अर्ध-जाली (सेमिलेटिस): Difference between revisions

From Vigyanwiki
No edit summary
 
(9 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{Short description|Partial order with joins}}
{{Short description|Partial order with joins}}
{{stack|{{Binary relations}}}}
{{stack|{{बाइनरी सम्बन्ध}}}}
गणित में, एक ज्वाइन-सेमिलैटिस (या ऊपरी सेमीलैटिस) एक आंशिक रूप से ऑर्डर किया गया सेट है जिसमें किसी भी गैर-रिक्त सेट [[परिमित सेट]] [[सबसेट]] के लिए एक ज्वाइन (गणित) (कम से कम ऊपरी बाउंड) होता है। [[द्वैत (आदेश सिद्धांत)]], एक मीट-सेमिलैटिस (या लोअर सेमिलैटिस) एक आंशिक रूप से ऑर्डर किया गया सेट है जिसमें किसी भी गैर-रिक्त परिमित सबसेट के लिए एक मीट (गणित) (या [[सबसे बड़ी निचली सीमा]]) है। प्रत्येक ज्वाइन-सेमिलैटिस उल्टे क्रम में मीट-सेमिलैटिस है और इसके विपरीत।


सेमिलैटिस को [[बीजगणित]] भी परिभाषित किया जा सकता है: जुड़ना और मिलना सहयोगीता, [[ क्रमविनिमेयता ]], [[आलस्य]] [[बाइनरी ऑपरेशन]] हैं, और ऐसा कोई भी ऑपरेशन आंशिक क्रम (और संबंधित [[उलटा क्रम]]) को प्रेरित करता है, जैसे कि किसी भी दो तत्वों के लिए ऑपरेशन का नतीजा [[कम से कम ऊपरी सीमा]] है इस आंशिक क्रम के संबंध में तत्वों की (या सबसे बड़ी निचली सीमा)।
गणित में ज्वाइन-सेमिलेटिस (या ऊपरी सेमिलेटिस) आंशिक रूप से व्यवस्थित किया गया समुच्चय है जिसमें किसी भी गैर-रिक्त [[परिमित सेट|परिमित उपसमुच्चय]] [[सबसेट|(सबसेट]]) के लिए ज्वाइन (गणित) (कम से कम ऊपरी बाउंड) होता है। [[द्वैत (आदेश सिद्धांत)]], मीट-सेमिलेटिस (या निचला सेमिलेटिस) आंशिक रूप से व्यवस्थित किया गया समुच्चय है जिसमें किसी भी गैर-रिक्त परिमित उपसमुच्चय के लिए मीट (गणित) (या [[सबसे बड़ी निचली सीमा]]) है और इसके विपरीत प्रत्येक ज्वाइन-सेमिलेटिस उल्टे क्रम में मीट-सेमिलेटिस है।


एक [[जाली (आदेश)]] एक [[आंशिक रूप से आदेशित सेट]] है जो समान आंशिक क्रम के संबंध में मिलने और जुड़ने-अर्ध-जाल दोनों है। बीजगणितीय रूप से, एक जाली दो साहचर्य, क्रमविनिमेय idempotent द्विआधारी संचालन के साथ एक सेट है जो संबंधित [[अवशोषण कानून]]ों से जुड़ा हुआ है।
सेमिलेटिस को [[बीजगणित|बीजगणितीय]] रूप में भी परिभाषित किया जा सकता है। ज्वाइन और मीट सहयोगीता [[ क्रमविनिमेयता |क्रमविनिमेयता]], [[आलस्य|आईडेम्पोटैंट]] [[बाइनरी ऑपरेशन|बाइनरी संचालन]] हैं और ऐसा कोई भी ऑपरेशन आंशिक क्रम (और संबंधित [[उलटा क्रम]]) को प्रेरित करता है जैसे कि किसी भी दो तत्वों के लिए ऑपरेशन का परिणाम इस आंशिक क्रम के संबंध में तत्वों की (या सबसे बड़ी निचली सीमा) [[कम से कम ऊपरी सीमा]] है।
 
[[जाली (आदेश)|जाली (ऑर्डर)]] [[आंशिक रूप से आदेशित सेट|आंशिक रूप से आदेशित समुच्चय]] आंशिक रूप से आदेशित समुच्चय है जो समान आंशिक क्रम के संबंध में ज्वाइन और मीट-सेमिलेटिस दोनों है। बीजगणितीय रूप से लैटिस दो साहचर्य, क्रमविनिमेय आईडेम्पोटैंट द्विआधारी संचालन के साथ समुच्चय है जो संबंधित [[अवशोषण कानून|अवशोषण नियमों]] से संबंधित है।


{{Algebraic structures |Lattice}}
{{Algebraic structures |Lattice}}
Line 11: Line 12:
== आदेश-सैद्धांतिक परिभाषा ==
== आदेश-सैद्धांतिक परिभाषा ==


एक [[सेट (गणित)]] {{math|1=''S''}} आंशिक रूप से [[ द्विआधारी संबंध ]] द्वारा निर्धारित किया गया है {{math|1=≤}} मीट-सेमिलैटिस है अगर
[[सेट (गणित)|समुच्चय (गणित)]] {{math|1=''S''}} आंशिक रूप से [[ द्विआधारी संबंध |बाइनरी संबंध]] द्वारा निर्धारित किया गया {{math|1=≤}} मीट-सेमिलेटिस है यदि


: सभी तत्वों के लिए {{math|1=''x''}} और {{math|1=''y''}} का {{math|1=''S''}}, सेट का infinumum {{math|1={''x'', ''y''} }} मौजूद।
: सभी तत्वों के लिए S के x और y, सेट का इन्फ़ीमम (सबसे बड़ी निचली सीमा) {x, y} होता है।


सेट की सबसे बड़ी निचली सीमा {{math|1={''x'', ''y''} }} का मिलन (गणित) कहलाता है {{math|1=''x''}} और {{math|1=''y'',}} निरूपित {{math|1=''x'' ∧ ''y''.}}
समुच्चय की सबसे बड़ी निचली सीमा {x, y}, x और y का मीट (गणित) कहलाता है जिसे x y से निरूपित करते हैं।


उच्चतम परिणाम के साथ सबसे बड़ी निचली सीमा को बदलने से जुड़ने-अर्ध-जाल की दोहरी अवधारणा होती है। की सबसे कम ऊपरी सीमा {{math|1={''x'', ''y''} }} का जोड़ (गणित) कहलाता है {{math|1=''x''}} और {{math|1=''y''}}, निरूपित {{math|1=''x'' ∨ ''y''}}. मीट और जॉइन बाइनरी ऑपरेशंस चालू हैं {{math|1=''S''.}} एक सरल [[गणितीय प्रेरण]] तर्क से पता चलता है कि परिभाषा के अनुसार, सभी संभावित जोड़ीदार सुप्रीमा (इन्फिमा) का अस्तित्व, सभी गैर-रिक्त परिमित सुप्रीमा (इन्फिमा) के अस्तित्व का तात्पर्य है।
उच्चतम परिणाम के साथ सबसे बड़ी निचली सीमा को परिवर्तित करने से ज्वाइन-अर्ध-जाल की दोहरी अवधारणा होती है। सबसे कम ऊपरी सीमा x और y का जोड़ (गणित) {x, y} कहलाता है जिसे {{math|1=''x'' ∨ ''y''}} से निरूपित किया जाता है। मीट और जॉइन S पर बाइनरी संचालन हैं। सरल [[गणितीय प्रेरण]] तर्क से ज्ञात होता है कि परिभाषा के अनुसार सभी संभावित जोड़ीदार सुप्रीमा (इन्फिमा) का अस्तित्व, सभी गैर-रिक्त परिमित सुप्रीमा (इन्फिमा) के अस्तित्व का तात्पर्य है।


एक ज्वाइन-सेमिलैटिस को बाउंड किया जाता है यदि उसमें कम से कम एलिमेंट है, खाली सेट का जॉइन। द्वैत (आदेश सिद्धांत), एक मीट-सेमिलैटिस को बांधा जाता है यदि इसमें [[सबसे बड़ा तत्व]] है, खाली सेट का मिलन।
ज्वाइन-सेमिलैटिस को बाउंड किया जाता है यदि उसमें रिक्त समुच्चय का जॉइन कम से कम तत्व है। वास्तव में मीट-सेमिलैटिस को बांधा जाता है यदि उसके पास रिक्त समुच्चय का मीट [[सबसे बड़ा तत्व]] है।


अन्य गुणों को ग्रहण किया जा सकता है; इस विषय पर अधिक चर्चा के लिए [[पूर्णता (आदेश सिद्धांत)]] पर आलेख देखें। उस लेख में इस बात पर भी चर्चा की गई है कि संबंधित पोसेट्स के बीच उपयुक्त [[गाल्वा कनेक्शन]] के अस्तित्व के संदर्भ में हम उपरोक्त परिभाषा को कैसे बदल सकते हैं - अवधारणा की [[श्रेणी सिद्धांत]] जांच के लिए विशेष रुचि का एक दृष्टिकोण।
अन्य गुणों को ग्रहण किया जा सकता है, इस विषय पर अधिक चर्चा के लिए [[पूर्णता (आदेश सिद्धांत)]] पर आलेख देखें। उस लेख में इस बात पर भी चर्चा की गई है कि संबंधित पोसेट्स के बीच उपयुक्त [[गाल्वा कनेक्शन]] के अस्तित्व के संदर्भ में हम उपरोक्त परिभाषा को कैसे बदल सकते हैं - अवधारणा की [[श्रेणी सिद्धांत]] जांच के लिए विशेष रुचि का दृष्टिकोण।


