न्यूटन बहुपद: Difference between revisions
No edit summary |
No edit summary |
||
Line 59: | Line 59: | ||
{{further|परिमित अंतर # न्यूटन की श्रृंखला}} | {{further|परिमित अंतर # न्यूटन की श्रृंखला}} | ||
न्यूटन का सूत्र रुचि का है क्योंकि यह टेलर के बहुपद का सीधा और स्वाभाविक अंतर-संस्करण है। टेलर का बहुपद बताता है कि एक विशेष x मान पर इसके y मान, और इसके डेरिवेटिव (इसकी परिवर्तन की दर, और इसके परिवर्तन की दर के परिवर्तन की दर, आदि) के आधार पर एक फ़ंक्शन कहां जाएगा। न्यूटन का सूत्र टेलर का बहुपद है जो परिवर्तन की तात्कालिक दरों के | न्यूटन का सूत्र रुचि का है क्योंकि यह टेलर के बहुपद का सीधा और स्वाभाविक अंतर-संस्करण है। टेलर का बहुपद बताता है कि एक विशेष x मान पर इसके y मान, और इसके डेरिवेटिव (इसकी परिवर्तन की दर, और इसके परिवर्तन की दर के परिवर्तन की दर, आदि) के आधार पर एक फ़ंक्शन कहां जाएगा। न्यूटन का सूत्र टेलर का बहुपद है जो परिवर्तन की तात्कालिक दरों के अतिरिक्त परिमित अंतरों पर आधारित है। | ||
== नए बिंदुओं का जोड़ == | == नए बिंदुओं का जोड़ == | ||
Line 110: | Line 110: | ||
=== सटीकता === | === सटीकता === | ||
जब, स्टर्लिंग या बेसेल के साथ, उपयोग किए गए अंतिम शब्द में दो अंतरों का औसत शामिल होता है, तो न्यूटन या अन्य बहुपद प्रक्षेपों की तुलना में एक और बिंदु का उपयोग उसी बहुपद डिग्री के लिए किया जाएगा। तो, उस उदाहरण में, स्टर्लिंग या बेसेल N-1 डिग्री बहुपद को N बिंदुओं के माध्यम से नहीं डाल रहे हैं, बल्कि इसके बजाय, बेहतर केंद्र और सटीकता के लिए न्यूटन के साथ व्यापार तुल्यता है, उन तरीकों को कभी-कभी संभावित बहुपद डिग्री के लिए संभावित रूप से अधिक सटीकता प्रदान करते हैं।, | जब, स्टर्लिंग या बेसेल के साथ, उपयोग किए गए अंतिम शब्द में दो अंतरों का औसत शामिल होता है, तो न्यूटन या अन्य बहुपद प्रक्षेपों की तुलना में एक और बिंदु का उपयोग उसी बहुपद डिग्री के लिए किया जाएगा। तो, उस उदाहरण में, स्टर्लिंग या बेसेल N-1 डिग्री बहुपद को N बिंदुओं के माध्यम से नहीं डाल रहे हैं, बल्कि इसके बजाय, बेहतर केंद्र और सटीकता के लिए न्यूटन के साथ व्यापार तुल्यता है, उन तरीकों को कभी-कभी संभावित बहुपद डिग्री के लिए संभावित रूप से अधिक सटीकता प्रदान करते हैं।, अन्य बहुपद प्रक्षेपों की तुलना में। | ||
== सामान्य स्थिति == | == सामान्य स्थिति == | ||
एक्स के विशेष | एक्स के विशेष प्रकरण के लिए<sub>i</sub>= i, बहुपदों का एक करीबी से संबंधित समुच्चय है, जिसे न्यूटन बहुपद भी कहा जाता है, जो सामान्य तर्क के लिए केवल [[द्विपद गुणांक]] हैं। अर्थात्, किसी के पास न्यूटन बहुपद भी होते हैं <math>p_n(z)</math> द्वारा दिए गए | ||
:<math>p_n(z)={z \choose n}= \frac{z(z-1)\cdots(z-n+1)}{n!}</math> | :<math>p_n(z)={z \choose n}= \frac{z(z-1)\cdots(z-n+1)}{n!}</math> | ||
