अंतर्वेशन (गणित): Difference between revisions

From Vigyanwiki
m (Sugatha moved page विसर्जन (गणित) to अंतर्वेशन (गणित) without leaving a redirect)
mNo edit summary
Line 1: Line 1:
{{Short description|Differentiable function whose derivative is everywhere injective}}
{{Short description|Differentiable function whose derivative is everywhere injective}}
[[File:Klein bottle.svg|thumb|क्लेन बोतल, 3-स्पेस में डूबी हुई।]]गणित में, विसर्जन एक विभेदक बहुसंख्यक के बीच एक विभेदक कार्य है जिसका पुशफॉरवर्ड (विभेदक) हर जगह [[ इंजेक्शन |अंतःक्षेपक]] होता है।<ref>This definition is given by {{harvnb|Bishop|Crittenden|1964|page=185}}, {{harvnb|Darling|1994|page=53}}, {{harvnb|do Carmo|1994|page=11}}, {{harvnb|Frankel|1997|page=169}}, {{harvnb|Gallot|Hulin|Lafontaine|2004|page=12}}, {{harvnb|Kobayashi|Nomizu|1963|page=9}}, {{harvnb|Kosinski|2007|page=27}}, {{harvnb|Szekeres|2004|page=429}}.</ref> स्पष्ट रूप से, {{nowrap|''f'' : ''M'' → ''N''}} एक विसर्जन है अगर
[[File:Klein bottle.svg|thumb|क्लेन बोतल, 3-स्पेस में डूबी हुई।]]गणित में, अंतर्वेशन एक विभेदक बहुसंख्यक के बीच एक विभेदक कार्य है जिसका पुशफॉरवर्ड (विभेदक) हर जगह [[ इंजेक्शन |अंतःक्षेपक]] होता है।<ref>This definition is given by {{harvnb|Bishop|Crittenden|1964|page=185}}, {{harvnb|Darling|1994|page=53}}, {{harvnb|do Carmo|1994|page=11}}, {{harvnb|Frankel|1997|page=169}}, {{harvnb|Gallot|Hulin|Lafontaine|2004|page=12}}, {{harvnb|Kobayashi|Nomizu|1963|page=9}}, {{harvnb|Kosinski|2007|page=27}}, {{harvnb|Szekeres|2004|page=429}}.</ref> स्पष्ट रूप से, {{nowrap|''f'' : ''M'' → ''N''}} एक अंतर्वेशन है अगर


:<math>D_pf : T_p M \to T_{f(p)}N\,</math>
:<math>D_pf : T_p M \to T_{f(p)}N\,</math>
M के प्रत्येक बिंदु p पर एक अंतःक्षेपी कार्य है, जहाँ ''T<sub>p</sub>X''  में एक बिंदु ''p'' पर बहुसंख्यक ''X'' के [[स्पर्शरेखा स्थान]] को दर्शाता है। समतुल्य रूप से, ''f'' एक विसर्जन है यदि इसके व्युत्पन्न में M के आकार के बराबर निरंतर रैंक [[रैंक (अंतर टोपोलॉजी)|(अंतर टोपोलॉजी)]] है:<ref>This definition is given by {{harvnb|Crampin|Pirani|1994|page=243}}, {{harvnb|Spivak|1999|page=46}}.</ref>
M के प्रत्येक बिंदु p पर एक अंतःक्षेपी कार्य है, जहाँ ''T<sub>p</sub>X''  में एक बिंदु ''p'' पर बहुसंख्यक ''X'' के [[स्पर्शरेखा स्थान]] को दर्शाता है। समतुल्य रूप से, ''f'' एक अंतर्वेशन है यदि इसके व्युत्पन्न में M के आकार के बराबर निरंतर रैंक [[रैंक (अंतर टोपोलॉजी)|(अंतर टोपोलॉजी)]] है:<ref>This definition is given by {{harvnb|Crampin|Pirani|1994|page=243}}, {{harvnb|Spivak|1999|page=46}}.</ref>
:<math>\operatorname{rank}\,D_p f = \dim M.</math>
:<math>\operatorname{rank}\,D_p f = \dim M.</math>
कार्य f को अंतःक्षेपी होने की आवश्यकता नहीं है, केवल इसका व्युत्पन्न अंतःक्षेपी होना चाहिए।
कार्य f को अंतःक्षेपी होने की आवश्यकता नहीं है, केवल इसका व्युत्पन्न अंतःक्षेपी होना चाहिए।