== बीजगणितीय परिभाषा ==
== बीजगणितीय परिभाषा ==


एक मिल-सेमिलैटिस एक [[बीजगणितीय संरचना]] है <math>\langle S, \land \rangle</math> एक सेट (गणित) से मिलकर {{math|1=''S''}} बाइनरी ऑपरेशन के साथ {{math|1=∧}}, जिसे मीट कहा जाता है, जैसे कि सभी सदस्यों के लिए {{math|1=''x'', ''y'',}} और {{math|1=''z''}} का {{math|1=''S'',}} निम्नलिखित [[पहचान (गणित)]] रखती है:
मिल-सेमिलेटिस एक [[बीजगणितीय संरचना]] है <math>\langle S, \land \rangle</math> समुच्चय (गणित) से मिलकर {{math|1=''S''}} बाइनरी ऑपरेशन के साथ {{math|1=∧}} जिसे मीट कहा जाता है जैसे कि सभी सदस्यों के लिए {{math|1=''S''}} का {{math|1=''x'', ''y'',}} और {{math|1=''z''}} निम्नलिखित [[पहचान (गणित)|सम्बन्ध (गणित)]] रखता है:


; साहचर्य: {{math|1=''x'' ∧ (''y'' ∧ ''z'') = (''x'' ∧ ''y'') ∧ ''z''}}
; साहचर्य: {{math|1=''x'' ∧ (''y'' ∧ ''z'') = (''x'' ∧ ''y'') ∧ ''z''}}
Line 31: Line 32:
; अक्षमता: {{math|1=''x'' ∧ ''x'' = ''x''}}
; अक्षमता: {{math|1=''x'' ∧ ''x'' = ''x''}}


एक मिलन-सेमिलैटिस <math>\langle S, \land \rangle</math> अगर बाध्य है {{math|1=''S''}} में एक [[पहचान तत्व]] 1 शामिल है जैसे कि {{math|1=''x'' ∧ 1 {{=}} ''x''}} सभी के लिए {{math|1=''x''}} में {{math|1=''S''.}}
जॉइन-सेमिलेटिस <math>\langle S, \land \rangle</math> अगर बाध्य है तब {{math|1=''S''}} में [[पहचान तत्व|सम्बन्ध तत्व]] 1 सम्मिलित है जैसे कि {{math|1=''x'' ∧ 1 {{=}} ''x''}} सभी के लिए {{math|1=''x''}} में {{math|1=''S''}}


अगर प्रतीक {{math|1=∨}}, जिसे ज्वाइन कहा जाता है, रिप्लेस करता है {{math|1=∧}} अभी दी गई परिभाषा में, संरचना को ज्वाइन-सेमिलैटिस कहा जाता है। ऑपरेशन के लिए प्रतीक की विशेष पसंद के बारे में कोई भी अस्पष्ट हो सकता है, और केवल सेमीलैटिस के बारे में बात कर सकता है।
यदि प्रतीक V जिसे ज्वाइन कहा जाता है अभी दी गई परिभाषा में {{math|1=∧}} को प्रतिस्थापित करता है तो संरचना को ज्वाइन-सेमिलेटिस कहा जाता है। संचालन के लिए प्रतीक की विशेष पसंद के बारे में कोई भी अस्पष्ट हो सकता है और केवल सेमीलैटिस के बारे में बात कर सकता है।


एक सेमिलेटिस एक कम्यूटेटिविटी, इडेमपोटेंसी [[ semigroup ]] है; यानी, एक कम्यूटेटिव [[बैंड (गणित)]]। एक बंधा हुआ अर्ध-जाल एक आदर्श क्रमविनिमेय [[मोनोइड]] है।
सेमिलेटिस कम्यूटेटिविटी, इडेमपोटेंसी [[ semigroup |माध्यम वर्गी]] अर्थात कम्यूटेटिव [[बैंड (गणित)]] है। बंधा हुआ अर्ध-जाल एक आदर्श क्रमविनिमेय [[मोनोइड]] है।


सेटिंग द्वारा मीट-सेमिलैटिस पर एक आंशिक आदेश प्रेरित किया जाता है {{math|1=''x'' ''y''}} जब कभी भी {{math|1=''x'' ''y'' {{=}} ''x''}}. ज्वाइन-सेमिलैटिस के लिए, ऑर्डर सेटिंग द्वारा प्रेरित होता है {{math|1=''x'' ≤ ''y''}} जब कभी भी {{math|1=''x'' ∨ ''y'' {{=}} ''y''}}. एक बाउंड मीट-सेमिलैटिस में, पहचान 1 का सबसे बड़ा तत्व है {{math|1=''S''.}} इसी तरह, एक ज्वाइन सेमीलैटिस में एक पहचान तत्व सबसे कम तत्व है।
जब कभी भी {{math|1=''x'' ''y'' {{=}} ''x''}} सेटिंग द्वारा मीट-सेमिलेटिस पर आंशिक आदेश {{math|1=''x'' ''y''}} प्रेरित किया जाता है ज्वाइन-सेमिलेटिस के लिए व्यवस्थित सेटिंग {{math|1=''x'' ≤ ''y''}} जब कभी भी {{math|1=''x'' ∨ ''y'' {{=}} ''y''}} द्वारा प्रेरित होता है। बाउंड मीट-सेमिलेटिस में पहचान 1, {{math|1=''S''}} का सबसे बड़ा तत्व है इसी प्रकार सेमी-लैटिस में सम्मिलित होने वाला तत्व छोटे से छोटा पहचान तत्व है।


== दो परिभाषाओं के बीच संबंध ==
== दो परिभाषाओं के बीच संबंध ==
एक आदेश सैद्धांतिक मीट-सेमिलैटिस {{math|1=&lang;''S'', ≤&rang;}} बाइनरी ऑपरेशन को जन्म देता है {{math|1=∧}} ऐसा है कि {{math|1=&lang;''S'', ∧&rang;}} एक बीजगणितीय मीट-सेमिलैटिस है। इसके विपरीत, मिलो-सेमिलैटिस {{math|1=&lang;''S'', ∧&rang;}} एक द्विआधारी संबंध को जन्म देता है {{math|1=≤}} जो आंशिक रूप से आदेश देता है {{math|1=''S''}} निम्नलिखित तरीके से: सभी तत्वों के लिए {{math|1=''x''}} और {{math|1=''y''}} में {{math|1=''S'', ''x'' ≤ ''y''}} अगर और केवल अगर {{math|1=''x'' = ''x'' ∧ ''y''.}}
आदेश सैद्धांतिक मीट-सेमिलेटिस {{math|1=&lang;''S'', ≤&rang;}} बाइनरी ऑपरेशन {{math|1=∧}} को उत्पन्न करता है जो कि {{math|1=&lang;''S'', ∧&rang;}} बीजगणितीय मीट-सेमिलेटिस है। इसके विपरीत मिलो-सेमिलेटिस {{math|1=&lang;''S'', ∧&rang;}} एक द्विआधारी संबंध {{math|1=≤}} को उत्पन्न करता है जो आंशिक रूप से आदेश देता है {{math|1=''S''}} निम्नलिखित तरीके से सभी तत्वों के लिए {{math|1=''x''}} और {{math|1=''y''}} में {{math|1=''S'', ''x'' ≤ ''y''}}, यदि  {{math|1=''x'' = ''x'' ∧ ''y''}}


रिश्ता {{math|1=≤}} इस तरह से पेश किया गया एक आंशिक क्रम को परिभाषित करता है जिससे बाइनरी ऑपरेशन होता है {{math|1=∧}} वसूल किया जा सकता है। इसके विपरीत, बीजगणितीय रूप से परिभाषित अर्धजाल द्वारा प्रेरित क्रम {{math|1=&lang;''S'', ∧&rang;}} द्वारा प्रेरित के साथ मेल खाता है {{math|1=≤.}}
इस प्रकार प्रस्तुत किया गया सम्बंध {{math|1=≤}} एक आंशिक क्रम को परिभाषित करता है जिससे बाइनरी ऑपरेशन {{math|1=∧}} होता है, पुनः प्राप्त किया जा सकता है। इसके विपरीत बीजगणितीय रूप से परिभाषित सेमिलेटिस द्वारा प्रेरित क्रम {{math|1=&lang;''S'', ∧&rang;}} द्वारा प्रेरित {{math|1=≤}} के साथ मेल खाता है।


इसलिए दो परिभाषाओं का परस्पर उपयोग किया जा सकता है, इस पर निर्भर करता है कि किसी विशेष उद्देश्य के लिए कौन अधिक सुविधाजनक है। इसी तरह का निष्कर्ष ज्वाइन-सेमिलैटिस और डुअल ऑर्डरिंग ≥ के लिए है।
इसलिए दो परिभाषाओं का परस्पर उपयोग किया जा सकता है यह इस पर निर्भर करता है कि किसी विशेष उद्देश्य के लिए कौन अधिक सुविधाजनक है। इसी तरह का निष्कर्ष ज्वाइन-सेमिलेटिस और दोहरी  व्यवस्था ≥ के लिए है।