इस रूप में, न्यूटन बहुपद [[न्यूटन श्रृंखला]] उत्पन्न करते हैं। ये बदले में सामान्य [[अंतर बहुपद]]ों का एक विशेष | इस रूप में, न्यूटन बहुपद [[न्यूटन श्रृंखला]] उत्पन्न करते हैं। ये बदले में सामान्य [[अंतर बहुपद]]ों का एक विशेष स्थिति है जो सामान्यीकृत अंतर समीकरणों के माध्यम से [[विश्लेषणात्मक कार्य]]ों के प्रतिनिधित्व की अनुमति देता है। | ||
== मुख्य विचार == | == मुख्य विचार == | ||
Line 199: | Line 199: | ||
== अनुप्रयोग == | == अनुप्रयोग == | ||
जैसा कि विभाजित अंतरों की परिभाषा से देखा जा सकता है कि पुराने गुणांकों की पुनर्गणना किए बिना एक नया प्रक्षेप बहुपद बनाने के लिए नए डेटा बिंदुओं को डेटा समुच्चय में जोड़ा जा सकता है। और जब कोई डेटा बिंदु बदलता है तो हमें | जैसा कि विभाजित अंतरों की परिभाषा से देखा जा सकता है कि पुराने गुणांकों की पुनर्गणना किए बिना एक नया प्रक्षेप बहुपद बनाने के लिए नए डेटा बिंदुओं को डेटा समुच्चय में जोड़ा जा सकता है। और जब कोई डेटा बिंदु बदलता है तो हमें सामान्यतः सभी गुणांकों की पुनर्गणना करने की आवश्यकता नहीं होती है। इंटरपोलेटिंग बहुपद उत्पन्न करने के लिए न्यूटन का सूत्र टेलर के बहुपद के समान रूप को अपनाता है लेकिन डेरिवेटिव के अतिरिक्त परिमित अंतर पर आधारित होता है। अर्थात, गुणांक b_i की गणना परिमित अंतर का उपयोग करके की जाती है। इस फॉर्म का एक फायदा यह है कि न्यूटन के इंटरपोलिंग बहुपद की डिग्री को मौजूदा शर्तों को छोड़े बिना नए बिंदुओं के अनुरूप अधिक शब्दों को जोड़कर (या हटाकर) स्वचालित रूप से बढ़ाया (या घटाया) जा सकता है।इसके अलावा, यदि x<sub>''i''</sub> समान दूरी पर वितरित किए जाते हैं विभाजित अंतरों की गणना काफी आसान हो जाती है। इसलिए, व्यावहारिक उद्देश्यों के लिए सामान्यतः लैग्रेंज बहुपद पर विभाजित-अंतर सूत्र पसंद किए जाते हैं। | ||
=== उदाहरण === | === उदाहरण === | ||
Line 252: | Line 252: | ||
एक और उदाहरण: | एक और उदाहरण: | ||
क्रम <math>f_0</math> ऐसा है कि <math>f_0(1) = 6, f_0(2) = 9, f_0(3) = 2</math> और <math>f_0(4) = 5</math>, | क्रम <math>f_0</math> ऐसा है कि <math>f_0(1) = 6, f_0(2) = 9, f_0(3) = 2</math> और <math>f_0(4) = 5</math>, अर्थात हैं <math>6, 9, 2, 5</math> से <math>x_0 = 1</math> को <math>x_3 = 4</math>. | ||
आप आदेश की ढलान प्राप्त करते हैं <math>1</math> इस अनुसार: | आप आदेश की ढलान प्राप्त करते हैं <math>1</math> इस अनुसार: |
Revision as of 15:46, 16 March 2023
संख्यात्मक विश्लेषण के गणितीय क्षेत्र में, एक न्यूटन बहुपद, जिसका नाम इसके आविष्कारक आइजैक न्यूटन के नाम पर रखा गया है,[1] डेटा बिंदुओं के दिए गए समुच्चय के लिए एक बहुपद प्रक्षेप बहुपद है। न्यूटन बहुपद को कभी-कभी न्यूटन का विभाजित अंतर अंतर्वेशन बहुपद कहा जाता है क्योंकि बहुपद के गुणांकों की गणना न्यूटन की विभाजित अंतर विधि का उपयोग करके की जाती है।
परिभाषा
k+1 डेटा बिंदुओं का एक समुच्चय दिया गया है
जहाँ कोई भी दो xj समान नहीं हैं, न्यूटन प्रक्षेप बहुपद न्यूटन आधारित बहुपदों का एक रैखिक संयोजन है
न्यूटन आधार बहुपद के रूप में परिभाषित किया गया
j > 0 और के लिए .
