बायोगैस अपग्रेडर: Difference between revisions

From Vigyanwiki
(Created page with "बायोगैस अपग्रेडर एक ऐसी सुविधा है जिसका उपयोग बायोगैस में मीथेन...")
 
No edit summary
 
(9 intermediate revisions by 3 users not shown)
Line 1: Line 1:
[[बायोगैस]] अपग्रेडर एक ऐसी सुविधा है जिसका उपयोग बायोगैस में [[मीथेन]] को [[प्राकृतिक गैस]] मानकों पर केंद्रित करने के लिए किया जाता है। प्रणाली [[ कार्बन डाईऑक्साइड ]], [[ हाइड्रोजन सल्फ़ाइड ]] को हटाती है,<ref>[http://www.sgc.se/dokument/Evaluation.pdf EVALUATION OF UPGRADING TECHNIQUES FOR BIOGAS, Margareta Persson, October 2003, School of Environmental Engineering, Lund University]</ref> बायोगैस से [[पानी]] और दूषित पदार्थ। ऐसा करने की एक तकनीक [[अमीन गैस उपचार]] का उपयोग करती है। इस शुद्ध बायोगैस को [[बायोमीथेन]] भी कहा जाता है। इसे प्राकृतिक गैस के साथ परस्पर उपयोग किया जा सकता है।
[[बायोगैस]] अपग्रेडर एक ऐसी सुविधा है जिसका उपयोग बायोगैस में [[मीथेन]] को [[प्राकृतिक गैस]] मानकों पर केंद्रित करने के लिए किया जाता है। प्रणाली बायोगैस से [[ कार्बन डाईऑक्साइड |कार्बन डाईऑक्साइड]], [[ हाइड्रोजन सल्फ़ाइड |हाइड्रोजन सल्फ़ाइड]],<ref>[http://www.sgc.se/dokument/Evaluation.pdf EVALUATION OF UPGRADING TECHNIQUES FOR BIOGAS, Margareta Persson, October 2003, School of Environmental Engineering, Lund University]</ref> [[पानी|जल]] और दूषित पदार्थों को हटाती है। ऐसा करने की एक तकनीक [[अमीन गैस उपचार|एमीन गैस शोधन]] का उपयोग करती है। इस शुद्ध बायोगैस को [[बायोमीथेन]] भी कहा जाता है। इसे प्राकृतिक गैस के साथ परस्पर उपयोग किया जा सकता है।


पाचन से उत्पादित कच्ची बायोगैस लगभग 60% मीथेन और 29% CO2 है<sub>2</sub> एच के ट्रेस तत्वों के साथ<sub>2</sub>एस; यह मशीनरी के लिए ईंधन गैस के रूप में उपयोग करने के लिए पर्याप्त उच्च गुणवत्ता वाला नहीं है। एच की संक्षारक प्रकृति<sub>2</sub>अकेले एस पौधे के आंतरिक भाग को नष्ट करने के लिए पर्याप्त है।
पाचन से उत्पादित कच्ची बायोगैस लगभग 60% मीथेन और 29% CO2 H<sub>2</sub>S के ट्रेस तत्वों के साथ है; यह मशीनरी के लिए ईंधन गैस के रूप में उपयोग करने के लिए पर्याप्त उच्च गुणवत्ता वाला नहीं है। अकेले H<sub>2</sub>S की संक्षारक प्रकृति एक संयंत्र के आंतरिक भाग को नष्ट करने के लिए पर्याप्त है।


{| class="wikitable"
{| class="wikitable"
|-
|-
! Component !! Range !! Average
! अवयव !! श्रेणी !! औसत
|-
|-
| Methane || 45–70% || 60%  
| मीथेन || 45–70% || 60%  
|-
|-
| Carbon dioxide || 25–55% || 35%
| कार्बन डाईऑक्साइड || 25–55% || 35%
|-
|-
| Water vapour || 0–10% || 3,1%
| जल वाष्प || 0–10% || 3,1%
|-
|-
| Nitrogen || 0,01–5% || 1%
| नाइट्रोजन || 0,01–5% || 1%
|-
|-
| Oxygen  || 0,01–2% || 0,3%  
| ऑक्सीजन || 0,01–2% || 0,3%  
|-
|-
| Hydrogen || 0–1% || < 1%
| हाइड्रोजन || 0–1% || < 1%
|-
|-
| Ammonia || 0,01–2,5&nbsp;mg/m<sup>3</sup> || 0,7&nbsp;mg/m<sup>3</sup>
| अमोनिया || 0,01–2,5&nbsp;mg/m<sup>3</sup> || 0,7&nbsp;mg/m<sup>3</sup>
|-
|-
| Hydrogen Sulphide || 0–30'000&nbsp;mg/m<sup>3</sup> || 500&nbsp;mg/m<sup>3</sup>
| हाइड्रोजन सल्फ़ाइड || 0–30'000&nbsp;mg/m<sup>3</sup> || 500&nbsp;mg/m<sup>3</sup>
|}
|}
समाधान बायोगैस उन्नयन या शुद्धिकरण प्रक्रियाओं का उपयोग है जिससे कच्ची बायोगैस धारा में दूषित पदार्थों को अवशोषित या साफ़ किया जाता है, जिससे गैस की प्रति इकाई मात्रा में अधिक मीथेन निकलता है। उन्नयन के चार मुख्य तरीके हैं: पानी की धुलाई, दबाव स्विंग सोखना, [[सेलेक्सोल]] और अमीन गैस उपचार।
विलयन बायोगैस उन्नयन या शुद्धिकरण प्रक्रियाओं का उपयोग है जिससे कच्ची बायोगैस धारा में दूषित पदार्थों को अवशोषित या साफ़ किया जाता है, जिससे गैस की प्रति इकाई मात्रा में अधिक मीथेन निकलता है। उन्नयन के चार मुख्य प्रकार हैं: जल की धुलाई, दबाव डालकर पोछते हुए सोखना, [[सेलेक्सोल|सेलेक्सोल अवशोषण]] और एमीन गैस शोधन।