विसर्जन से संबंधित अवधारणा एक अंत:स्थापन भी है। एक सुचारु अंत:स्थापन एक अंतःक्षेपी विसर्जन है {{nowrap|''f'' : ''M'' → ''N''}} जो एक [[टोपोलॉजिकल एम्बेडिंग|संस्थानिक अंत:स्थापन]] भी है, ताकि N की छवि में M भिन्न हो। विसर्जन एक निश्चित रूप से [[स्थानीय एम्बेडिंग|स्थानीय अंत:स्थापन]] है - यानी किसी भी बिंदु  {{nowrap|''x'' ∈ ''M''}} के लिए एक {{nowrap|''U'' ⊆ ''M''}}, बिंदु x का [[पड़ोस (टोपोलॉजी)|प्रतिवेश(टोपोलॉजी)]] है और इस तरह, {{nowrap|''f'' : ''U'' → ''N''}} एक अंत:स्थापन है, और इसके विपरीत एक स्थानीय अंत:स्थापन एक विसर्जन है।<ref>This kind of definition, based on local diffeomorphisms, is given by {{harvnb|Bishop|Goldberg|1968|page=40}}, {{harvnb|Lang|1999|page=26}}.</ref> कभी-कभी अनंत बहुसंख्यक परिमाण के लिए, इसे विसर्जन की परिभाषा के रूप में लिया जाता है।<ref>This kind of infinite-dimensional definition is given by {{harvnb|Lang|1999|page=26}}.</ref>
अंतर्वेशन से संबंधित अवधारणा एक अंत:स्थापन भी है। एक सुचारु अंत:स्थापन एक अंतःक्षेपी अंतर्वेशन है {{nowrap|''f'' : ''M'' → ''N''}} जो एक [[टोपोलॉजिकल एम्बेडिंग|संस्थानिक अंत:स्थापन]] भी है, ताकि N की छवि में M भिन्न हो। अंतर्वेशन एक निश्चित रूप से [[स्थानीय एम्बेडिंग|स्थानीय अंत:स्थापन]] है - यानी किसी भी बिंदु  {{nowrap|''x'' ∈ ''M''}} के लिए एक {{nowrap|''U'' ⊆ ''M''}}, बिंदु x का [[पड़ोस (टोपोलॉजी)|प्रतिवेश(टोपोलॉजी)]] है और इस तरह, {{nowrap|''f'' : ''U'' → ''N''}} एक अंत:स्थापन है, और इसके विपरीत एक स्थानीय अंत:स्थापन एक अंतर्वेशन है।<ref>This kind of definition, based on local diffeomorphisms, is given by {{harvnb|Bishop|Goldberg|1968|page=40}}, {{harvnb|Lang|1999|page=26}}.</ref> कभी-कभी अनंत बहुसंख्यक परिमाण के लिए, इसे अंतर्वेशन की परिभाषा के रूप में लिया जाता है।<ref>This kind of infinite-dimensional definition is given by {{harvnb|Lang|1999|page=26}}.</ref>


[[File:Injectively_immersed_submanifold_not_embedding.svg|thumb|अंतःक्षेपी द्वारा [[डूबा हुआ सबमेनिफोल्ड]] जो अंत:स्थापन नहीं है।]]यदि M [[ कॉम्पैक्ट जगह |कॉम्पैक्ट]] है, तो अंतःक्षेपी विसर्जन एक अंत:स्थापन हो सकते है, लेकिन यदि M कॉम्पैक्ट नहीं है तो अंतःक्षेपी वाले विसर्जन अंत:स्थापन नहीं हो सकते है। निरंतर आक्षेप बनाम [[होमियोमोर्फिज्म|समरूपता]] की तुलना करें।
[[File:Injectively_immersed_submanifold_not_embedding.svg|thumb|अंतःक्षेपी द्वारा [[डूबा हुआ सबमेनिफोल्ड]] जो अंत:स्थापन नहीं है।]]यदि M [[ कॉम्पैक्ट जगह |कॉम्पैक्ट]] है, तो अंतःक्षेपी अंतर्वेशन एक अंत:स्थापन हो सकते है, लेकिन यदि M कॉम्पैक्ट नहीं है तो अंतःक्षेपी वाले अंतर्वेशन अंत:स्थापन नहीं हो सकते है। निरंतर आक्षेप बनाम [[होमियोमोर्फिज्म|समरूपता]] की तुलना करें।