गुणांक के रूप में परिभाषित किया गया है
कहाँ
विभाजित मतभेदों के लिए अंकन है।
इस प्रकार न्यूटन बहुपद को इस प्रकार लिखा जा सकता है
न्यूटन आगे विभाजित अंतर सूत्र
न्यूटन बहुपद को सरलीकृत रूप में व्यक्त किया जा सकता है जब
समान दूरी के साथ क्रमिक रूप से व्यवस्थित हैं।
अंकन का परिचय
प्रत्येक के लिए
और , के अंतर रूप में लिखा जा सकता है . तो न्यूटन बहुपद बन जाता है
इसे न्यूटन फॉरवर्ड विभाजित अंतर सूत्र कहते हैं।[citation needed]
न्यूटन पश्चविभाजित अंतर सूत्र
यदि नोड्स को पुनर्क्रमित किया जाता है , न्यूटन बहुपद बन जाता है
अगर से समान दूरी पर हैं और i के लिए = 0, 1, ..., k, तब,
न्यूटनपश्चविभाजित अंतर सूत्र कहा जाता है।[citation needed]
महत्व
न्यूटन का सूत्र रुचि का है क्योंकि यह टेलर के बहुपद का सीधा और स्वाभाविक अंतर-संस्करण है। टेलर का बहुपद बताता है कि एक विशेष x मान पर इसके y मान, और इसके डेरिवेटिव (इसकी परिवर्तन की दर, और इसके परिवर्तन की दर के परिवर्तन की दर, आदि) के आधार पर एक फ़ंक्शन कहां जाएगा। न्यूटन का सूत्र टेलर का बहुपद है जो परिवर्तन की तात्कालिक दरों के अतिरिक्त परिमित अंतरों पर आधारित है।
नए बिंदुओं का जोड़
अन्य अंतर सूत्रों के साथ, न्यूटन इंटरपोलेटिंग बहुपद की डिग्री को मौजूदा शब्दों को छोड़े बिना अधिक शब्दों और बिंदुओं को जोड़कर बढ़ाया जा सकता है। न्यूटन के रूप में सरलता है कि नए बिंदु हमेशा एक छोर पर जोड़े जाते हैं: न्यूटन का आगे का सूत्र दाईं ओर नए बिंदु जोड़ सकता है, और न्यूटन का पिछड़ा सूत्र बाईं ओर नए बिंदु जोड़ सकता है।
बहुपद इंटरपोलेशन की सटीकता इस बात पर निर्भर करती है कि इस्तेमाल किए गए बिंदुओं के समुच्चय के x मानों के मध्य में इंटरपोलेटेड बिंदु कितना करीब है। जाहिर है, जैसे ही एक छोर पर नए बिंदु जोड़े जाते हैं, वह मध्य पहले डेटा बिंदु से और दूर हो जाता है। इसलिए, यदि यह ज्ञात नहीं है कि वांछित सटीकता के लिए कितने बिंदुओं की आवश्यकता होगी, तो x-मानों का मध्य उस स्थान से दूर हो सकता है जहां प्रक्षेप किया गया है।
गॉस, स्टर्लिंग और बेसेल सभी ने उस समस्या के समाधान के लिए सूत्र विकसित किए।[2]
गॉस का सूत्र बारी-बारी से बाएं और दाएं सिरों पर नए बिंदु जोड़ता है, जिससे बिंदुओं के समुच्चय को उसी स्थान के पास केंद्रित रखा जाता है (मूल्यांकित बिंदु के पास)। ऐसा करते समय, यह न्यूटन के सूत्र से शब्दों का उपयोग करता है, जिसमें डेटा बिंदुओं और x मानों का नाम बदलकर किसी की पसंद के अनुसार डेटा बिंदु को x के रूप में नामित किया जाता है।0 डेटा बिंदु।
स्टर्लिंग का सूत्र एक विशेष डेटा बिंदु के बारे में केंद्रित रहता है, उपयोग के लिए जब मूल्यांकन बिंदु दो डेटा बिंदुओं के मध्य की तुलना में डेटा बिंदु के निकट होता है।
बेसेल का सूत्र दो डेटा बिंदुओं के बीच एक विशेष मध्य के बारे में केंद्रित रहता है, उपयोग के लिए जब मूल्यांकित बिंदु डेटा बिंदु की तुलना में मध्य के निकट होता है।