== पानी धोना ==
== जल धोना ==


सबसे प्रचलित विधि पानी की धुलाई है जिससे उच्च दबाव वाली गैस एक स्तंभ में प्रवाहित होती है जिसमें कार्बन डाइऑक्साइड और अन्य ट्रेस तत्वों को कैस्केडिंग पानी द्वारा गैस के विपरीत प्रवाह से साफ़ किया जाता है। यह व्यवस्था 98% मीथेन वितरित कर सकती है और निर्माता सिस्टम में अधिकतम 2% मीथेन हानि की गारंटी देते हैं। बायोगैस उन्नयन प्रणाली को चलाने के लिए गैस में कुल ऊर्जा उत्पादन का लगभग 3% और 6% के बीच लगता है
सबसे प्रचलित विधि जल की धुलाई है जिससे उच्च दबाव वाली गैस एक स्तंभ में प्रवाहित होती है जिसमें कार्बन डाइऑक्साइड और अन्य ट्रेस तत्वों को सोपानी जल द्वारा गैस के विपरीत प्रवाह से साफ़ किया जाता है। यह व्यवस्था 98% मीथेन वितरित कर सकती है और निर्माता प्रणाली में अधिकतम 2% मीथेन हानि की गारंटी देते हैं। बायोगैस उन्नयन प्रणाली को चलाने के लिए गैस में कुल ऊर्जा उत्पादन का लगभग 3% और 6% के बीच लगता है


== प्रेशर स्विंग सोखना ==
== दबाव डालकर पोछते हुए सोखना ==


बायोगैस के लिए एक विशिष्ट पीएसए प्रणाली में चार चरण होंगे, जल वाष्प, कार्बन डाइऑक्साइड, नाइट्रोजन और ऑक्सीजन प्रत्येक के लिए एक।<ref>{{cite web|last=Zafar|first=Salman|title=बायोगैस उन्नयन के लिए पीएसए प्रणाली|url=http://www.bioenergyconsult.com/psa-system-for-biogas-upgradation/|publisher=Energy Consult|accessdate=31 December 2013}}</ref> अपग्रेड की जाने वाली गैस प्रत्येक बर्तन में प्रवेश करती है, एक उच्च दबाव के लिए संपीड़ित होती है जिससे निकाली जाने वाली गैस को अधिशोषक की सतह पर सोख लिया जाता है, और फिर डीकंप्रेस किया जाता है जिससे मीथेन निकल जाता है। इसके बाद अधिशोषक का पुनरुत्पादन होता है। ऑक्सीजन के लिए आणविक छलनी का उपयोग किया जाता है, नाइट्रोजन के लिए एक जिओलाइट, कार्बन डाइऑक्साइड और पानी के लिए एक जिओलाइट या सक्रिय कार्बन।
बायोगैस के लिए एक विशिष्ट पीएसए प्रणाली में चार चरण होंगे, जल वाष्प, कार्बन डाइऑक्साइड, नाइट्रोजन और ऑक्सीजन प्रत्येक के लिए एक।<ref>{{cite web|last=Zafar|first=Salman|title=बायोगैस उन्नयन के लिए पीएसए प्रणाली|url=http://www.bioenergyconsult.com/psa-system-for-biogas-upgradation/|publisher=Energy Consult|accessdate=31 December 2013}}</ref> उन्नयन की जाने वाली गैस प्रत्येक बर्तन में प्रवेश करती है, उच्च दबाव के लिए संपीड़ित होती है जिससे निकाली जाने वाली गैस को अधिशोषक की सतह पर सोख लिया जाता है, और फिर असंपीड़ित किया जाता है जिससे मीथेन निकल जाता है। इसके बाद अधिशोषक का पुनरुत्पादन होता है। ऑक्सीजन के लिए आणविक छलनी का उपयोग किया जाता है, नाइट्रोजन के लिए जिओलाइट, कार्बन डाइऑक्साइड और जल के लिए जिओलाइट या सक्रिय कार्बन।