== [[नियमित होमोटॉपी|नियमित समरूपता]] ==
== [[नियमित होमोटॉपी|नियमित समरूपता]] ==
[[कई गुना|बहुसंख्यक]] M से बहुसंख्यक N तक दो विसर्जन f और g के बीच एक नियमित समरूपता को एक भिन्न कार्य {{nowrap|''H'' : ''M'' × [0,1] → ''N''}}  के रूप में परिभाषित किया जाता है। जैसे कि [0, 1] में सभी t के लिए क्रिया {{nowrap|''H<sub>t</sub>'' : ''M'' → ''N''}} द्वारा परिभाषित {{nowrap|1=''H<sub>t</sub>''(''x'') = ''H''(''x'', ''t'')}} सभी {{nowrap|''x'' ∈ ''M''}} के लिए {{nowrap|1=''H''<sub>0</sub> = ''f''}}, {{nowrap|1=''H''<sub>1</sub> = ''g''}} के साथ एक विसर्जन है। इस प्रकार विसर्जन के माध्यम से नियमित [[नियमित होमोटॉपी|समरूपता]] एक [[नियमित होमोटॉपी|समरूपता]] है।
[[कई गुना|बहुसंख्यक]] M से बहुसंख्यक N तक दो अंतर्वेशन f और g के बीच एक नियमित समरूपता को एक भिन्न कार्य {{nowrap|''H'' : ''M'' × [0,1] → ''N''}}  के रूप में परिभाषित किया जाता है। जैसे कि [0, 1] में सभी t के लिए क्रिया {{nowrap|''H<sub>t</sub>'' : ''M'' → ''N''}} द्वारा परिभाषित {{nowrap|1=''H<sub>t</sub>''(''x'') = ''H''(''x'', ''t'')}} सभी {{nowrap|''x'' ∈ ''M''}} के लिए {{nowrap|1=''H''<sub>0</sub> = ''f''}}, {{nowrap|1=''H''<sub>1</sub> = ''g''}} के साथ एक अंतर्वेशन है। इस प्रकार अंतर्वेशन के माध्यम से नियमित [[नियमित होमोटॉपी|समरूपता]] एक [[नियमित होमोटॉपी|समरूपता]] है।


== वर्गीकरण ==
== वर्गीकरण ==
[[हस्लर व्हिटनी]] ने 1940 के दशक में विसर्जन और नियमित [[नियमित होमोटॉपी|समरूपता]] के व्यवस्थित अध्ययन की शुरुआत की, यह साबित करते हुए कि {{nowrap|1=2''m'' < ''n'' + 1}} प्रत्येक मानचित्र के ''f''  : ''M <sup>m</sup>'' → ''N <sup>n</sup>'' में बहुसंख्यक आकार M से बहुसंख्यक आकार N एक विसर्जन के लिए [[होमोटोपिक|समरूपता]] है, और वास्तव में {{nowrap|2''m'' < ''n''}} के लिए एक [[एम्बेडिंग|अंत:स्थापन]] है; ये [[व्हिटनी विसर्जन प्रमेय|व्हिटनी विसर्जन सिद्धांत]] और [[व्हिटनी एम्बेडिंग प्रमेय|व्हिटनी अंत:स्थापन सिद्धांत]] हैं।
[[हस्लर व्हिटनी]] ने 1940 के दशक में अंतर्वेशन और नियमित [[नियमित होमोटॉपी|समरूपता]] के व्यवस्थित अध्ययन की शुरुआत की, यह साबित करते हुए कि {{nowrap|1=2''m'' < ''n'' + 1}} प्रत्येक मानचित्र के ''f''  : ''M <sup>m</sup>'' → ''N <sup>n</sup>'' में बहुसंख्यक आकार M से बहुसंख्यक आकार N एक अंतर्वेशन के लिए [[होमोटोपिक|समरूपता]] है, और वास्तव में {{nowrap|2''m'' < ''n''}} के लिए एक [[एम्बेडिंग|अंत:स्थापन]] है; ये [[व्हिटनी विसर्जन प्रमेय|व्हिटनी अंतर्वेशन सिद्धांत]] और [[व्हिटनी एम्बेडिंग प्रमेय|व्हिटनी अंत:स्थापन सिद्धांत]] हैं।


