त्रिकोणमितीय बहुपद: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 19: Line 19:
== गुण ==
== गुण ==


त्रिकोणमितीय बहुपद को [[वास्तविक रेखा]] पर आवर्त फलन माना जा सकता है, जिसमें आवर्त फलन 2 का कुछ गुणज होता है{{pi}}, या [[यूनिट सर्कल]] पर फ़ंक्शन के रूप में।
एक त्रिकोणमितीय बहुपद को [[वास्तविक रेखा]] पर एक आवधिक कार्य माना जा सकता है, जिसकी अवधि 2{{pi}} के कुछ गुणक या [[यूनिट सर्कल|इकाई वृत]] पर एक फलन के रूप में होती है।


मूल परिणाम यह है कि त्रिकोणमितीय बहुपद इकाई सर्कल पर [[निरंतर कार्य|निरंतर]] फलनों के स्थान पर एक[[समान मानदंड]] के साथ सघन सेट हैं {{harv|Rudin|1987|loc=Thm 4.25}}; यह स्टोन-वीयरस्ट्रास प्रमेय का विशेष स्थिति है। अधिक ठोस रूप से, प्रत्येक निरंतर फलन f और प्रत्येक ε > 0 के लिए, त्रिकोणमितीय बहुपद T का अस्तित्व होता है जैसे कि |f(z) - T(z)| < ε सभी z के लिए। Fejér के प्रमेय में कहा गया है कि f की फूरियर श्रृंखला के आंशिक योगों का अंकगणितीय साधन समान रूप से f पर अभिसरण करता है, बशर्ते f वृत्त पर निरंतर हो, इस प्रकार अनुमानित त्रिकोणमितीय बहुपद T को खोजने का स्पष्ट तरीका देता है।
मूल परिणाम यह है कि त्रिकोणमितीय बहुपद इकाई वृत पर [[निरंतर कार्य|निरंतर]] फलनों के स्थान पर एक[[समान मानदंड]] के साथ सघन सेट {{harv|Rudin|1987|loc=Thm 4.25}} हैं; यह स्टोन-वीयरस्ट्रास प्रमेय का विशेष स्थिति है। अधिक ठोस रूप से, प्रत्येक निरंतर फलन f और प्रत्येक ε > 0 के लिए, त्रिकोणमितीय बहुपद T का अस्तित्व होता है जैसे कि |f(z) - T(z)| < ε सभी z के लिए। फेजर के प्रमेय में कहा गया है कि f की फूरियर श्रृंखला के आंशिक योगों का अंकगणितीय साधन समान रूप से f पर अभिसरण करता है, परन्तु f वृत्त पर निरंतर हो, इस प्रकार अनुमानित त्रिकोणमितीय बहुपद T को खोजने का स्पष्ट विधि देता है।


डिग्री एन के त्रिकोणमितीय बहुपद में किसी भी अंतराल में अधिकतम 2N जड़ें होती हैं <nowiki>[</nowiki>a, a + 2{{pi}<nowiki>)</nowiki> a in R के साथ, जब तक कि यह शून्य फ़ंक्शन न हो {{harv|Powell|1981|p=150}}.
घात N के त्रिकोणमितीय बहुपद के किसी भी अंतराल [''a'', ''a'' + ) में a के साथ R में अधिकतम 2N मूल होते हैं, जब तक कि यह शून्य फलन {{harv|पोवेल|1981|p=150}} नही होता है।


==संदर्भ==
==संदर्भ==

Revision as of 19:10, 15 March 2023

संख्यात्मक विश्लेषण और गणितीय विश्लेषण के गणितीय उपक्षेत्रों में, त्रिकोणमितीय बहुपद फलन (गणित) sin(nx) और cos(nx) का परिमित रैखिक संयोजन है जिसमें n एक या अधिक प्राकृतिक संख्याओं के मान लेता है। वास्तविक-मूल्यवान फलनों के लिए गुणांकों को वास्तविक संख्या के रूप में लिया जा सकता है। सम्मिश्र संख्या के लिए, इस तरह के एक फलन और परिमित फूरियर श्रृंखला के बीच कोई अंतर नहीं है।

त्रिकोणमितीय बहुपदों का व्यापक रूप से उपयोग किया जाता है, उदाहरण के लिए आवधिक फलनों के प्रक्षेप के लिए लागू त्रिकोणमितीय प्रक्षेप में उपयोग किया जाता है। उनका उपयोग असतत फूरियर रूपांतरण में भी किया जाता है।

वास्तविक-मान वाले स्थिति के लिए 'त्रिकोणमितीय बहुपद' शब्द को सादृश्य का उपयोग करते हुए देखा जा सकता है: कार्य sin(nx) और cos(nx) बहुपदों के लिए एकपद आधार के समान हैं। जटिल स्थिति में त्रिकोणमितीय बहुपद चर 'eix' के परिवर्तन के तहत z = e के परिवर्तन के तहत zix में लॉरेंट बहुपदों की धनात्मक और ऋणात्मक घातों द्वारा फैले हुए हैं।

औपचारिक परिभाषा

के लिए के साथ रूप

के किसी भी फलन T को घात N (रुडिन 1987, p. 88) के एक जटिल त्रिकोणमितीय बहुपद कहा जाता है। यूलर के सूत्र का उपयोग करके बहुपद को फिर से लिखा जा सकता है

सादृश्य, मान ले और या , तब

घात N का वास्तविक त्रिकोणमितीय बहुपद (पोवेल 1981, p. 150) कहलाता है।

गुण

एक त्रिकोणमितीय बहुपद को वास्तविक रेखा पर एक आवधिक कार्य माना जा सकता है, जिसकी अवधि 2π के कुछ गुणक या इकाई वृत पर एक फलन के रूप में होती है।

मूल परिणाम यह है कि त्रिकोणमितीय बहुपद इकाई वृत पर निरंतर फलनों के स्थान पर एकसमान मानदंड के साथ सघन सेट (Rudin 1987, Thm 4.25) हैं; यह स्टोन-वीयरस्ट्रास प्रमेय का विशेष स्थिति है। अधिक ठोस रूप से, प्रत्येक निरंतर फलन f और प्रत्येक ε > 0 के लिए, त्रिकोणमितीय बहुपद T का अस्तित्व होता है जैसे कि |f(z) - T(z)| < ε सभी z के लिए। फेजर के प्रमेय में कहा गया है कि f की फूरियर श्रृंखला के आंशिक योगों का अंकगणितीय साधन समान रूप से f पर अभिसरण करता है, परन्तु f वृत्त पर निरंतर हो, इस प्रकार अनुमानित त्रिकोणमितीय बहुपद T को खोजने का स्पष्ट विधि देता है।

घात N के त्रिकोणमितीय बहुपद के किसी भी अंतराल [a, a + 2π) में a के साथ R में अधिकतम 2N मूल होते हैं, जब तक कि यह शून्य फलन (पोवेल 1981, p. 150) नही होता है।

संदर्भ

  • Powell, Michael J. D. (1981), Approximation Theory and Methods, Cambridge University Press, ISBN 978-0-521-29514-7
  • Rudin, Walter (1987), Real and complex analysis (3rd ed.), New York: McGraw-Hill, ISBN 978-0-07-054234-1, MR 0924157.