== सेलेक्सोल ==
== सेलेक्सोल ==


सेलेक्सोल प्रक्रिया (अब यूओपी एलएलसी द्वारा लाइसेंस प्राप्त) में, सेलेक्सोल सॉल्वेंट अपेक्षाकृत उच्च दबाव, आमतौर पर 300 से 2000 पीएसए (2.07 से 13.8 एमपीए) पर फ़ीड गैस से एसिड गैसों को घोलता (अवशोषित) करता है। एसिड गैसों से युक्त समृद्ध विलायक को तब दबाव में छोड़ दिया जाता है और/या एसिड गैसों को छोड़ने और पुनर्प्राप्त करने के लिए भाप छीन ली जाती है। सेलेक्सोल प्रक्रिया अलग-अलग धाराओं के रूप में [[हाइड्रोजन सल्फाइड]] और कार्बन डाइऑक्साइड को पुनर्प्राप्त करने के लिए चुनिंदा रूप से संचालित हो सकती है, ताकि हाइड्रोजन सल्फाइड को सल्फ्यूरिक एसिड में रूपांतरण के लिए एलिमेंटल सल्फर या डब्ल्यूएसए प्रोसेस यूनिट में रूपांतरण के लिए क्लॉज यूनिट में भेजा जा सके। उसी समय, कार्बन डाइऑक्साइड को अलग किया जा सकता है या बढ़ाया तेल वसूली के लिए इस्तेमाल किया जा सकता है।
सेलेक्सोल प्रक्रिया(अब यूओपी एलएलसी द्वारा लाइसेंस प्राप्त) में, सेलेक्सोल विलायक अपेक्षाकृत उच्च दबाव, सामान्यतः 300 से 2000 पीएसए(2.07 से 13.8 एमपीए) पर फ़ीड गैस से अम्ल गैसों को घोला(अवशोषित) करता है। अम्ल गैसों से युक्त समृद्ध विलायक को तब दबाव में छोड़ दिया जाता है और/या अम्ल गैसों को छोड़ने और पुनर्प्राप्त करने के लिए भाप अनावृत ली जाती है। सेलेक्सोल प्रक्रिया अलग-अलग धाराओं के रूप में [[हाइड्रोजन सल्फाइड]] और कार्बन डाइऑक्साइड को पुनर्प्राप्त करने के लिए उत्तम रूप से संचालित हो सकती है, ताकि हाइड्रोजन सल्फाइड को सल्फ्यूरिक अम्ल में रूपांतरण के लिए तात्त्विक सल्फर या डब्ल्यूएसए प्रक्रिया इकाई में रूपांतरण के लिए खंड इकाई में भेजा जा सके। उसी समय, कार्बन डाइऑक्साइड को अलग किया जा सकता है या बढ़ाया तेल पुनः प्राप्ति के लिए उपयोग किया जा सकता है।


सेलेक्सोल एक भौतिक विलायक है, अमीन आधारित एसिड गैस हटाने वाले सॉल्वैंट्स के विपरीत जो एसिड गैसों के साथ रासायनिक प्रतिक्रिया पर भरोसा करते हैं। चूंकि कोई रासायनिक प्रतिक्रिया शामिल नहीं है, सेलेक्सोल को आमतौर पर अमीन आधारित प्रक्रियाओं की तुलना में कम ऊर्जा की आवश्यकता होती है। हालांकि, लगभग 300 psia (2.07 MPa) के नीचे फ़ीड गैस के दबाव में, सेलेक्सोल विलायक क्षमता (विलायक की प्रति मात्रा अवशोषित एसिड गैस की मात्रा में) कम हो जाती है और अमीन आधारित प्रक्रियाएं आमतौर पर बेहतर होंगी।
सेलेक्सोल एक भौतिक विलायक है, एमीन आधारित अम्ल गैस हटाने वाले विलायक के विपरीत जो अम्ल गैसों के साथ रासायनिक प्रतिक्रिया पर विश्वास करते हैं। चूंकि कोई रासायनिक प्रतिक्रिया सम्मिलित नहीं है, सेलेक्सोल को सामान्यतः एमीन आधारित प्रक्रियाओं की तुलना में कम ऊर्जा की आवश्यकता होती है। यद्यपि, लगभग 300 पसिआ(2.07 MPa) के नीचे फ़ीड गैस के दबाव में, सेलेक्सोल विलायक क्षमता(विलायक की प्रति मात्रा अवशोषित अम्ल गैस की मात्रा में) कम हो जाती है और एमीन आधारित प्रक्रियाएं सामान्यतः ठीक होंगी।