[[स्टीफन स्मेल]] ने विसर्जन की नियमित समरूपता श्रेणियों {{nowrap|''f'' : ''M<sup>m</sup>'' → '''R'''<sup>''n''</sup>}} को एक निश्चित [[स्टिफ़ेल कई गुना|स्टिफ़ेल बहुसंख्यक]] के समरूपता समूहों के रूप में व्यक्त किया। विशेष रूप से [[गोले का फैलाव]] एक विचित्र परिणाम था।
[[स्टीफन स्मेल]] ने अंतर्वेशन की नियमित समरूपता श्रेणियों {{nowrap|''f'' : ''M<sup>m</sup>'' → '''R'''<sup>''n''</sup>}} को एक निश्चित [[स्टिफ़ेल कई गुना|स्टिफ़ेल बहुसंख्यक]] के समरूपता समूहों के रूप में व्यक्त किया। विशेष रूप से [[गोले का फैलाव]] एक विचित्र परिणाम था।


मॉरिस हिर्श ने स्मेल की अभिव्यक्ति किसी भी ''m'' -बहुसंख्यक आकार ''M<sup>m</sup>'' को किसी भी ''n''-बहुसंख्यक आकार ''N<sup>n</sup>'' में विसर्जन के नियमित समरूपता श्रेणियों के समरूपता सिद्धांत विवरण के लिए सामान्यीकृत किया था।
मॉरिस हिर्श ने स्मेल की अभिव्यक्ति किसी भी ''m'' -बहुसंख्यक आकार ''M<sup>m</sup>'' को किसी भी ''n''-बहुसंख्यक आकार ''N<sup>n</sup>'' में अंतर्वेशन के नियमित समरूपता श्रेणियों के समरूपता सिद्धांत विवरण के लिए सामान्यीकृत किया था।


विसर्जन के हिर्श-स्माइल वर्गीकरण को गणितज्ञ मिखाइल ग्रोमोव द्वारा सामान्यीकृत किया गया था।
अंतर्वेशन के हिर्श-स्माइल वर्गीकरण को गणितज्ञ मिखाइल ग्रोमोव द्वारा सामान्यीकृत किया गया था।