== उदाहरण ==
== उदाहरण ==


अन्य ऑर्डर संरचनाओं के निर्माण के लिए, या अन्य पूर्णता गुणों के संयोजन के लिए सेमिलैटिस कार्यरत हैं।
अन्य क्रमित संरचनाओं के निर्माण के लिए या अन्य पूर्णता गुणों के संयोजन के लिए सेमिलेटिस कार्यरत होता हैं।
* एक जाली (आदेश) एक जुड़ाव और एक मिल-सेमिलैटिस दोनों है। अवशोषण कानून के माध्यम से इन दो सेमिलैटिस की बातचीत वास्तव में एक जाली से एक जाली को अलग करती है।
* लैटिस, जॉइन और मीट-सेमिलेटिस दोनों है। अवशोषण नियम के माध्यम से इन दो सेमिलेटिस की बातचीत वास्तव में लैटिस से सेमिलेटिस को अलग करती है।
* एक बीजगणितीय जाली (क्रम) के [[कॉम्पैक्ट तत्व]], प्रेरित आंशिक क्रम के तहत, एक बंधी हुई ज्वाइन-सेमिलैटिस बनाते हैं।
* बीजगणितीय लैटिस (क्रम) के [[कॉम्पैक्ट तत्व]] प्रेरित आंशिक क्रम के अंतर्गत बंधी हुई ज्वाइन-सेमिलेटिस बनाते हैं।
* किसी भी परिमित अर्ध-जाल को प्रेरण द्वारा बाध्य किया जाता है।
* किसी भी परिमित अर्ध-जाल को प्रेरण द्वारा बाध्य किया जाता है।
* एक पूरी तरह से आदेश दिया गया सेट एक [[वितरण जाली]] है, इसलिए विशेष रूप से एक मिलना-सेमिलैटिस और जॉइन-सेमिलैटिस: किसी भी दो अलग-अलग तत्वों में एक बड़ा और छोटा होता है, जो उनका मिलना और जुड़ना है।
* पूरी तरह से व्यवस्थित किया गया समुच्चय [[वितरण जाली|वितरण लैटिस]] है इसलिए विशेष रूप से मीट-सेमिलेटिस और जॉइन-सेमिलेटिस किसी भी दो अलग-अलग तत्वों में एक बड़ा और छोटा होता है जो उनका मिलना और जुड़ना है।
** एक [[सुव्यवस्थित सेट]] आगे एक बाउंड जॉइन-सेमिलैटिस है, क्योंकि सेट के रूप में सेट में कम से कम तत्व होता है, इसलिए यह बाउंड होता है।
** एक [[सुव्यवस्थित सेट|सुव्यवस्थित समुच्चय]] आगे बाउंड जॉइन-सेमिलेटिस है क्योंकि समुच्चय के रूप में समुच्चय में कम से कम तत्व होता है इसलिए यह बाउंड होता है।
*** प्राकृतिक संख्या#आदेश <math>\mathbb{N}</math>, उनके सामान्य क्रम के साथ {{math|1=≤,}} कम से कम तत्व 0 के साथ एक बाउंड जॉइन-सेमिलैटिस हैं, हालांकि उनके पास कोई सबसे बड़ा तत्व नहीं है: वे सबसे छोटे अनंत सुव्यवस्थित सेट हैं।
*** प्राकृतिक संख्या#आदेश <math>\mathbb{N}</math> उनके सामान्य क्रम के साथ {{math|1=≤}} कम से कम तत्व 0 के साथ एक बाउंड जॉइन-सेमिलेटिस हैं जबकि उनके पास कोई सबसे बड़ा तत्व नहीं है अतः वे सबसे छोटे अनंत सुव्यवस्थित समुच्चय हैं।
* ऊंचाई का कोई भी एकल जड़ वाला [[पेड़ (सेट सिद्धांत)]] (कम से कम तत्व के रूप में एकल जड़ के साथ)<math>\leq \omega</math> एक (आम तौर पर अबाधित) मीट-सेमिलैटिस है। उदाहरण के लिए [[उपसर्ग क्रम]] द्वारा आदेशित कुछ वर्णमाला पर परिमित शब्दों के सेट पर विचार करें। इसमें कम से कम तत्व (खाली शब्द) है, जो मीट ऑपरेशन का एक सर्वनाश करने वाला तत्व है, लेकिन कोई सबसे बड़ा (पहचान) तत्व नहीं है।
* ऊंचाई का कोई भी एकल जड़ वाला [[पेड़ (सेट सिद्धांत)|ट्री (समुच्चय सिद्धांत)]] (कम से कम तत्व के रूप में एकल रुट के साथ) <math>\leq \omega</math> (सामान्य रूप से अबाधित) मीट-सेमिलेटिस है। उदाहरण के लिए [[उपसर्ग क्रम]] द्वारा आदेशित कुछ वर्णमाला पर परिमित शब्दों के समुच्चय पर विचार करें। इसमें कम से कम तत्व (खाली शब्द) है जो मीट ऑपरेशन का सर्वनाश करने वाला तत्व है लेकिन कोई सबसे बड़ा (पहचान) तत्व नहीं है।
* [[स्कॉट डोमेन]] एक मीट-सेमिलैटिस है।
* [[स्कॉट डोमेन]] एक मीट-सेमिलेटिस है।
* किसी भी सेट में सदस्यता {{math|1=''L''}} को बेस सेट के साथ एक अर्ध-जाल के [[मॉडल सिद्धांत]] के रूप में लिया जा सकता है {{math|1=''L'',}} क्योंकि एक अर्धजाल सेट [[विस्तार]] के सार को पकड़ लेता है। होने देना {{math|1=''a'' ∧ ''b''}} निरूपित करें {{math|1=''a'' ∈ ''L''}} & {{math|1=''b'' ∈ ''L''.}} दो सेट केवल एक या दोनों में भिन्न होते हैं:
* किसी भी सेट में सदस्यता {{math|1=''L''}} को बेस सेट के साथ सेमिलेटिस के [[मॉडल सिद्धांत]] {{math|1=''L''}} के रूप में लिया जा सकता है क्योंकि सेमिलेटिस समुच्चय [[विस्तार]] के सार को पकड़ लेता है। {{math|1=''a'' ∧ ''b''}} को {{math|1=''a'' ∈ ''L''}} & {{math|1=''b'' ∈ ''L''}} निरूपित किया जा सकता है। दो समुच्चय केवल एक या निम्नलिखित दोनों में भिन्न होते हैं:
# क्रम जिसमें उनके सदस्य सूचीबद्ध हैं;
# क्रम जिसमें उनके सदस्य सूचीबद्ध हैं।
# एक या अधिक सदस्यों की बहुलता,
# एक या अधिक सदस्यों की बहुलता।
: वास्तव में एक ही सेट हैं। की क्रमविनिमेयता और साहचर्य {{math|1=∧}} आश्वासन (1), [[आलस्य]], (2)। यह अर्ध-जाल मुक्त अर्ध-जाल है {{math|1=''L''.}} यह से घिरा नहीं है {{math|1=''L'',}} क्योंकि समुच्चय स्वयं का सदस्य नहीं होता है।
: वास्तव में एक ही समुच्चय हैं जिसकी क्रमविनिमेयता और साहचर्य {{math|1=∧}} आश्वासन (1), [[आलस्य|इडेमपोटेंस]], (2) सेमिलेटिस, मुक्त सेमिलेटिस {{math|1=''L''}} है तथा यह {{math|1=''L''}} से घिरा नहीं है क्योंकि समुच्चय स्वयं का सदस्य नहीं होता है।
* क्लासिकल एक्सटेंशनल [[mereology]] एक ज्वाइन-सेमिलैटिस को परिभाषित करती है, जिसमें ज्वाइन को बाइनरी फ्यूजन के रूप में पढ़ा जाता है। यह अर्धजाल ऊपर से विश्व व्यक्ति द्वारा घिरा हुआ है।
* क्लासिकल एक्सटेंशनल [[mereology|मेरोलॉजी]], ज्वाइन-सेमिलेटिस को परिभाषित करती है जिसमें ज्वाइन को बाइनरी फ्यूजन के रूप में पढ़ा जाता है। यह अर्धजाल ऊपर से वैयक्तिक विश्व द्वारा घिरा हुआ है।
* एक सेट दिया {{math|1=''S'',}} विभाजन का संग्रह <math> \xi </math> का {{math|1=''S''}} ज्वाइन-सेमिलैटिस है। वास्तव में, आंशिक आदेश किसके द्वारा दिया जाता है <math> \xi \leq \eta </math> अगर <math> \forall Q \in \eta, \exists P \in \xi </math> ऐसा है कि <math> Q \subset P </math> और दो विभाजनों का जोड़ किसके द्वारा दिया गया है <math> \xi \vee \eta = \{ P \cap Q \mid P \in \xi \ \& \ Q \in \eta \} </math>. यह अर्ध-जाली बंधी हुई है, जिसमें सबसे कम तत्व सिंगलटन विभाजन है <math> \{ S \} </math>.
* समुच्चय {{math|1=''S''}} विभाजन का संग्रह <math> \xi </math>, {{math|1=''S''}} का ज्वाइन-सेमिलेटिस है। वास्तव में आंशिक आदेश किसके द्वारा दिया जाता है <math> \xi \leq \eta </math> यदि <math> \forall Q \in \eta, \exists P \in \xi </math> ऐसा है कि <math> Q \subset P </math> और दो विभाजनों का जोड़ जिसके द्वारा दिया गया है <math> \xi \vee \eta = \{ P \cap Q \mid P \in \xi \ \& \ Q \in \eta \} </math>, यह अर्ध-जाली बंधी हुई है जिसमें सबसे कम तत्व सिंगलटन विभाजन <math> \{ S \} </math> है।


== सेमिलैटिस [[आकारिता]] ==
== सेमिलेटिस [[आकारिता]] ==


अर्ध-जाल की उपरोक्त बीजगणितीय परिभाषा दो अर्ध-जाल के बीच रूपवाद की धारणा का सुझाव देती है। दो ज्वाइन-सेमिलैटिस दिए गए हैं {{math|1=(''S'', ∨)}} और {{math|1=(''T'', ∨)}}, (जॉइन-) सेमीलैटिस का एक [[समरूपता]] एक कार्य है {{math|1=''f'': ''S'' → ''T''}} ऐसा है कि
अर्ध-जाल की उपरोक्त बीजगणितीय परिभाषा दो अर्ध-जाल के बीच रूपवाद की धारणा का सुझाव देती है। दो ज्वाइन-सेमिलेटिस {{math|1=(''S'', ∨)}} और {{math|1=(''T'', ∨)}} दिए गए हैं, (जॉइन-) सेमीलैटिस का [[समरूपता]] एक कार्य है {{math|1=''f'': ''S'' → ''T''}} , ऐसा है कि:


:{{math|1=''f''(''x'' ∨ ''y'') = ''f''(''x'') ∨ ''f''(''y'').}}
:{{math|1=''f''(''x'' ∨ ''y'') = ''f''(''x'') ∨ ''f''(''y'').}}


इस तरह {{math|1=''f''}} प्रत्येक अर्धजाल से जुड़े दो अर्धसमूहों का एक समरूपता है। अगर {{math|1=''S''}} और {{math|1=''T''}} दोनों में कम से कम तत्व 0 शामिल है, फिर {{math|1=''f''}} भी एक मोनोइड समरूपता होनी चाहिए, यानी हमें इसकी अतिरिक्त आवश्यकता है
इस तरह {{math|1=''f''}} प्रत्येक अर्धजाल से जुड़े दो अर्धसमूहों की समरूपता है। यदि {{math|1=''S''}} और {{math|1=''T''}} दोनों में कम से कम तत्व 0 सम्मिलित है फिर भी मोनोइड समरूपता {{math|1=''f''}} होनी चाहिए अर्थात हमें निम्नलिखित की अतिरिक्त आवश्यकता है,


: {{math|1=''f''(0) = 0.}}
{{math|1=''f''(0) = 0}}


ऑर्डर-थ्योरिटिक फॉर्मूलेशन में, ये स्थितियां सिर्फ यह बताती हैं कि ज्वाइन-सेमिलैटिस का एक होमोमोर्फिज्म एक ऐसा फंक्शन है, जो फंक्शन (ऑर्डर थ्योरी) को संरक्षित करता है और कम से कम एलिमेंट्स, अगर ऐसा हो। स्पष्ट दोहरी-प्रतिस्थापन {{math|1=∧}} साथ {{math|1=∨}} और 0 के साथ 1—जोड़-सेमिलैटिस होमोमोर्फिज्म की इस परिभाषा को इसके मीट-सेमिलैटिस समतुल्य में बदल देता है।
ऑर्डर-थ्योरिटिक फॉर्मूलेशन में ये स्थितियां केवल यह बताती हैं कि ज्वाइन-सेमिलेटिस का होमोमोर्फिज्म ऐसा फंक्शन है जो फंक्शन (ऑर्डर थ्योरी) और कम से कम एलिमेंट्स को संरक्षित करता है। स्पष्ट दोहरी-प्रतिस्थापन {{math|1=∧}} साथ {{math|1=∨}} और 0 के साथ 1—जोड़-सेमिलेटिस होमोमोर्फिज्म की इस परिभाषा को इसके मीट-सेमिलेटिस समतुल्य में परिवर्तित कर देता है।


ध्यान दें कि संबंधित ऑर्डरिंग रिलेशन के संबंध में कोई भी सेमीलेटिस होमोमोर्फिज्म अनिवार्य रूप से [[मोनोटोन समारोह]] है। स्पष्टीकरण के लिए एंट्री लिमिट प्रिजर्विंग फंक्शन (ऑर्डर थ्योरी) देखें।
ध्यान दें कि संबंधित ऑर्डरिंग रिलेशन के संबंध में कोई भी सेमीलेटिस होमोमोर्फिज्म अनिवार्य रूप से [[मोनोटोन समारोह|मोनोटोन]] है। स्पष्टीकरण के लिए सीमाओं का प्रवेश संरक्षण (ऑर्डर थ्योरी) देखें।


== बीजगणितीय जाली के साथ तुल्यता ==
== बीजगणितीय जाली के साथ तुल्यता ==


श्रेणी के बीच श्रेणियों का एक प्रसिद्ध तुल्यता है <math>\mathcal{S}</math> ज्वाइन-सेमिलैटिस के साथ शून्य के साथ <math>(\vee,0)</math>-समरूपता और श्रेणी <math>\mathcal{A}</math> कॉम्पैक्ट एलिमेंट-प्रिज़र्विंग पूर्ण जॉइन-होमोमोर्फिज्म के साथ बीजगणितीय लैटिस निम्नानुसार हैं। ज्वाइन-सेमिलैटिस के साथ <math>S</math> शून्य के साथ, हम इसकी आदर्श जाली को जोड़ते हैं <math>\operatorname{Id}\ S</math>. के साथ <math>(\vee,0)</math>-समरूपता <math>f \colon S \to T</math> का <math>(\vee,0)</math>-सेमिलैटिस, हम मानचित्र को जोड़ते हैं <math>\operatorname{Id}\ f \colon \operatorname{Id}\ S \to \operatorname{Id}\ T</math>, कि किसी भी आदर्श के साथ <math>I</math> का <math>S</math> के आदर्श को जोड़ता है <math>T</math> द्वारा उत्पन्न <math>f(I)</math>. यह एक functor को परिभाषित करता है <math>\operatorname{Id} \colon \mathcal{S} \to \mathcal{A}</math>. इसके विपरीत, प्रत्येक बीजगणितीय जाली के साथ <math>A</math> हम संबद्ध करते हैं <math>(\vee,0)</math>- सेमी-लेटेक्स <math>K(A)</math> के सभी कॉम्पैक्ट तत्वों की <math>A</math>, और प्रत्येक सघनता-संरक्षण पूर्ण जुड़ाव-समरूपता के साथ <math>f \colon A \to B</math> बीजगणितीय जाली के बीच हम प्रतिबंध को जोड़ते हैं <math>K(f) \colon K(A) \to K(B)</math>. यह एक functor को परिभाषित करता है <math>K \colon \mathcal{A} \to \mathcal{S}</math>. जोड़ी <math>(\operatorname{Id},K)</math> के बीच एक श्रेणी समानता को परिभाषित करता है <math>\mathcal{S}</math> और <math>\mathcal{A}</math>.
श्रेणी के बीच <math>\mathcal{S}</math> श्रेणियों की तुल्यता प्रसिद्ध है, ज्वाइन-सेमिलेटिस शून्य के साथ <math>(\vee,0)</math> - समरूपता और श्रेणी <math>\mathcal{A}</math> कॉम्पैक्ट एलिमेंट-प्रिज़र्विंग पूर्ण जॉइन-होमोमोर्फिज्म के साथ बीजगणितीय लैटिस निम्नानुसार हैं। ज्वाइन-सेमिलेटिस के साथ <math>S</math> शून्य के साथ, हम इसकी आदर्श जाली <math>\operatorname{Id}\ S</math> को जोड़ते हैं। <math>(\vee,0)</math> के साथ - समरूपता <math>f \colon S \to T</math> का <math>(\vee,0)</math>- सेमिलेटिस, हम मानचित्र को जोड़ते हैं <math>\operatorname{Id}\ f \colon \operatorname{Id}\ S \to \operatorname{Id}\ T</math>, कि किसी भी आदर्श <math>I</math> का <math>S</math> के आदर्श <math>T</math> द्वारा उत्पन्न <math>f(I)</math>.को जोड़ता है, यह प्रकार्यक <math>\operatorname{Id} \colon \mathcal{S} \to \mathcal{A}</math> को परिभाषित करता है। इसके विपरीत प्रत्येक बीजगणितीय जाली के साथ <math>A</math> हम संबद्ध करते हैं <math>(\vee,0)</math>- सेमी-लेटेक्स <math>K(A)</math> के सभी कॉम्पैक्ट <math>A</math> तत्वों की और प्रत्येक सघनता-संरक्षण पूर्ण ज्वाइन-समरूपता <math>f \colon A \to B</math> के साथ बीजगणितीय जाली के बीच हम प्रतिबंध <math>K(f) \colon K(A) \to K(B)</math> को जोड़ते हैं। यह प्रकार्यक <math>K \colon \mathcal{A} \to \mathcal{S}</math> को परिभाषित करता है। जोड़ी <math>(\operatorname{Id},K)</math> के बीच एक श्रेणी समानता <math>\mathcal{S}</math> और <math>\mathcal{A}</math> को परिभाषित करता है।
 
== वितरण सेमीलेटिस ==


हैरानी की बात है कि वितरण की धारणा सेमीलिटिस पर लागू होती है, भले ही वितरण को पारंपरिक रूप से दो बाइनरी ऑपरेशंस की बातचीत की आवश्यकता होती है। इस धारणा के लिए केवल एक ऑपरेशन की आवश्यकता होती है, और जाली के लिए वितरण की स्थिति को सामान्य करता है। यदि सभी के लिए एक ज्वाइन-सेमिलैटिस वितरण है {{math|1=''a'', ''b'',}} और {{math|1=''x''}} साथ {{math|1=''x'' &le; ''a'' &or; ''b''}} वहां है {{math|1=''a' '' &le; ''a''}} और {{math|1=''b' '' &le; ''b''}} ऐसा है कि {{math|1=''x'' = ''a' '' &or; ''b' ''.}} डिस्ट्रीब्यूटिव मीट-सेमिलैटिस को दो तरह से परिभाषित किया गया है। इन परिभाषाओं को इस तथ्य से उचित ठहराया जाता है कि कोई भी वितरणात्मक जुड़ाव-अर्ध-जाल जिसमें बाइनरी मिलें मौजूद हैं, एक वितरणात्मक जाली है। प्रवेश [[वितरण (आदेश सिद्धांत)]] देखें।
== वितरण सेमिलेटिस ==