== अमाइन गैस ट्रीटर ==
== एमीन गैस ट्रीटर ==


एच<sub>2</sub>एस या दोनों एच<sub>2</sub>एस एंड सीओ<sub>2</sub> इस तकनीक से हटाया जा सकता है।
इस तकनीक से H<sub>2</sub>S या दोनों H<sub>2</sub>S और CO<sub>2</sub> दोनों को हटाया जा सकता है।


ऐसी गैसों के अमीन उपचार में शामिल रसायन विशेष अमीन के उपयोग के साथ कुछ भिन्न होता है। अधिक सामान्य अमाइनों में से एक के लिए, मोनोएथेनॉलमाइन (एमईए) को ''आरएनएच'' के रूप में निरूपित किया जाता है<sub>2</sub>'', रसायन शास्त्र को इस प्रकार व्यक्त किया जा सकता है:
ऐसी गैसों के एमीन शोधन में सम्मिलित रसायन विशेष एमीन के उपयोग के साथ कुछ भिन्न होता है। अधिक सामान्य एमीनों में से एक के लिए, मोनोएथेनॉलमाइन(एमईए) को '''''RNH''<sub>2</sub>''' ''के रूप में निरूपित किया जाता है, रसायन शास्त्र को इस प्रकार व्यक्त किया जा सकता है:''


: आरएनएच<sub>2</sub> + एच<sub>2</sub>S <math>\Leftrightarrow</math> आरएनएच{{su|p=+|b=3}} + एसएच<sup>-</सुप>
: RNH<sub>2</sub> + H<sub>2</sub>S <chem>-> </chem> RNH+3 + SH<sup></sup>


एक विशिष्ट अमाइन गैस उपचार प्रक्रिया में एक अवशोषक इकाई और एक पुनर्योजी इकाई शामिल होती है। अवशोषक में, डाउनफ्लोइंग अमीन समाधान एच को अवशोषित करता है<sub>2</sub>एस एंड सीओ<sub>2</sub> एक उत्पाद के रूप में हाइड्रोजन सल्फाइड और कार्बन डाइऑक्साइड से मुक्त एक गैस धारा और अवशोषित एसिड गैसों में समृद्ध एक अमीन समाधान का उत्पादन करने के लिए अपवाहित खट्टी गैस से। परिणामी समृद्ध अमीन को पुनर्जीवित या दुबले अमाइन का उत्पादन करने के लिए पुनर्योजी (एक स्ट्रिपर के साथ एक स्ट्रिपर) में भेजा जाता है जिसे अवशोषक में पुन: उपयोग के लिए पुनर्नवीनीकरण किया जाता है। रीजेनरेटर से निकाली गई ओवरहेड गैस सांद्रित H है<sub>2</sub>एस एंड सीओ<sub>2</sub>.
विशिष्ट एमीन गैस शोधन प्रक्रिया में एक अवशोषक इकाई और एक पुनर्योजी इकाई सम्मिलित होती है। अवशोषक में, बहाव एमीन विलयन हाइड्रोजन सल्फाइड और कार्बन डाइऑक्साइड से मुक्त एक गैस स्रोत का उत्पादन करने के लिए H<sub>2</sub>S और CO<sub>2</sub> को एक उत्पाद के रूप में अवशोषित करता है और अवशोषित अम्ल गैसों में समृद्ध एक अमीन विलयन होता है। परिणामी समृद्ध एमीन को पुनर्जीवित या तनु एमीन का उत्पादन करने के लिए पुनर्योजी(एक पुनर्वाष्पित्र के साथ एक विपट्टक) में भेजा जाता है जिसे अवशोषक में पुन: उपयोग के लिए पुनर्नवीनीकरण किया जाता है। पुनर्जनित्र से निकाली गई उपरि गैस सांद्रित H<sub>2</sub>S और CO<sub>2</sub> है।


