है। इसके लिए केवल परिवर्धन की आवश्यकता होती है और हार मैट्रिक्स में शून्य मान वाले कई तत्व होते हैं, इसलिए गणना का समय कम होता है। यह वॉल्श ट्रांसफ़ॉर्म से तेज़ है, जिसका मैट्रिक्स +1 और -1 से बना है।
  2. इनपुट और आउटपुट की लंबाई समान है। हालाँकि, लंबाई 2 की शक्ति होनी चाहिए, अर्थात। .
  3. इसका उपयोग संकेतों की स्थानीय विशेषता का विश्लेषण करने के लिए किया जा सकता है। हार फलन की ओर्थोगोनल गुण के कारण, इनपुट सिग्नल की आवृत्ति घटकों का विश्लेषण किया जा सकता है।

हेयर ट्रांसफॉर्मेशन और इनवर्स हेयर ट्रांसफॉर्म

द हार ट्रांसफॉर्म वाईn एन-इनपुट फलन x काn है

हार ट्रांसफ़ॉर्म मैट्रिक्स वास्तविक और लंबकोणीय है। इस प्रकार, व्युत्क्रम हार परिवर्तन निम्नलिखित समीकरणों द्वारा प्राप्त किया जा सकता है।

जहाँ पहचान मैट्रिक्स है। उदाहरण के लिए, जब n = 4

इस प्रकार, उलटा हार परिवर्तन है


उदाहरण

हार n = 4-पॉइंट सिग्नल के गुणांक को रूपांतरित करता है रूप में पाया जा सकता है

इनपुट सिग्नल को उलटा हार ट्रांसफॉर्म द्वारा पूरी तरह से पुनर्निर्मित किया जा सकता है


यह भी देखें

टिप्पणियाँ

  1. see p. 361 in Haar (1910).
  2. Lee, B.; Tarng, Y. S. (1999). "स्पिंडल मोटर करंट का उपयोग करके एंड मिलिंग में उपकरण की विफलता की निगरानी के लिए असतत तरंगिका परिवर्तन का अनुप्रयोग". International Journal of Advanced Manufacturing Technology. 15 (4): 238–243. doi:10.1007/s001700050062. S2CID 109908427.
  3. As opposed to the preceding statement, this fact is not obvious: see p. 363 in Haar (1910).
  4. Vidakovic, Brani (2010). Statistical Modeling by Wavelets. Wiley Series in Probability and Statistics (2 ed.). pp. 60, 63. doi:10.1002/9780470317020. ISBN 9780470317020.
  5. p. 361 in Haar (1910)
  6. 6.0 6.1 see p. 3 in J. Lindenstrauss, L. Tzafriri, (1977), "Classical Banach Spaces I, Sequence Spaces", Ergebnisse der Mathematik und ihrer Grenzgebiete 92, Berlin: Springer-Verlag, ISBN 3-540-08072-4.
  7. The result is due to R. E. Paley, A remarkable series of orthogonal functions (I), Proc. London Math. Soc. 34 (1931) pp. 241-264. See also p. 155 in J. Lindenstrauss, L. Tzafriri, (1979), "Classical Banach spaces II, Function spaces". Ergebnisse der Mathematik und ihrer Grenzgebiete 97, Berlin: Springer-Verlag, ISBN 3-540-08888-1.
  8. "Orthogonal system", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  9. Walter, Gilbert G.; Shen, Xiaoping (2001). वेवलेट्स और अन्य ऑर्थोगोनल सिस्टम. Boca Raton: Chapman. ISBN 1-58488-227-1.
  10. see for example p. 66 in J. Lindenstrauss, L. Tzafriri, (1977), "Classical Banach Spaces I, Sequence Spaces", Ergebnisse der Mathematik und ihrer Grenzgebiete 92, Berlin: Springer-Verlag, ISBN 3-540-08072-4.
  11. Faber, Georg (1910), "Über die Orthogonalfunktionen des Herrn Haar", Deutsche Math.-Ver (in German) 19: 104–112. ISSN 0012-0456; http://www-gdz.sub.uni-goettingen.de/cgi-bin/digbib.cgi?PPN37721857X ; http://resolver.sub.uni-goettingen.de/purl?GDZPPN002122553
  12. Schauder, Juliusz (1928), "Eine Eigenschaft des Haarschen Orthogonalsystems", Mathematische Zeitschrift 28: 317–320.
  13. Golubov, B.I. (2001) [1994], "Faber–Schauder system", Encyclopedia of Mathematics, EMS Press
  14. see Z. Ciesielski, Properties of the orthonormal Franklin system. Studia Math. 23 1963 141–157.
  15. Franklin system. B.I. Golubov (originator), Encyclopedia of Mathematics. URL: http://www.encyclopediaofmath.org/index.php?title=Franklin_system&oldid=16655
  16. Philip Franklin, A set of continuous orthogonal functions, Math. Ann. 100 (1928), 522-529. doi:10.1007/BF01448860
  17. 17.0 17.1 S. V. Bočkarev, Existence of a basis in the space of functions analytic in the disc, and some properties of Franklin's system. Mat. Sb. 95 (1974), 3–18 (Russian). Translated in Math. USSR-Sb. 24 (1974), 1–16.
  18. The question appears p. 238, §3 in Banach's book, Banach, Stefan (1932), Théorie des opérations linéaires, Monografie Matematyczne, vol. 1, Warszawa: Subwencji Funduszu Kultury Narodowej, Zbl 0005.20901. The disk algebra A(D) appears as Example 10, p. 12 in Banach's book.
  19. 19.0 19.1 See p. 161, III.D.20 and p. 192, III.E.17 in Wojtaszczyk, Przemysław (1991), Banach spaces for analysts, Cambridge Studies in Advanced Mathematics, vol. 25, Cambridge: Cambridge University Press, pp. xiv+382, ISBN 0-521-35618-0
  20. Ruch, David K.; Van Fleet, Patrick J. (2009). Wavelet Theory: An Elementary Approach with Applications. John Wiley & Sons. ISBN 978-0-470-38840-2.
  21. "उसका". Fourier.eng.hmc.edu. 2013-10-30. Archived from the original on 21 August 2012. Retrieved 2013-11-23.
  22. The Haar Transform


संदर्भ


बाहरी संबंध



बाल बदलना


श्रेणी:लंबकोणीय तरंगिका्स