एक ज्वाइन-सेमिलैटिस डिस्ट्रीब्यूटिव है अगर और केवल अगर इसके आदर्श (ऑर्डर थ्योरी) (इनक्लूजन के तहत) का लैटिस डिस्ट्रीब्यूटिव है।
आश्चर्य की बात है कि वितरण की धारणा सेमिलेटिस पर लागू होती है भले ही वितरण को पारंपरिक रूप से दो बाइनरी ऑपरेशंस के पारस्परिक व्यवहार की आवश्यकता होती है। इस धारणा के लिए केवल संचालन की आवश्यकता होती है और जाली के लिए वितरण की स्थिति को सामान्य करता है। यदि सभी {{math|1=''a'', ''b'',}} और {{math|1=''x''}} के लिए {{math|1=''x'' &le; ''a'' &or; ''b''}} जहाँ {{math|1=''a' '' &le; ''a''}} और {{math|1=''b' '' &le; ''b''}} ऐसा है कि {{math|1=''x'' = ''a' '' &or; ''b' ''}}, तब ज्वाइन-सेमिलेटिस एक वितरण  है। वितरक मीट-सेमिलेटिस को दो प्रकार से परिभाषित किया गया है। इन परिभाषाओं को इस तथ्य से उचित ठहराया जाता है कि कोई भी वितरणात्मक जुड़ाव-अर्ध-जाल जिसमें बाइनरी मीट उपस्थित हैं जो एक वितरणात्मक जाली है। प्रवेश [[वितरण (आदेश सिद्धांत)]] देखें।


== पूर्ण सेमीलेटिस ==
ज्वाइन-सेमिलेटिस वितरक है यदि इसके आदर्शों (ऑर्डर थ्योरी) (समावेशन के अंतर्गत) का लैटिस वितरक है।


आजकल, शब्द पूर्ण अर्धजाल का कोई आम तौर पर स्वीकृत अर्थ नहीं है, और विभिन्न परस्पर असंगत परिभाषाएं मौजूद हैं। यदि पूर्णता को सभी अनंत जोड़ों के अस्तित्व की आवश्यकता के लिए लिया जाता है, या सभी अनंत मिलते हैं, जो भी मामला हो, साथ ही परिमित भी हो सकता है, यह तुरंत आंशिक आदेशों की ओर जाता है जो वास्तव में [[पूर्ण जाली]] हैं। क्यों सभी संभावित अनंत जोड़ का अस्तित्व सभी संभावित अनंत मिलों (और इसके विपरीत) के अस्तित्व पर जोर देता है, प्रविष्टि पूर्णता (आदेश सिद्धांत) देखें।
== पूर्ण सेमिलेटिस ==


फिर भी, इस अवसर पर साहित्य अभी भी पूरी तरह से जुड़ जाता है- या मिल-सेमिलैटिस को पूर्ण जाली बना देता है। इस मामले में, पूर्णता समरूपता के दायरे पर प्रतिबंध को दर्शाती है। विशेष रूप से, एक पूर्ण जॉइन-सेमिलैटिस के लिए आवश्यक है कि होमोमोर्फिज्म सभी जॉइन को संरक्षित करता है, लेकिन उस स्थिति के विपरीत जो हम पूर्णता गुणों के लिए पाते हैं, इसके लिए यह आवश्यक नहीं है कि होमोमोर्फिज्म सभी मीट को संरक्षित करें। दूसरी ओर, हम यह निष्कर्ष निकाल सकते हैं कि इस तरह की हर मैपिंग किसी गैलोज़ कनेक्शन का निचला हिस्सा है। तदनुरूपी (अद्वितीय) ऊपरी अनुलग्न पूर्ण मिलन-सेमिलैटिस का समरूपता होगा। यह क्रमशः सभी मिलने या जुड़ने को संरक्षित करने वाले morphisms के साथ सभी पूर्ण अर्ध-जाल की श्रेणियों के बीच कई उपयोगी द्वैत (श्रेणी सिद्धांत) को जन्म देता है।
आजकल शब्द पूर्ण अर्धजाल का सामान्य रूप से कोई स्वीकृत अर्थ नहीं है और विभिन्न परस्पर असंगत परिभाषाएं उपलब्ध हैं। यदि पूर्णता को सभी अनंत ज्वाइन के अस्तित्व की आवश्यकता के लिए लिया जाता है या सभी अपरिमित मीट्स हैं जो भी स्थिति हो यह साथ ही परिमित भी हो सकता है तब यह तुरंत आंशिक आदेशों की ओर जाता है जो वास्तव में [[पूर्ण जाली|पूर्ण सेमीलेटिस (जाली)]] हैं। क्यों सभी संभावित अनंत ज्वाइन का अस्तित्व सभी संभावित अनंत मीट्स (और इसके विपरीत) के अस्तित्व पर जोर देता है, प्रविष्टि पूर्णता (आदेश सिद्धांत) देखें।


पूर्ण मीट-सेमिलैटिस का एक अन्य उपयोग एक पूर्ण [[पूर्ण आंशिक आदेश]] को संदर्भित करता है। इस अर्थ में एक पूर्ण मीट-सेमिलैटिस यकीनन सबसे पूर्ण मीट-सेमिलैटिस है जो जरूरी नहीं कि एक पूर्ण जाली हो। वास्तव में, एक पूर्ण मीट-सेमिलैटिस में सभी गैर-खाली मिलते हैं (जो पूर्ण रूप से बंधे होने के बराबर है) और सभी [[निर्देशित सेट]] जुड़ते हैं। यदि इस तरह की संरचना में सबसे बड़ा तत्व (खाली सेट का मिलन) भी है, तो यह एक पूर्ण जाली भी है। इस प्रकार एक पूर्ण अर्ध-जाली एक पूर्ण जाली बन जाती है जिसमें संभवतः शीर्ष का अभाव होता है। यह परिभाषा विशेष रूप से [[ डोमेन सिद्धांत ]] में रुचि की है, जहां स्कॉट डोमेन के रूप में पूर्ण [[बीजगणितीय पोसेट]] सीपीओ का अध्ययन किया जाता है। इसलिए स्कॉट डोमेन को बीजगणितीय सेमीलैटिस कहा गया है।
यद्यपि इस अवसर पर साहित्य अभी भी पूरी तरह से ज्वाइन या मीट-सेमिलेटिस को पूर्ण जाली बना देता है। इस संबंध में पूर्णता समरूपता की सीमा पर प्रतिबंध को दर्शाती है। विशेष रूप से एक पूर्ण जॉइन-सेमिलेटिस के लिए आवश्यक है कि होमोमोर्फिज्म सभी जॉइन को संरक्षित करे लेकिन उस स्थिति के विपरीत जो हम पूर्णता गुणों के लिए प्राप्त करते हैं। इसके लिए यह आवश्यक नहीं है कि होमोमोर्फिज्म सभी मीट को संरक्षित करें। दूसरी ओर हम यह निष्कर्ष निकाल सकते हैं कि इस तरह की हर मैपिंग किसी गैलोज़ सम्बन्ध का निचला भाग है। तदनुरूपी (अद्वितीय) ऊपरी अनुलग्न पूर्ण मिलन-सेमिलेटिस का समरूपता होगी। यह क्रमशः सभी मिलने या जुड़ने को संरक्षित करने वाले मॉर्फिज्म के साथ सभी पूर्ण अर्ध-जाल की श्रेणियों के बीच कई उपयोगी द्वैत (श्रेणी सिद्धांत) को उत्पन्न करता है।


अर्धजालकों के लिए पूर्णता की कार्डिनलिटी-प्रतिबंधित धारणाओं को साहित्य में शायद ही कभी माना जाता है।<ref>E. G. Manes, ''Algebraic theories'', Graduate Texts in Mathematics Volume 26, Springer 1976, p. 57</ref><ref>[http://planetmath.org/completesemilattice complete semilattices] on Planetmath.org</ref>
पूर्ण मीट-सेमिलेटिस का एक अन्य उपयोग सीमित पूर्ण [[पूर्ण आंशिक आदेश|(सीपीओ) पूर्ण आंशिक आदेश]]  को संदर्भित करता है।  इस अर्थ में एक पूर्ण मीट-सेमिलेटिस सबसे पूर्ण मीट-सेमिलेटिस है जो आवश्यक नहीं कि एक पूर्ण जाली हो। वास्तव में पूर्ण मीट-सेमिलेटिस में सभी गैर-खाली मीट हैं (जो पूर्ण रूप से बंधे होने के बराबर है) और सभी [[निर्देशित सेट|निर्देशित समुच्चय]] ज्वाइन हैं। यदि इस तरह की संरचना में सबसे बड़ा तत्व (रिक्त समुच्चय का मीट) भी है तो यह एक पूर्ण जाली भी है। इस प्रकार पूर्ण अर्ध-जाली एक पूर्ण जाली बन जाती है जिसमें संभवतः शीर्ष का अभाव होता है। यह परिभाषा विशेष रूप से[[ डोमेन सिद्धांत ]] में रुचि की है जहां स्कॉट डोमेन के रूप में पूर्ण [[बीजगणितीय पोसेट]] सीपीओ का अध्ययन किया जाता है। इसलिए स्कॉट डोमेन को बीजगणितीय सेमीलैटिस कहा गया है।


अर्धजालकों के लिए पूर्णता की कार्डिनलिटी-प्रतिबंधित धारणाओं को साहित्य में संभवतया ही कभी माना जाता है।<ref>E. G. Manes, ''Algebraic theories'', Graduate Texts in Mathematics Volume 26, Springer 1976, p. 57</ref><ref>[http://planetmath.org/completesemilattice complete semilattices] on Planetmath.org</ref>