== झिल्ली आधारित गैस पारगमन प्रणाली ==
== झिल्ली आधारित गैस पारगमन प्रणाली ==


मेम्ब्रेन-आधारित बायोगैस अपग्रेडिंग सिस्टम झिल्ली फाइबर के माध्यम से गैसों की विभिन्न पारगम्यता का उपयोग करते हैं। चूंकि बायोगैस एक सघन बहुलक झिल्ली से होकर गुजरती है, CO<sub>2</sub> प्रवाह से रोका जाता है और हटा दिया जाता है, जबकि CH<sub>4</sub> के माध्यम से गुजरता।
झिल्ली-आधारित बायोगैस उन्नयन प्रणाली झिल्ली फाइबर के माध्यम से गैसों की विभिन्न पारगम्यता का उपयोग करते हैं। चूंकि बायोगैस एक सघन बहुलक झिल्ली से होकर गुजरती है, CO<sub>2</sub> प्रवाह से रोका जाता है और हटा दिया जाता है, जबकि CH<sub>4</sub> के माध्यम से गुजरता। झिल्ली-आधारित गैस पारगमन प्रणाली मात्र विद्युत शक्ति का उपभोग करती है, परन्तु इसके लिए किसी रसायन या जल की आवश्यकता नहीं होती है। अंतिम गैस में उच्च मीथेन पदार्थ(99% मीथेन तक) प्राप्त करने के लिए, गैस झिल्ली के सीरियल समूहों से गुजरती है। चूंकि झिल्लियां बायोगैस में जल और अन्य अशुद्धियों के प्रति संवेदनशील होती हैं, इसलिए गैस पारगमन/झिल्ली प्रणालियों को कुशल पूर्व-शोधन की आवश्यकता होती है(विशेषकर H<sub>2</sub>S और जल निकालना)।
मेम्ब्रेन-आधारित गैस पारगमन प्रणाली केवल विद्युत शक्ति का उपभोग करती है, लेकिन इसके लिए किसी रसायन या पानी की आवश्यकता नहीं होती है। अंतिम गैस में उच्च मीथेन सामग्री (99% मीथेन तक) प्राप्त करने के लिए, गैस झिल्ली के सीरियल समूहों से गुजरती है। चूंकि झिल्लियां बायोगैस में पानी और अन्य अशुद्धियों के प्रति संवेदनशील होती हैं, इसलिए गैस पारगमन/झिल्ली प्रणालियों को कुशल पूर्व-उपचार की आवश्यकता होती है (विशेषकर एच.<sub>2</sub>एस और पानी निकालना)।


== उद्देश्य और प्रकार ==
== उद्देश्य और प्रकार ==
{{ Main|biomethane }}
{{Main|बायोमीथेन}}
[[File:Biogas pipes.JPG|thumb|बायोगैस और प्राकृतिक गैस पाइपलाइन]]कच्चे बायोगैस के मूल उपचार के बीच एक अंतर निकाला जा सकता है, जो उदाहरण के लिए बायोगैस [[ सह-उत्पादन ]] प्लांट में उपयोग के लिए आवश्यक है, और प्राकृतिक गैस की गुणवत्ता (बायोमीथेन) प्राप्त करने के लिए अधिक विस्तृत उपचार की आवश्यकता है।
[[File:Biogas pipes.JPG|thumb|बायोगैस और प्राकृतिक गैस पाइपलाइन]]कच्चे बायोगैस के मूल शोधन के बीच एक अंतर निकाला जा सकता है, जो उदाहरण के लिए बायोगैस [[ सह-उत्पादन |सह-उत्पादन]] संयंत्र में उपयोग के लिए आवश्यक है, और प्राकृतिक गैस की गुणवत्ता(बायोमीथेन) प्राप्त करने के लिए अधिक विस्तृत शोधन की आवश्यकता है।
उपरोक्त तालिका प्राथमिक उपचार और बायोमीथेन के बाद कच्ची बायोगैस की संरचना को दर्शाती है। सब्सट्रेट, प्लांट डिज़ाइन और अन्य कारकों के आधार पर कच्चे बायोगैस के अंश बहुत भिन्न हो सकते हैं। बायोमीथेन की प्रकृति प्राकृतिक गैस के संगत गुणों के अनुकूल होती है।
उपरोक्त तालिका प्राथमिक शोधन और बायोमीथेन के बाद कच्ची बायोगैस की संरचना को दर्शाती है। कार्यद्रव, संयंत्र डिज़ाइन और अन्य कारकों के आधार पर कच्चे बायोगैस के भाग बहुत भिन्न हो सकते हैं। बायोमीथेन की प्रकृति प्राकृतिक गैस के संगत गुणों के अनुकूल होती है।


बायोगैस का उपयोग ज्यादातर सीधे [[ बायोगैस संयंत्र ]] [[कोजेनरेशन प्लांट]] में किया जाता है। सीएचपी में क्षरण से बचने के लिए इसके लिए डिसल्फराइजेशन और सुखाने की आवश्यकता होती है। बायोगैस को प्राकृतिक गैस नेटवर्क में या ईंधन के उपयोग के लिए सक्षम करने के लिए, एक अधिक व्यापक उपचार आवश्यक है। प्राकृतिक गैस के विनिर्देशों को पूरा करने वाले गुणों को प्राप्त करने के लिए सुखाने और डीसल्फराइजेशन के अलावा कार्बन डाइऑक्साइड को हटा दिया जाना चाहिए और रासायनिक कंडीशनिंग करना चाहिए। इस बायोमीथेन को प्राकृतिक गैस नेटवर्क में इंजेक्ट किया जा सकता है और सीएचपी के माध्यम से बिजली और गर्मी में परिवर्तित किया जा सकता है, जहां गर्मी का उपयोग किया जा सकता है, जैसे कि एक [[स्विमिंग पूल]], जिसमें साल भर उच्च गर्मी की मांग होती है।
बायोगैस का उपयोग अधिकतर सीधे [[ बायोगैस संयंत्र |बायोगैस संयंत्र]] [[कोजेनरेशन प्लांट|सह-उत्पादन संयंत्र]] में किया जाता है। सीएचपी में क्षरण से बचने के लिए इसके लिए विगंधकन और सुखाने की आवश्यकता होती है। बायोगैस को प्राकृतिक गैस नेटवर्क में या ईंधन के उपयोग के लिए सक्षम करने के लिए, अधिक व्यापक शोधन आवश्यक है। प्राकृतिक गैस के विनिर्देशों को पूरा करने वाले गुणों को प्राप्त करने के लिए सुखाने और विगंधकन के अतिरिक्त कार्बन डाइऑक्साइड को हटा दिया जाना चाहिए और रासायनिक अनुकूलन करना चाहिए। इस बायोमीथेन को प्राकृतिक गैस नेटवर्क में इंजेक्षन किया जा सकता है और सीएचपी के माध्यम से विद्युत् और गर्मी में परिवर्तित किया जा सकता है, जहां गर्मी का उपयोग किया जा सकता है, जैसे कि एक [[स्विमिंग पूल|तरण ताल]], जिसमें पूर्ण वर्ष उच्च गर्मी की मांग होती है।