बेसेल और स्टर्लिंग कभी-कभी दो अंतरों के औसत का उपयोग करके और कभी-कभी x में द्विपद के दो उत्पादों के औसत का उपयोग करके प्राप्त करते हैं, जहां न्यूटन या गॉस केवल एक अंतर या उत्पाद का उपयोग करेंगे। स्टर्लिंग ऑड-डिग्री शब्दों में औसत अंतर का उपयोग करता है (जिसका अंतर डेटा बिंदुओं की एक समान संख्या का उपयोग करता है); बेसेल सम-डिग्री शब्दों में औसत अंतर का उपयोग करता है (जिसका अंतर विषम संख्या में डेटा बिंदुओं का उपयोग करता है)।
विभिन्न सूत्रों की ताकत और कमजोरियां
डेटा बिंदुओं के किसी भी परिमित समुच्चय के लिए, कम से कम संभव डिग्री का केवल एक बहुपद है जो उन सभी से होकर गुजरता है। इस प्रकार, इंटरपोलेशन बहुपद के न्यूटन रूप, या लैग्रेंज बहुपद, आदि के बारे में बात करना उचित है। हालांकि, इस बहुपद की गणना के विभिन्न तरीकों में अलग-अलग कम्प्यूटेशनल दक्षता हो सकती है। गॉस, बेसेल और स्टर्लिंग जैसी कई समान विधियाँ हैं। डेटा बिंदुओं के x-मानों का नाम बदलकर उन्हें न्यूटन से प्राप्त किया जा सकता है, लेकिन व्यवहार में वे महत्वपूर्ण हैं।
बेसेल बनाम स्टर्लिंग
बेसेल और स्टर्लिंग के बीच चुनाव इस बात पर निर्भर करता है कि इंटरपोलेट किया गया बिंदु किसी डेटा बिंदु के करीब है या दो डेटा बिंदुओं के बीच के मध्य के करीब है।
एक बहुपद इंटरपोलेशन की त्रुटि शून्य तक पहुंचती है, क्योंकि इंटरपोलेशन पॉइंट डेटा-पॉइंट तक पहुंचता है। इसलिए, स्टर्लिंग का सूत्र अपनी सटीकता में सुधार लाता है जहाँ इसकी सबसे कम आवश्यकता होती है और बेसेल अपनी सटीकता में सुधार लाता है जहाँ इसकी सबसे अधिक आवश्यकता होती है।
इसलिए, बेसेल के सूत्र को सबसे लगातार सटीक अंतर सूत्र कहा जा सकता है, और, सामान्य तौर पर, परिचित बहुपद अंतर्वेशन सूत्रों का सबसे लगातार सटीक।
विभाजित-अंतर विधियाँ बनाम लाग्रेंज
लैग्रेंज को कभी-कभी कम काम करने के लिए कहा जाता है, और कभी-कभी उन समस्याओं के लिए सिफारिश की जाती है जिनमें यह पहले से ज्ञात होता है कि पर्याप्त सटीकता के लिए कितने शब्दों की आवश्यकता है।
विभाजित अंतर विधियों का लाभ यह है कि बेहतर सटीकता के लिए अधिक डेटा बिंदु जोड़े जा सकते हैं। पिछले डेटा बिंदुओं पर आधारित शर्तों का उपयोग जारी रखा जा सकता है। सामान्य Lagrange सूत्र के साथ, अधिक डेटा बिंदुओं वाली समस्या को हल करने के लिए पूरी समस्या को फिर से करने की आवश्यकता होगी।
लैग्रेंज का एक बैरीसेंट्रिक संस्करण है जो एक नया डेटा बिंदु जोड़ते समय संपूर्ण गणना को फिर से करने की आवश्यकता से बचा जाता है। लेकिन इसके लिए आवश्यक है कि प्रत्येक पद के मूल्यों को रिकॉर्ड किया जाए।
लेकिन गॉस, बेसेल और स्टर्लिंग की क्षमता, डेटा बिंदुओं को प्रक्षेपित बिंदु के करीब केंद्रित रखने के लिए उन्हें लैग्रेंज पर एक फायदा देती है, जब यह पहले से ज्ञात नहीं होता है कि कितने डेटा बिंदुओं की आवश्यकता होगी।