== फ्री सेमिलैटिस ==
== फ्री या मुक्त सेमिलेटिस ==


यह खंड श्रेणी सिद्धांत के कुछ ज्ञान को प्रस्तुत करता है। विभिन्न स्थितियों में, [[ मुक्त वस्तु ]] सेमीलैटिस मौजूद हैं। उदाहरण के लिए, ज्वाइन-सेमिलैटिस (और उनके होमोमोर्फिज्म) की श्रेणी से सेट (और फ़ंक्शंस) के श्रेणी सिद्धांत के लिए भुलक्कड़ फ़ैक्टर एक आसन्न फ़ंक्टर को स्वीकार करता है। इसलिए, फ्री जॉइन-सेमिलैटिस {{math|1='''F'''(''S'')}} एक सेट पर {{math|1=''S''}} के सभी गैर-खाली परिमित उपसमूहों का संग्रह करके बनाया गया है {{math|1=''S'',}} सबसेट समावेशन द्वारा आदेशित। स्पष्ट रूप से, {{math|1=''S''}} में एम्बेड किया जा सकता है {{math|1='''F'''(''S'')}} मैपिंग द्वारा {{math|1=''e''}} जो कोई तत्व लेता है {{math|1=''s''}} में {{math|1=''S''}} सिंगलटन सेट के लिए {{math|1={''s''}.}} फिर कोई समारोह {{math|1=''f''}} एक से {{math|1=''S''}} ज्वाइन-सेमिलैटिस के लिए {{math|1=''T''}} (अधिक औपचारिक रूप से, अंतर्निहित सेट के लिए {{math|1=''T''}}) एक अद्वितीय समरूपता को प्रेरित करता है {{math|1=''f' ''}} ज्वाइन-सेमिलैटिस के बीच {{math|1='''F'''(''S'')}} और {{math|1=''T'',}} ऐसा है कि {{math|1=''f'' = ''f' '' ○ ''e''.}} स्पष्ट रूप से, {{math|1=''f' ''}} द्वारा दिया गया है <math display=inline>f'(A) = \bigvee\{f(s) | s \in A\}.</math> अब की स्पष्ट विशिष्टता {{math|1=''f' ''}} आवश्यक संयोजन प्राप्त करने के लिए पर्याप्त है - आकृतिवाद-फ़ंक्टर का हिस्सा {{math|1='''F'''}} सामान्य विचारों से प्राप्त किया जा सकता है (आसन्न फ़ैक्टर देखें)। ऑर्डरिंग के रूप में विपरीत सबसेट समावेशन का उपयोग करते हुए, फ्री मीट-सेमिलैटिस का मामला दोहरा है। बॉटम के साथ ज्वाइन-सेमिलैटिस के लिए, हम केवल खाली सेट को उपसमुच्चय के उपरोक्त संग्रह में जोड़ते हैं।
यह खंड श्रेणी सिद्धांत के कुछ ज्ञान को प्रस्तुत करता है। विभिन्न स्थितियों में[[ मुक्त वस्तु | मुक्त (फ्री)]] सेमीलैटिस उपस्थित होता हैं। उदाहरण के लिए ज्वाइन-सेमिलेटिस (और उनके होमोमोर्फिज्म) की श्रेणी से समुच्चय(और फ़ंक्शंस) के श्रेणी सिद्धांत के लिए विस्मरणशील प्रकार्यक आसन्न प्रकार्यक को स्वीकार करता है। इसलिए मुक्त जॉइन-सेमिलेटिस {{math|1='''F'''(''S'')}} समुच्चय पर {{math|1=''S''}} के सभी गैर-खाली परिमित उपसमूहों का संग्रह करके {{math|1=''S''}} उपसमुच्चय समावेशन द्वारा आदेशित बनाया गया है। स्पष्ट रूप से {{math|1=''S''}} को मैपिंग {{math|1=''e''}} द्वारा {{math|1='''F'''(''S'')}} में कार्यान्वित किया जा सकता है जो {{math|1=''S''}} में किसी भी तत्व को सिंगलटन सेट {{math|1={''s''<nowiki>}</nowiki>}} में ले जाता है। फिर कोई फंक्शन {{math|1=''f''}} एक से {{math|1=''S''}} ज्वाइन-सेमिलेटिस के लिए {{math|1=''T''}} (अधिक औपचारिक रूप से अंतर्निहित समुच्चय {{math|1=''T''}} के लिए) अद्वितीय समरूपता {{math|1=''f' ''}} को प्रेरित करता है, ज्वाइन-सेमिलेटिस {{math|1='''F'''(''S'')}} और {{math|1=''T''}} के बीच इस प्रकार है कि {{math|1=''f'' = ''f' '' ○ ''e''}}, स्पष्ट रूप से {{math|1=''f' ''}} द्वारा दिया गया है।<math display="inline">f'(A) = \bigvee\{f(s) | s \in A\}</math> अब की स्पष्ट विशिष्टता {{math|1=''f' ''}}आवश्यक संयोजन प्राप्त करने के लिए पर्याप्त है - आकृतिवाद-प्रकार्यक का भाग {{math|1='''F'''}} सामान्य विचारों से प्राप्त किया जा सकता है (आसन्न प्रकार्यक देखें)। ऑर्डरिंग के रूप में विपरीत उपसमुच्चय समावेशन का उपयोग करते हुए मुक्त मीट-सेमिलेटिस की दोहरी स्थिति होती है। आधार के साथ ज्वाइन-सेमिलेटिस के लिए हम केवल रिक्त समुच्चय को उपसमुच्चय के उपरोक्त संग्रह में जोड़ते हैं।


इसके अलावा, सेमीलेटिस अक्सर अन्य श्रेणियों के भीतर मुक्त वस्तुओं के लिए जनरेटर के रूप में काम करते हैं। विशेष रूप से, पूर्ण हेटिंग बीजगणित और फ्रेम-होमोमोर्फिज्म की श्रेणी से और वितरणात्मक लैटिस और जाली-होमोमोर्फिज्म की श्रेणी से दोनों भुलक्कड़ फंक्शंस में एक बायां जोड़ होता है।
इसके अतिरिक्त सेमीलेटिस अधिकतर अन्य श्रेणियों के भीतर मुक्त वस्तुओं के लिए जनरेटर के रूप में कार्य करते हैं। विशेष रूप से फ्रेम और फ्रेम-होमोमोर्फिज्म की श्रेणी से और वितरणात्मक लैटिस एवं लैटिस-होमोमोर्फिज्म की श्रेणी से दोनों विस्मरणशील कार्यों में बायां जोड़ होता है।


== यह भी देखें ==
== यह भी देखें ==
Line 129: Line 129:


{{Authority control}}
{{Authority control}}
[[Category: जाली सिद्धांत]] [[Category: बीजगणितीय संरचनाएं]]


[[Category: Machine Translated Page]]
[[Category:Created On 01/03/2023]]
[[Category:Created On 01/03/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:जाली सिद्धांत]]
[[Category:बीजगणितीय संरचनाएं]]

Latest revision as of 07:39, 21 March 2023

गणित में ज्वाइन-सेमिलेटिस (या ऊपरी सेमिलेटिस) आंशिक रूप से व्यवस्थित किया गया समुच्चय है जिसमें किसी भी गैर-रिक्त परिमित उपसमुच्चय (सबसेट) के लिए ज्वाइन (गणित) (कम से कम ऊपरी बाउंड) होता है। द्वैत (आदेश सिद्धांत), मीट-सेमिलेटिस (या निचला सेमिलेटिस) आंशिक रूप से व्यवस्थित किया गया समुच्चय है जिसमें किसी भी गैर-रिक्त परिमित उपसमुच्चय के लिए मीट (गणित) (या सबसे बड़ी निचली सीमा) है और इसके विपरीत प्रत्येक ज्वाइन-सेमिलेटिस उल्टे क्रम में मीट-सेमिलेटिस है।

सेमिलेटिस को बीजगणितीय रूप में भी परिभाषित किया जा सकता है। ज्वाइन और मीट सहयोगीता क्रमविनिमेयता, आईडेम्पोटैंट बाइनरी संचालन हैं और ऐसा कोई भी ऑपरेशन आंशिक क्रम (और संबंधित उलटा क्रम) को प्रेरित करता है जैसे कि किसी भी दो तत्वों के लिए ऑपरेशन का परिणाम इस आंशिक क्रम के संबंध में तत्वों की (या सबसे बड़ी निचली सीमा) कम से कम ऊपरी सीमा है।

जाली (ऑर्डर) आंशिक रूप से आदेशित समुच्चय आंशिक रूप से आदेशित समुच्चय है जो समान आंशिक क्रम के संबंध में ज्वाइन और मीट-सेमिलेटिस दोनों है। बीजगणितीय रूप से लैटिस दो साहचर्य, क्रमविनिमेय आईडेम्पोटैंट द्विआधारी संचालन के साथ समुच्चय है जो संबंधित अवशोषण नियमों से संबंधित है।

आदेश-सैद्धांतिक परिभाषा

समुच्चय (गणित) S आंशिक रूप से बाइनरी संबंध द्वारा निर्धारित किया गया मीट-सेमिलेटिस है यदि

सभी तत्वों के लिए S के x और y, सेट का इन्फ़ीमम (सबसे बड़ी निचली सीमा) {x, y} होता है।

समुच्चय की सबसे बड़ी निचली सीमा {x, y}, x और y का मीट (गणित) कहलाता है जिसे x ∧ y से निरूपित करते हैं।

उच्चतम परिणाम के साथ सबसे बड़ी निचली सीमा को परिवर्तित करने से ज्वाइन-अर्ध-जाल की दोहरी अवधारणा होती है। सबसे कम ऊपरी सीमा x और y का जोड़ (गणित) {x, y} कहलाता है जिसे xy से निरूपित किया जाता है। मीट और जॉइन S पर बाइनरी संचालन हैं। सरल गणितीय प्रेरण तर्क से ज्ञात होता है कि परिभाषा के अनुसार सभी संभावित जोड़ीदार सुप्रीमा (इन्फिमा) का अस्तित्व, सभी गैर-रिक्त परिमित सुप्रीमा (इन्फिमा) के अस्तित्व का तात्पर्य है।