प्राकृतिक गैस 'ग्रिड' का उपयोग भी खुदरा ग्राहकों को उनके गैस आपूर्ति अनुबंधों में बायोमीथेन गैस के एक निश्चित अनुपात को खरीदने की अनुमति देता है।
प्राकृतिक गैस 'ग्रिड' का उपयोग भी फुटकर ग्राहकों को उनके गैस आपूर्ति अनुबंधों में बायोमीथेन गैस के निश्चित अनुपात को खरीदने की अनुमति देता है।


== यह भी देखें ==
== यह भी देखें ==
*[[एनोरोबिक डाइजेशन]]
* [[एनोरोबिक डाइजेशन|वातनिरपेक्ष पाचन]]


==संदर्भ==
==संदर्भ==
{{Reflist}}
{{Reflist}}


{{DEFAULTSORT:Biogas Upgrader}}[[Category: एनोरोबिक डाइजेशन]] [[Category: बायोगैस प्रौद्योगिकी]] [[Category: गैस प्रौद्योगिकियां]]
{{DEFAULTSORT:Biogas Upgrader}}


 
[[Category:Articles with hatnote templates targeting a nonexistent page|Biogas Upgrader]]
 
[[Category:Created On 06/03/2023|Biogas Upgrader]]
[[Category: Machine Translated Page]]
[[Category:Machine Translated Page|Biogas Upgrader]]
[[Category:Created On 06/03/2023]]
[[Category:Pages with script errors|Biogas Upgrader]]
[[Category:Templates Vigyan Ready|Biogas Upgrader]]
[[Category:एनोरोबिक डाइजेशन|Biogas Upgrader]]
[[Category:गैस प्रौद्योगिकियां|Biogas Upgrader]]
[[Category:बायोगैस प्रौद्योगिकी|Biogas Upgrader]]

Latest revision as of 18:05, 20 March 2023

बायोगैस अपग्रेडर एक ऐसी सुविधा है जिसका उपयोग बायोगैस में मीथेन को प्राकृतिक गैस मानकों पर केंद्रित करने के लिए किया जाता है। प्रणाली बायोगैस से कार्बन डाईऑक्साइड, हाइड्रोजन सल्फ़ाइड,[1] जल और दूषित पदार्थों को हटाती है। ऐसा करने की एक तकनीक एमीन गैस शोधन का उपयोग करती है। इस शुद्ध बायोगैस को बायोमीथेन भी कहा जाता है। इसे प्राकृतिक गैस के साथ परस्पर उपयोग किया जा सकता है।

पाचन से उत्पादित कच्ची बायोगैस लगभग 60% मीथेन और 29% CO2 H2S के ट्रेस तत्वों के साथ है; यह मशीनरी के लिए ईंधन गैस के रूप में उपयोग करने के लिए पर्याप्त उच्च गुणवत्ता वाला नहीं है। अकेले H2S की संक्षारक प्रकृति एक संयंत्र के आंतरिक भाग को नष्ट करने के लिए पर्याप्त है।

अवयव श्रेणी औसत
मीथेन 45–70% 60%
कार्बन डाईऑक्साइड 25–55% 35%
जल वाष्प 0–10% 3,1%
नाइट्रोजन 0,01–5% 1%
ऑक्सीजन 0,01–2% 0,3%
हाइड्रोजन 0–1% < 1%
अमोनिया 0,01–2,5 mg/m3 0,7 mg/m3
हाइड्रोजन सल्फ़ाइड 0–30'000 mg/m3 500 mg/m3