इसके अतिरिक्त, मान लीजिए कि कोई यह पता लगाना चाहता है कि किसी विशेष प्रकार की समस्या के लिए, रैखिक इंटरपोलेशन पर्याप्त रूप से सटीक है या नहीं। यह विभाजित अंतर सूत्र के द्विघात पद का मूल्यांकन करके निर्धारित किया जा सकता है। यदि द्विघात शब्द नगण्य है - जिसका अर्थ है कि द्विघात शब्द जोड़े बिना रैखिक शब्द पर्याप्त रूप से सटीक है - तो रैखिक प्रक्षेप पर्याप्त रूप से सटीक है। यदि समस्या पर्याप्त रूप से महत्वपूर्ण है, या यदि द्विघात शब्द पदार्थ के लिए लगभग काफी बड़ा है, तो कोई यह निर्धारित करना चाहेगा कि क्या द्विघात और घन शब्दों का योग समस्या में मायने रखने के लिए पर्याप्त है।
बेशक, इस तरह के निर्धारण के लिए केवल एक विभाजित-अंतर विधि का उपयोग किया जा सकता है।
उस उद्देश्य के लिए, विभाजित-अंतर सूत्र और/या इसका x0 बिंदु को चुना जाना चाहिए ताकि सूत्र अपने रैखिक शब्द के लिए दो डेटा बिंदुओं का उपयोग करे जिनके बीच ब्याज का रैखिक अंतर्वेशन किया जाएगा।
विभाजित अंतर सूत्र अधिक बहुमुखी हैं, और अधिक प्रकार की समस्याओं में उपयोगी हैं।
लैग्रेंज फॉर्मूला सबसे अच्छा है जब सभी इंटरपोलेशन एक एक्स मान पर किया जाएगा, केवल डेटा बिंदुओं के वाई मान एक समस्या से दूसरी समस्या में भिन्न होते हैं, और जब यह ज्ञात होता है, पिछले अनुभव से, कितने शब्दों की आवश्यकता होती है पर्याप्त सटीकता।
इंटरपोलेटिंग बहुपद के न्यूटन रूप के साथ बहुपद के गुणांकों को खोजने के लिए शर्तों के संयोजन के लिए एक कॉम्पैक्ट और प्रभावी एल्गोरिदम मौजूद है।[3]
सटीकता
जब, स्टर्लिंग या बेसेल के साथ, उपयोग किए गए अंतिम शब्द में दो अंतरों का औसत शामिल होता है, तो न्यूटन या अन्य बहुपद प्रक्षेपों की तुलना में एक और बिंदु का उपयोग उसी बहुपद डिग्री के लिए किया जाएगा। तो, उस उदाहरण में, स्टर्लिंग या बेसेल N-1 डिग्री बहुपद को N बिंदुओं के माध्यम से नहीं डाल रहे हैं, बल्कि इसके बजाय, बेहतर केंद्र और सटीकता के लिए न्यूटन के साथ व्यापार तुल्यता है, उन तरीकों को कभी-कभी संभावित बहुपद डिग्री के लिए संभावित रूप से अधिक सटीकता प्रदान करते हैं।, अन्य बहुपद प्रक्षेपों की तुलना में।
सामान्य स्थिति
एक्स के विशेष प्रकरण के लिएi= i, बहुपदों का एक करीबी से संबंधित समुच्चय है, जिसे न्यूटन बहुपद भी कहा जाता है, जो सामान्य तर्क के लिए केवल द्विपद गुणांक हैं। अर्थात्, किसी के पास न्यूटन बहुपद भी होते हैं द्वारा दिए गए
इस रूप में, न्यूटन बहुपद न्यूटन श्रृंखला उत्पन्न करते हैं। ये बदले में सामान्य अंतर बहुपदों का एक विशेष स्थिति है जो सामान्यीकृत अंतर समीकरणों के माध्यम से विश्लेषणात्मक कार्यों के प्रतिनिधित्व की अनुमति देता है।
मुख्य विचार
प्रक्षेप समस्या को हल करने से रैखिक बीजगणित में एक समस्या उत्पन्न होती है जहाँ हमें रैखिक समीकरणों की एक प्रणाली को हल करना होता है। हमारे इंटरपोलेशन बहुपद के लिए एक मानक मोनोमियल आधार का उपयोग करके हम बहुत जटिल वैंडरमोंड मैट्रिक्स प्राप्त करते हैं। एक अन्य आधार, न्यूटन के आधार को चुनकर, हम रैखिक समीकरणों की एक प्रणाली प्राप्त करते हैं जिसमें एक बहुत ही सरल निम्न त्रिकोणीय मैट्रिक्स होता है जिसे तेजी से हल किया जा सकता है।