ज्वाइन-सेमिलैटिस को बाउंड किया जाता है यदि उसमें रिक्त समुच्चय का जॉइन कम से कम तत्व है। वास्तव में मीट-सेमिलैटिस को बांधा जाता है यदि उसके पास रिक्त समुच्चय का मीट सबसे बड़ा तत्व है।

अन्य गुणों को ग्रहण किया जा सकता है, इस विषय पर अधिक चर्चा के लिए पूर्णता (आदेश सिद्धांत) पर आलेख देखें। उस लेख में इस बात पर भी चर्चा की गई है कि संबंधित पोसेट्स के बीच उपयुक्त गाल्वा कनेक्शन के अस्तित्व के संदर्भ में हम उपरोक्त परिभाषा को कैसे बदल सकते हैं - अवधारणा की श्रेणी सिद्धांत जांच के लिए विशेष रुचि का दृष्टिकोण।

बीजगणितीय परिभाषा

मिल-सेमिलेटिस एक बीजगणितीय संरचना है समुच्चय (गणित) से मिलकर S बाइनरी ऑपरेशन के साथ जिसे मीट कहा जाता है जैसे कि सभी सदस्यों के लिए S का x, y, और z निम्नलिखित सम्बन्ध (गणित) रखता है:

साहचर्य
x ∧ (yz) = (xy) ∧ z
क्रमविनिमेयता
xy = yx
अक्षमता
xx = x

जॉइन-सेमिलेटिस अगर बाध्य है तब S में सम्बन्ध तत्व 1 सम्मिलित है जैसे कि x ∧ 1 = x सभी के लिए x में S

यदि प्रतीक V जिसे ज्वाइन कहा जाता है अभी दी गई परिभाषा में को प्रतिस्थापित करता है तो संरचना को ज्वाइन-सेमिलेटिस कहा जाता है। संचालन के लिए प्रतीक की विशेष पसंद के बारे में कोई भी अस्पष्ट हो सकता है और केवल सेमीलैटिस के बारे में बात कर सकता है।

सेमिलेटिस कम्यूटेटिविटी, इडेमपोटेंसी माध्यम वर्गी अर्थात कम्यूटेटिव बैंड (गणित) है। बंधा हुआ अर्ध-जाल एक आदर्श क्रमविनिमेय मोनोइड है।

जब कभी भी xy = x सेटिंग द्वारा मीट-सेमिलेटिस पर आंशिक आदेश xy प्रेरित किया जाता है ज्वाइन-सेमिलेटिस के लिए व्यवस्थित सेटिंग xy जब कभी भी xy = y द्वारा प्रेरित होता है। बाउंड मीट-सेमिलेटिस में पहचान 1, S का सबसे बड़ा तत्व है इसी प्रकार सेमी-लैटिस में सम्मिलित होने वाला तत्व छोटे से छोटा पहचान तत्व है।

दो परिभाषाओं के बीच संबंध

आदेश सैद्धांतिक मीट-सेमिलेटिस S, ≤⟩ बाइनरी ऑपरेशन को उत्पन्न करता है जो कि S, ∧⟩ बीजगणितीय मीट-सेमिलेटिस है। इसके विपरीत मिलो-सेमिलेटिस S, ∧⟩ एक द्विआधारी संबंध को उत्पन्न करता है जो आंशिक रूप से आदेश देता है S निम्नलिखित तरीके से सभी तत्वों के लिए x और y में S, xy, यदि x = xy

इस प्रकार प्रस्तुत किया गया सम्बंध एक आंशिक क्रम को परिभाषित करता है जिससे बाइनरी ऑपरेशन होता है, पुनः प्राप्त किया जा सकता है। इसके विपरीत बीजगणितीय रूप से परिभाषित सेमिलेटिस द्वारा प्रेरित क्रम S, ∧⟩ द्वारा प्रेरित के साथ मेल खाता है।

इसलिए दो परिभाषाओं का परस्पर उपयोग किया जा सकता है यह इस पर निर्भर करता है कि किसी विशेष उद्देश्य के लिए कौन अधिक सुविधाजनक है। इसी तरह का निष्कर्ष ज्वाइन-सेमिलेटिस और दोहरी व्यवस्था ≥ के लिए है।

उदाहरण

अन्य क्रमित संरचनाओं के निर्माण के लिए या अन्य पूर्णता गुणों के संयोजन के लिए सेमिलेटिस कार्यरत होता हैं।

  • लैटिस, जॉइन और मीट-सेमिलेटिस दोनों है। अवशोषण नियम के माध्यम से इन दो सेमिलेटिस की बातचीत वास्तव में लैटिस से सेमिलेटिस को अलग करती है।
  • बीजगणितीय लैटिस (क्रम) के कॉम्पैक्ट तत्व प्रेरित आंशिक क्रम के अंतर्गत बंधी हुई ज्वाइन-सेमिलेटिस बनाते हैं।
  • किसी भी परिमित अर्ध-जाल को प्रेरण द्वारा बाध्य किया जाता है।
  • पूरी तरह से व्यवस्थित किया गया समुच्चय वितरण लैटिस है इसलिए विशेष रूप से मीट-सेमिलेटिस और जॉइन-सेमिलेटिस किसी भी दो अलग-अलग तत्वों में एक बड़ा और छोटा होता है जो उनका मिलना और जुड़ना है।
    • एक सुव्यवस्थित समुच्चय आगे बाउंड जॉइन-सेमिलेटिस है क्योंकि समुच्चय के रूप में समुच्चय में कम से कम तत्व होता है इसलिए यह बाउंड होता है।
      • प्राकृतिक संख्या#आदेश उनके सामान्य क्रम के साथ कम से कम तत्व 0 के साथ एक बाउंड जॉइन-सेमिलेटिस हैं जबकि उनके पास कोई सबसे बड़ा तत्व नहीं है अतः वे सबसे छोटे अनंत सुव्यवस्थित समुच्चय हैं।
  • ऊंचाई का कोई भी एकल जड़ वाला ट्री (समुच्चय सिद्धांत) (कम से कम तत्व के रूप में एकल रुट के साथ) (सामान्य रूप से अबाधित) मीट-सेमिलेटिस है। उदाहरण के लिए उपसर्ग क्रम द्वारा आदेशित कुछ वर्णमाला पर परिमित शब्दों के समुच्चय पर विचार करें। इसमें कम से कम तत्व (खाली शब्द) है जो मीट ऑपरेशन का सर्वनाश करने वाला तत्व है लेकिन कोई सबसे बड़ा (पहचान) तत्व नहीं है।
  • स्कॉट डोमेन एक मीट-सेमिलेटिस है।
  • किसी भी सेट में सदस्यता L को बेस सेट के साथ सेमिलेटिस के मॉडल सिद्धांत L के रूप में लिया जा सकता है क्योंकि सेमिलेटिस समुच्चय विस्तार के सार को पकड़ लेता है। ab को aL & bL निरूपित किया जा सकता है। दो समुच्चय केवल एक या निम्नलिखित दोनों में भिन्न होते हैं:
  1. क्रम जिसमें उनके सदस्य सूचीबद्ध हैं।
  2. एक या अधिक सदस्यों की बहुलता।
वास्तव में एक ही समुच्चय हैं जिसकी क्रमविनिमेयता और साहचर्य आश्वासन (1), इडेमपोटेंस, (2) सेमिलेटिस, मुक्त सेमिलेटिस L है तथा यह L से घिरा नहीं है क्योंकि समुच्चय स्वयं का सदस्य नहीं होता है।
  • क्लासिकल एक्सटेंशनल मेरोलॉजी, ज्वाइन-सेमिलेटिस को परिभाषित करती है जिसमें ज्वाइन को बाइनरी फ्यूजन के रूप में पढ़ा जाता है। यह अर्धजाल ऊपर से वैयक्तिक विश्व द्वारा घिरा हुआ है।
  • समुच्चय S विभाजन का संग्रह , S का ज्वाइन-सेमिलेटिस है। वास्तव में आंशिक आदेश किसके द्वारा दिया जाता है यदि ऐसा है कि और दो विभाजनों का जोड़ जिसके द्वारा दिया गया है , यह अर्ध-जाली बंधी हुई है जिसमें सबसे कम तत्व सिंगलटन विभाजन है।

सेमिलेटिस आकारिता

अर्ध-जाल की उपरोक्त बीजगणितीय परिभाषा दो अर्ध-जाल के बीच रूपवाद की धारणा का सुझाव देती है। दो ज्वाइन-सेमिलेटिस (S, ∨) और (T, ∨) दिए गए हैं, (जॉइन-) सेमीलैटिस का समरूपता एक कार्य है f: ST , ऐसा है कि:

f(xy) = f(x) ∨ f(y).