विलयन बायोगैस उन्नयन या शुद्धिकरण प्रक्रियाओं का उपयोग है जिससे कच्ची बायोगैस धारा में दूषित पदार्थों को अवशोषित या साफ़ किया जाता है, जिससे गैस की प्रति इकाई मात्रा में अधिक मीथेन निकलता है। उन्नयन के चार मुख्य प्रकार हैं: जल की धुलाई, दबाव डालकर पोछते हुए सोखना, सेलेक्सोल अवशोषण और एमीन गैस शोधन।

जल धोना

सबसे प्रचलित विधि जल की धुलाई है जिससे उच्च दबाव वाली गैस एक स्तंभ में प्रवाहित होती है जिसमें कार्बन डाइऑक्साइड और अन्य ट्रेस तत्वों को सोपानी जल द्वारा गैस के विपरीत प्रवाह से साफ़ किया जाता है। यह व्यवस्था 98% मीथेन वितरित कर सकती है और निर्माता प्रणाली में अधिकतम 2% मीथेन हानि की गारंटी देते हैं। बायोगैस उन्नयन प्रणाली को चलाने के लिए गैस में कुल ऊर्जा उत्पादन का लगभग 3% और 6% के बीच लगता है

दबाव डालकर पोछते हुए सोखना

बायोगैस के लिए एक विशिष्ट पीएसए प्रणाली में चार चरण होंगे, जल वाष्प, कार्बन डाइऑक्साइड, नाइट्रोजन और ऑक्सीजन प्रत्येक के लिए एक।[2] उन्नयन की जाने वाली गैस प्रत्येक बर्तन में प्रवेश करती है, उच्च दबाव के लिए संपीड़ित होती है जिससे निकाली जाने वाली गैस को अधिशोषक की सतह पर सोख लिया जाता है, और फिर असंपीड़ित किया जाता है जिससे मीथेन निकल जाता है। इसके बाद अधिशोषक का पुनरुत्पादन होता है। ऑक्सीजन के लिए आणविक छलनी का उपयोग किया जाता है, नाइट्रोजन के लिए जिओलाइट, कार्बन डाइऑक्साइड और जल के लिए जिओलाइट या सक्रिय कार्बन।

सेलेक्सोल

सेलेक्सोल प्रक्रिया(अब यूओपी एलएलसी द्वारा लाइसेंस प्राप्त) में, सेलेक्सोल विलायक अपेक्षाकृत उच्च दबाव, सामान्यतः 300 से 2000 पीएसए(2.07 से 13.8 एमपीए) पर फ़ीड गैस से अम्ल गैसों को घोला(अवशोषित) करता है। अम्ल गैसों से युक्त समृद्ध विलायक को तब दबाव में छोड़ दिया जाता है और/या अम्ल गैसों को छोड़ने और पुनर्प्राप्त करने के लिए भाप अनावृत ली जाती है। सेलेक्सोल प्रक्रिया अलग-अलग धाराओं के रूप में हाइड्रोजन सल्फाइड और कार्बन डाइऑक्साइड को पुनर्प्राप्त करने के लिए उत्तम रूप से संचालित हो सकती है, ताकि हाइड्रोजन सल्फाइड को सल्फ्यूरिक अम्ल में रूपांतरण के लिए तात्त्विक सल्फर या डब्ल्यूएसए प्रक्रिया इकाई में रूपांतरण के लिए खंड इकाई में भेजा जा सके। उसी समय, कार्बन डाइऑक्साइड को अलग किया जा सकता है या बढ़ाया तेल पुनः प्राप्ति के लिए उपयोग किया जा सकता है।

सेलेक्सोल एक भौतिक विलायक है, एमीन आधारित अम्ल गैस हटाने वाले विलायक के विपरीत जो अम्ल गैसों के साथ रासायनिक प्रतिक्रिया पर विश्वास करते हैं। चूंकि कोई रासायनिक प्रतिक्रिया सम्मिलित नहीं है, सेलेक्सोल को सामान्यतः एमीन आधारित प्रक्रियाओं की तुलना में कम ऊर्जा की आवश्यकता होती है। यद्यपि, लगभग 300 पसिआ(2.07 MPa) के नीचे फ़ीड गैस के दबाव में, सेलेक्सोल विलायक क्षमता(विलायक की प्रति मात्रा अवशोषित अम्ल गैस की मात्रा में) कम हो जाती है और एमीन आधारित प्रक्रियाएं सामान्यतः ठीक होंगी।

एमीन गैस ट्रीटर

इस तकनीक से H2S या दोनों H2S और CO2 दोनों को हटाया जा सकता है।

ऐसी गैसों के एमीन शोधन में सम्मिलित रसायन विशेष एमीन के उपयोग के साथ कुछ भिन्न होता है। अधिक सामान्य एमीनों में से एक के लिए, मोनोएथेनॉलमाइन(एमईए) को RNH2 के रूप में निरूपित किया जाता है, रसायन शास्त्र को इस प्रकार व्यक्त किया जा सकता है:

RNH2 + H2S  RNH+3 + SH

विशिष्ट एमीन गैस शोधन प्रक्रिया में एक अवशोषक इकाई और एक पुनर्योजी इकाई सम्मिलित होती है। अवशोषक में, बहाव एमीन विलयन हाइड्रोजन सल्फाइड और कार्बन डाइऑक्साइड से मुक्त एक गैस स्रोत का उत्पादन करने के लिए H2S और CO2 को एक उत्पाद के रूप में अवशोषित करता है और अवशोषित अम्ल गैसों में समृद्ध एक अमीन विलयन होता है। परिणामी समृद्ध एमीन को पुनर्जीवित या तनु एमीन का उत्पादन करने के लिए पुनर्योजी(एक पुनर्वाष्पित्र के साथ एक विपट्टक) में भेजा जाता है जिसे अवशोषक में पुन: उपयोग के लिए पुनर्नवीनीकरण किया जाता है। पुनर्जनित्र से निकाली गई उपरि गैस सांद्रित H2S और CO2 है।

झिल्ली आधारित गैस पारगमन प्रणाली

झिल्ली-आधारित बायोगैस उन्नयन प्रणाली झिल्ली फाइबर के माध्यम से गैसों की विभिन्न पारगम्यता का उपयोग करते हैं। चूंकि बायोगैस एक सघन बहुलक झिल्ली से होकर गुजरती है, CO2 प्रवाह से रोका जाता है और हटा दिया जाता है, जबकि CH4 के माध्यम से गुजरता। झिल्ली-आधारित गैस पारगमन प्रणाली मात्र विद्युत शक्ति का उपभोग करती है, परन्तु इसके लिए किसी रसायन या जल की आवश्यकता नहीं होती है। अंतिम गैस में उच्च मीथेन पदार्थ(99% मीथेन तक) प्राप्त करने के लिए, गैस झिल्ली के सीरियल समूहों से गुजरती है। चूंकि झिल्लियां बायोगैस में जल और अन्य अशुद्धियों के प्रति संवेदनशील होती हैं, इसलिए गैस पारगमन/झिल्ली प्रणालियों को कुशल पूर्व-शोधन की आवश्यकता होती है(विशेषकर H2S और जल निकालना)।

उद्देश्य और प्रकार

बायोगैस और प्राकृतिक गैस पाइपलाइन

कच्चे बायोगैस के मूल शोधन के बीच एक अंतर निकाला जा सकता है, जो उदाहरण के लिए बायोगैस सह-उत्पादन संयंत्र में उपयोग के लिए आवश्यक है, और प्राकृतिक गैस की गुणवत्ता(बायोमीथेन) प्राप्त करने के लिए अधिक विस्तृत शोधन की आवश्यकता है।

उपरोक्त तालिका प्राथमिक शोधन और बायोमीथेन के बाद कच्ची बायोगैस की संरचना को दर्शाती है। कार्यद्रव, संयंत्र डिज़ाइन और अन्य कारकों के आधार पर कच्चे बायोगैस के भाग बहुत भिन्न हो सकते हैं। बायोमीथेन की प्रकृति प्राकृतिक गैस के संगत गुणों के अनुकूल होती है।

बायोगैस का उपयोग अधिकतर सीधे बायोगैस संयंत्र सह-उत्पादन संयंत्र में किया जाता है। सीएचपी में क्षरण से बचने के लिए इसके लिए विगंधकन और सुखाने की आवश्यकता होती है। बायोगैस को प्राकृतिक गैस नेटवर्क में या ईंधन के उपयोग के लिए सक्षम करने के लिए, अधिक व्यापक शोधन आवश्यक है। प्राकृतिक गैस के विनिर्देशों को पूरा करने वाले गुणों को प्राप्त करने के लिए सुखाने और विगंधकन के अतिरिक्त कार्बन डाइऑक्साइड को हटा दिया जाना चाहिए और रासायनिक अनुकूलन करना चाहिए। इस बायोमीथेन को प्राकृतिक गैस नेटवर्क में इंजेक्षन किया जा सकता है और सीएचपी के माध्यम से विद्युत् और गर्मी में परिवर्तित किया जा सकता है, जहां गर्मी का उपयोग किया जा सकता है, जैसे कि एक तरण ताल, जिसमें पूर्ण वर्ष उच्च गर्मी की मांग होती है।

प्राकृतिक गैस 'ग्रिड' का उपयोग भी फुटकर ग्राहकों को उनके गैस आपूर्ति अनुबंधों में बायोमीथेन गैस के निश्चित अनुपात को खरीदने की अनुमति देता है।

यह भी देखें

संदर्भ

  1. EVALUATION OF UPGRADING TECHNIQUES FOR BIOGAS, Margareta Persson, October 2003, School of Environmental Engineering, Lund University
  2. Zafar, Salman. "बायोगैस उन्नयन के लिए पीएसए प्रणाली". Energy Consult. Retrieved 31 December 2013.