k + 1 डेटा बिंदुओं के लिए हम न्यूटन आधार का निर्माण इस प्रकार करते हैं
के आधार के रूप में इन बहुपदों का उपयोग करना हमें हल करना है
बहुपद प्रक्षेप समस्या को हल करने के लिए।
समीकरणों की इस प्रणाली को हल करके पुनरावृत्त रूप से हल किया जा सकता है
व्युत्पत्ति
जबकि इंटरपोलेशन फॉर्मूला समीकरणों की एक रैखिक प्रणाली को हल करके पाया जा सकता है, फॉर्मूला क्या दिखा रहा है और न्यूटन का इंटरपोलेशन फॉर्मूला काम क्यों करता है, इसमें अंतर्ज्ञान का नुकसान होता है। आरंभ करने के लिए, हमें पहले दो तथ्यों को स्थापित करने की आवश्यकता होगी:
तथ्य 1। विभाजित अंतर की शर्तों को उलटने से यह अपरिवर्तित रहता है: इसका प्रमाण एक आसान प्रेरण है: के लिए हम गणना करते हैं
हम अगला तथ्य 2 तैयार करते हैं जिसे आगमन और स्पष्टता के उद्देश्य से हम कथन भी कहते हैं
() :
तथ्य 2. () : अगर क्या कोई है विशिष्ट के साथ अंक -निर्देशांक और डिग्री का अद्वितीय बहुपद है (अधिकतम)
जिसका ग्राफ इन्हीं से होकर गुजरता है अंक तो वहाँ संबंध रखता है
हम इन कथनों को फिर से आगमन द्वारा सिद्ध करते हैं। जाहिर करना। होने देना कोई एक बिंदु हो और जाने दो डिग्री 0 से गुजरने वाला अद्वितीय बहुपद हो . फिर जाहिर है और हम लिख सकते हैं
का सबूत मान लिया जाये पहले से ही स्थापित: चलो डिग्री का बहुपद हो (अधिकतम) के माध्यम से गुजरते हुए साथ डिग्री का अद्वितीय बहुपद होना (अधिकतम) बिंदुओं से गुजरना , हम समानता की निम्नलिखित श्रृंखला लिख सकते हैं, जहाँ हम उपयोग करते हैं अंत से पहले समानता कि Stm पर लागू होता है :
के लिए प्रेरण परिकल्पना निम्नलिखित संगणना में दूसरी समानता पर भी लागू होता है, जहाँ
परिभाषित करने वाले बिंदुओं में जोड़ा जाता है :अब देखिए की परिभाषा से यह बहुपद गुजरता है और, जैसा कि हमने अभी दिखाया है, यह भी गुजरता है द्वारा इस प्रकार यह घात का अद्वितीय बहुपद है जो इन बिंदुओं से होकर गुजरता है। इसलिए यह बहुपद है अर्थात: इस प्रकार हम समानता की पहली श्रृंखला में अंतिम पंक्ति को ` के रूप में लिख सकते हैं' और इस प्रकार यह स्थापित किया हैसो ऽहम् स्थापित , और इसलिए तथ्य 2 का प्रमाण पूरा किया।अब तथ्य 2 को देखें: इसे इस प्रकार सूत्रबद्ध किया जा सकता है: यदि अधिक से अधिक घात का अद्वितीय बहुपद है जिसका ग्राफ बिंदुओं से होकर गुजरता है तब अधिक से अधिक घात का अद्वितीय बहुपद है पासिंग अंक के माध्यम से तो हम देखते हैं कि न्यूटन प्रक्षेप वास्तव में पहले से ही गणना की जा चुकी चीजों को नष्ट किए बिना नए प्रक्षेप बिंदुओं को जोड़ने की अनुमति देता है।
टेलर बहुपद
न्यूटन बहुपद की सीमा यदि सभी नोड्स मेल खाते हैं तो टेलर बहुपद है, क्योंकि विभाजित मतभेद डेरिवेटिव बन जाते हैं।
अनुप्रयोग