इस तरह f प्रत्येक अर्धजाल से जुड़े दो अर्धसमूहों की समरूपता है। यदि S और T दोनों में कम से कम तत्व 0 सम्मिलित है फिर भी मोनोइड समरूपता f होनी चाहिए अर्थात हमें निम्नलिखित की अतिरिक्त आवश्यकता है,

f(0) = 0

ऑर्डर-थ्योरिटिक फॉर्मूलेशन में ये स्थितियां केवल यह बताती हैं कि ज्वाइन-सेमिलेटिस का होमोमोर्फिज्म ऐसा फंक्शन है जो फंक्शन (ऑर्डर थ्योरी) और कम से कम एलिमेंट्स को संरक्षित करता है। स्पष्ट दोहरी-प्रतिस्थापन साथ और 0 के साथ 1—जोड़-सेमिलेटिस होमोमोर्फिज्म की इस परिभाषा को इसके मीट-सेमिलेटिस समतुल्य में परिवर्तित कर देता है।

ध्यान दें कि संबंधित ऑर्डरिंग रिलेशन के संबंध में कोई भी सेमीलेटिस होमोमोर्फिज्म अनिवार्य रूप से मोनोटोन है। स्पष्टीकरण के लिए सीमाओं का प्रवेश संरक्षण (ऑर्डर थ्योरी) देखें।

बीजगणितीय जाली के साथ तुल्यता

श्रेणी के बीच श्रेणियों की तुल्यता प्रसिद्ध है, ज्वाइन-सेमिलेटिस शून्य के साथ - समरूपता और श्रेणी कॉम्पैक्ट एलिमेंट-प्रिज़र्विंग पूर्ण जॉइन-होमोमोर्फिज्म के साथ बीजगणितीय लैटिस निम्नानुसार हैं। ज्वाइन-सेमिलेटिस के साथ शून्य के साथ, हम इसकी आदर्श जाली को जोड़ते हैं। के साथ - समरूपता का - सेमिलेटिस, हम मानचित्र को जोड़ते हैं , कि किसी भी आदर्श का के आदर्श द्वारा उत्पन्न .को जोड़ता है, यह प्रकार्यक को परिभाषित करता है। इसके विपरीत प्रत्येक बीजगणितीय जाली के साथ हम संबद्ध करते हैं - सेमी-लेटेक्स के सभी कॉम्पैक्ट तत्वों की और प्रत्येक सघनता-संरक्षण पूर्ण ज्वाइन-समरूपता के साथ बीजगणितीय जाली के बीच हम प्रतिबंध को जोड़ते हैं। यह प्रकार्यक को परिभाषित करता है। जोड़ी के बीच एक श्रेणी समानता और को परिभाषित करता है।

वितरण सेमिलेटिस

आश्चर्य की बात है कि वितरण की धारणा सेमिलेटिस पर लागू होती है भले ही वितरण को पारंपरिक रूप से दो बाइनरी ऑपरेशंस के पारस्परिक व्यवहार की आवश्यकता होती है। इस धारणा के लिए केवल संचालन की आवश्यकता होती है और जाली के लिए वितरण की स्थिति को सामान्य करता है। यदि सभी a, b, और x के लिए xab जहाँ a' a और b' b ऐसा है कि x = a' b' , तब ज्वाइन-सेमिलेटिस एक वितरण है। वितरक मीट-सेमिलेटिस को दो प्रकार से परिभाषित किया गया है। इन परिभाषाओं को इस तथ्य से उचित ठहराया जाता है कि कोई भी वितरणात्मक जुड़ाव-अर्ध-जाल जिसमें बाइनरी मीट उपस्थित हैं जो एक वितरणात्मक जाली है। प्रवेश वितरण (आदेश सिद्धांत) देखें।

ज्वाइन-सेमिलेटिस वितरक है यदि इसके आदर्शों (ऑर्डर थ्योरी) (समावेशन के अंतर्गत) का लैटिस वितरक है।

पूर्ण सेमिलेटिस

आजकल शब्द पूर्ण अर्धजाल का सामान्य रूप से कोई स्वीकृत अर्थ नहीं है और विभिन्न परस्पर असंगत परिभाषाएं उपलब्ध हैं। यदि पूर्णता को सभी अनंत ज्वाइन के अस्तित्व की आवश्यकता के लिए लिया जाता है या सभी अपरिमित मीट्स हैं जो भी स्थिति हो यह साथ ही परिमित भी हो सकता है तब यह तुरंत आंशिक आदेशों की ओर जाता है जो वास्तव में पूर्ण सेमीलेटिस (जाली) हैं। क्यों सभी संभावित अनंत ज्वाइन का अस्तित्व सभी संभावित अनंत मीट्स (और इसके विपरीत) के अस्तित्व पर जोर देता है, प्रविष्टि पूर्णता (आदेश सिद्धांत) देखें।

यद्यपि इस अवसर पर साहित्य अभी भी पूरी तरह से ज्वाइन या मीट-सेमिलेटिस को पूर्ण जाली बना देता है। इस संबंध में पूर्णता समरूपता की सीमा पर प्रतिबंध को दर्शाती है। विशेष रूप से एक पूर्ण जॉइन-सेमिलेटिस के लिए आवश्यक है कि होमोमोर्फिज्म सभी जॉइन को संरक्षित करे लेकिन उस स्थिति के विपरीत जो हम पूर्णता गुणों के लिए प्राप्त करते हैं। इसके लिए यह आवश्यक नहीं है कि होमोमोर्फिज्म सभी मीट को संरक्षित करें। दूसरी ओर हम यह निष्कर्ष निकाल सकते हैं कि इस तरह की हर मैपिंग किसी गैलोज़ सम्बन्ध का निचला भाग है। तदनुरूपी (अद्वितीय) ऊपरी अनुलग्न पूर्ण मिलन-सेमिलेटिस का समरूपता होगी। यह क्रमशः सभी मिलने या जुड़ने को संरक्षित करने वाले मॉर्फिज्म के साथ सभी पूर्ण अर्ध-जाल की श्रेणियों के बीच कई उपयोगी द्वैत (श्रेणी सिद्धांत) को उत्पन्न करता है।

पूर्ण मीट-सेमिलेटिस का एक अन्य उपयोग सीमित पूर्ण (सीपीओ) पूर्ण आंशिक आदेश को संदर्भित करता है। इस अर्थ में एक पूर्ण मीट-सेमिलेटिस सबसे पूर्ण मीट-सेमिलेटिस है जो आवश्यक नहीं कि एक पूर्ण जाली हो। वास्तव में पूर्ण मीट-सेमिलेटिस में सभी गैर-खाली मीट हैं (जो पूर्ण रूप से बंधे होने के बराबर है) और सभी निर्देशित समुच्चय ज्वाइन हैं। यदि इस तरह की संरचना में सबसे बड़ा तत्व (रिक्त समुच्चय का मीट) भी है तो यह एक पूर्ण जाली भी है। इस प्रकार पूर्ण अर्ध-जाली एक पूर्ण जाली बन जाती है जिसमें संभवतः शीर्ष का अभाव होता है। यह परिभाषा विशेष रूप सेडोमेन सिद्धांत में रुचि की है जहां स्कॉट डोमेन के रूप में पूर्ण बीजगणितीय पोसेट सीपीओ का अध्ययन किया जाता है। इसलिए स्कॉट डोमेन को बीजगणितीय सेमीलैटिस कहा गया है।

अर्धजालकों के लिए पूर्णता की कार्डिनलिटी-प्रतिबंधित धारणाओं को साहित्य में संभवतया ही कभी माना जाता है।[1][2]

फ्री या मुक्त सेमिलेटिस

यह खंड श्रेणी सिद्धांत के कुछ ज्ञान को प्रस्तुत करता है। विभिन्न स्थितियों में मुक्त (फ्री) सेमीलैटिस उपस्थित होता हैं। उदाहरण के लिए ज्वाइन-सेमिलेटिस (और उनके होमोमोर्फिज्म) की श्रेणी से समुच्चय(और फ़ंक्शंस) के श्रेणी सिद्धांत के लिए विस्मरणशील प्रकार्यक आसन्न प्रकार्यक को स्वीकार करता है। इसलिए मुक्त जॉइन-सेमिलेटिस F(S) समुच्चय पर S के सभी गैर-खाली परिमित उपसमूहों का संग्रह करके S उपसमुच्चय समावेशन द्वारा आदेशित बनाया गया है। स्पष्ट रूप से S को मैपिंग e द्वारा F(S) में कार्यान्वित किया जा सकता है जो S में किसी भी तत्व को सिंगलटन सेट {s} में ले जाता है। फिर कोई फंक्शन f एक से S ज्वाइन-सेमिलेटिस के लिए T (अधिक औपचारिक रूप से अंतर्निहित समुच्चय T के लिए) अद्वितीय समरूपता f' को प्रेरित करता है, ज्वाइन-सेमिलेटिस F(S) और T के बीच इस प्रकार है कि f = f' e, स्पष्ट रूप से f' द्वारा दिया गया है। अब की स्पष्ट विशिष्टता f' आवश्यक संयोजन प्राप्त करने के लिए पर्याप्त है - आकृतिवाद-प्रकार्यक का भाग F सामान्य विचारों से प्राप्त किया जा सकता है (आसन्न प्रकार्यक देखें)। ऑर्डरिंग के रूप में विपरीत उपसमुच्चय समावेशन का उपयोग करते हुए मुक्त मीट-सेमिलेटिस की दोहरी स्थिति होती है। आधार के साथ ज्वाइन-सेमिलेटिस के लिए हम केवल रिक्त समुच्चय को उपसमुच्चय के उपरोक्त संग्रह में जोड़ते हैं।

इसके अतिरिक्त सेमीलेटिस अधिकतर अन्य श्रेणियों के भीतर मुक्त वस्तुओं के लिए जनरेटर के रूप में कार्य करते हैं। विशेष रूप से फ्रेम और फ्रेम-होमोमोर्फिज्म की श्रेणी से और वितरणात्मक लैटिस एवं लैटिस-होमोमोर्फिज्म की श्रेणी से दोनों विस्मरणशील कार्यों में बायां जोड़ होता है।

यह भी देखें

टिप्पणियाँ

  1. E. G. Manes, Algebraic theories, Graduate Texts in Mathematics Volume 26, Springer 1976, p. 57
  2. complete semilattices on Planetmath.org


संदर्भ

  • Davey, B. A.; Priestley, H. A. (2002). Introduction to Lattices and Order (second ed.). Cambridge University Press. ISBN 0-521-78451-4.
  • Vickers, Steven (1989). Topology via Logic. Cambridge University Press. ISBN 0-521-36062-5.

It is often the case that standard treatments of lattice theory define a semilattice, if that, and then say no more. See the references in the entries order theory and lattice theory. Moreover, there is no literature on semilattices of comparable magnitude to that on semigroups.


बाहरी संबंध