जैसा कि विभाजित अंतरों की परिभाषा से देखा जा सकता है कि पुराने गुणांकों की पुनर्गणना किए बिना एक नया प्रक्षेप बहुपद बनाने के लिए नए डेटा बिंदुओं को डेटा समुच्चय में जोड़ा जा सकता है। और जब कोई डेटा बिंदु बदलता है तो हमें सामान्यतः सभी गुणांकों की पुनर्गणना करने की आवश्यकता नहीं होती है। इंटरपोलेटिंग बहुपद उत्पन्न करने के लिए न्यूटन का सूत्र टेलर के बहुपद के समान रूप को अपनाता है लेकिन डेरिवेटिव के अतिरिक्त परिमित अंतर पर आधारित होता है। अर्थात, गुणांक b_i की गणना परिमित अंतर का उपयोग करके की जाती है। इस फॉर्म का एक फायदा यह है कि न्यूटन के इंटरपोलिंग बहुपद की डिग्री को मौजूदा शर्तों को छोड़े बिना नए बिंदुओं के अनुरूप अधिक शब्दों को जोड़कर (या हटाकर) स्वचालित रूप से बढ़ाया (या घटाया) जा सकता है।इसके अलावा, यदि xi समान दूरी पर वितरित किए जाते हैं विभाजित अंतरों की गणना काफी आसान हो जाती है। इसलिए, व्यावहारिक उद्देश्यों के लिए सामान्यतः लैग्रेंज बहुपद पर विभाजित-अंतर सूत्र पसंद किए जाते हैं।
उदाहरण
विभाजित अंतरों को तालिका के रूप में लिखा जा सकता है। उदाहरण के लिए, एक फ़ंक्शन f के लिए बिंदुओं पर अंतर्वेशित किया जाना है . लिखना
फिर गुणांक के रूप में प्रत्येक कॉलम में सबसे ऊपरी प्रविष्टियों का उपयोग करके इंटरपोलेटिंग बहुपद ऊपर की तरह बनता है।
उदाहरण के लिए, मान लीजिए कि हमें बिंदुओं पर विभाजित अंतरों का उपयोग करते हुए f(x) = tan(x) के लिए इंटरपोलेटिंग बहुपद का निर्माण करना है
सटीकता के छह अंकों का उपयोग करते हुए, हम तालिका बनाते हैं
इस प्रकार, अंतर्वेशी बहुपद है
तालिका में शुद्धता के अधिक अंक दिए जाने पर प्रथम और तृतीय गुणांक शून्य प्राप्त होंगे।
एक और उदाहरण:
क्रम ऐसा है कि और , अर्थात हैं से को .
आप आदेश की ढलान प्राप्त करते हैं इस अनुसार:
जैसा कि हमारे पास आदेश की ढलान है , अगला आदेश प्राप्त करना संभव है:
अंत में, हम आदेश के ढलान को परिभाषित करते हैं :
एक बार हमारे पास ढलान हो जाने के बाद, हम परिणामी बहुपदों को परिभाषित कर सकते हैं:
- .
- .
यह भी देखें
- डी न्यूमेरिस ट्रायंगुलरिबस एट इंडे डे प्रोग्रेसिबस अरिथमेटिकिस: मैजिस्टेरिया मैग्ना, थॉमस हैरियट का एक काम, जो इंटरपोलेशन के लिए समान तरीकों का वर्णन करता है, न्यूटन के काम से 50 साल पहले लिखा गया था लेकिन 2009 तक प्रकाशित नहीं हुआ था।
- न्यूटन श्रृंखला
- नेविल का स्कीमा
- बहुपद प्रक्षेप
- प्रक्षेप बहुपद का लैग्रेंज बहुपद
- प्रक्षेप बहुपद का बर्नस्टीन बहुपद
- सन्यासी के बीच
- कार्लसन की प्रमेय
- न्यूटोनियन श्रृंखला की तालिका
संदर्भ
- ↑ Dunham, William (1990). "7". Journey Through Genius: The Great Theorems of Mathematics. Kanak Agrawal, Inc. pp. 155–183. ISBN 9780140147391. Retrieved 24 October 2019.
- ↑ Numerical Methods for Scientists and Engineers, R.W. Hamming[dead link] Archived version: [1]
- ↑ Stetekluh, Jeff. "प्रक्षेपी बहुपद के न्यूटन रूप के लिए एल्गोरिथम".
बाहरी संबंध