=== अस्तित्व ===
=== अस्तित्व ===
[[File:MobiusStrip-01.png|thumb|मोबियस पट्टी कोडिमेंशन 0 में नहीं डूबती है क्योंकि इसकी स्पर्शरेखा समूह गैर-नगण्य है।]]स्टिफ़ेल-व्हिटनी श्रेणियों के [[विशेषता वर्ग|विशेषता]] वर्गों के अनुसार विसर्जन के अस्तित्व के लिए प्राथमिक बाधा {{nowrap|''i'' : ''M<sup>m</sup>'' → '''R'''<sup>''n''</sup>}} में M का [[स्थिर सामान्य बंडल|स्थिर सामान्य समूह]] है। अर्थात् '''R'''<sup>''n''</sup> [[समानांतर कई गुना|समानांतर]] है, और इसके स्पर्शरेखा [[स्थिर सामान्य बंडल|समूह]] का M पर रुकावट नगण्य है; इसलिए यह रुकावट M स्पर्शरेखा [[स्थिर सामान्य बंडल|समूह]] का प्रत्यक्ष योग है, TM पर जिसका आकार m है, और विसर्जन i के सामान्य समूह ν का, जिसका आकार है {{nowrap|''n'' − ''m''}}, M का [[ codimension | सहआकार]] k विसर्जन होने के लिए, आकार k का एक वेक्टर समूह होना चाहिए, ξ<sup>k</sup>, सामान्य समूह ν के लिए स्थित है, जैसे कि {{nowrap|''TM'' ⊕ ''ξ''<sup>''k''</sup>}} नगण्य है। इसके विपरीत, इस तरह के एक समूह को देखते हुए, इस सामान्य समूह के साथ M का विसर्जन इस समूह के कुल स्थान के कोडिंग 0 विसर्जन के बराबर होता है, जो एक खुली परत है।
[[File:MobiusStrip-01.png|thumb|मोबियस पट्टी कोडिमेंशन 0 में नहीं डूबती है क्योंकि इसकी स्पर्शरेखा समूह गैर-नगण्य है।]]स्टिफ़ेल-व्हिटनी श्रेणियों के [[विशेषता वर्ग|विशेषता]] वर्गों के अनुसार अंतर्वेशन के अस्तित्व के लिए प्राथमिक बाधा {{nowrap|''i'' : ''M<sup>m</sup>'' → '''R'''<sup>''n''</sup>}} में M का [[स्थिर सामान्य बंडल|स्थिर सामान्य समूह]] है। अर्थात् '''R'''<sup>''n''</sup> [[समानांतर कई गुना|समानांतर]] है, और इसके स्पर्शरेखा [[स्थिर सामान्य बंडल|समूह]] का M पर रुकावट नगण्य है; इसलिए यह रुकावट M स्पर्शरेखा [[स्थिर सामान्य बंडल|समूह]] का प्रत्यक्ष योग है, TM पर जिसका आकार m है, और अंतर्वेशन i के सामान्य समूह ν का, जिसका आकार है {{nowrap|''n'' − ''m''}}, M का [[ codimension | सहआकार]] k अंतर्वेशन होने के लिए, आकार k का एक वेक्टर समूह होना चाहिए, ξ<sup>k</sup>, सामान्य समूह ν के लिए स्थित है, जैसे कि {{nowrap|''TM'' ⊕ ''ξ''<sup>''k''</sup>}} नगण्य है। इसके विपरीत, इस तरह के एक समूह को देखते हुए, इस सामान्य समूह के साथ M का अंतर्वेशन इस समूह के कुल स्थान के कोडिंग 0 अंतर्वेशन के बराबर होता है, जो एक खुली परत है।


स्थिर सामान्य समूह, सामान्य समूहों और नगण्य समूहों का वर्ग है, और इस प्रकार यदि स्थिर सामान्य समूह में सह समरूपता.आकार k है, तो यह k से कम आकार के (अस्थिर) सामान्य समूह से नहीं आ सकता है। इस प्रकार, स्थिर सामान्य समूह का सह समरूप आकार, जैसा कि इसकी उच्चतम गैर-लुप्त होने वाली विशेषता वर्ग द्वारा पता चला है, विसर्जन के लिए एक बाधा है।
स्थिर सामान्य समूह, सामान्य समूहों और नगण्य समूहों का वर्ग है, और इस प्रकार यदि स्थिर सामान्य समूह में सह समरूपता.आकार k है, तो यह k से कम आकार के (अस्थिर) सामान्य समूह से नहीं आ सकता है। इस प्रकार, स्थिर सामान्य समूह का सह समरूप आकार, जैसा कि इसकी उच्चतम गैर-लुप्त होने वाली विशेषता वर्ग द्वारा पता चला है, अंतर्वेशन के लिए एक बाधा है।


चूंकि विशेषता वर्ग सदिश समूहों के प्रत्यक्ष योग के तहत गुणा करते हैं, इसलिए आंतरिक रूप से अंतरिक्ष M और इसके स्पर्शरेखा समूह और सह समरूप बीजगणित के संदर्भ में इसे बाधा कहा जा सकता है। स्पर्शरेखा समूह के संदर्भ में व्हिटनी द्वारा इसे बाधा कहा गया था।
चूंकि विशेषता वर्ग सदिश समूहों के प्रत्यक्ष योग के तहत गुणा करते हैं, इसलिए आंतरिक रूप से अंतरिक्ष M और इसके स्पर्शरेखा समूह और सह समरूप बीजगणित के संदर्भ में इसे बाधा कहा जा सकता है। स्पर्शरेखा समूह के संदर्भ में व्हिटनी द्वारा इसे बाधा कहा गया था।


उदाहरण के लिए, मोबियस पट्टी में गैर-नगण्य स्पर्शरेखा समूह है, इसलिए यह [[ codimension |सहआकार]] 0 (''''R'''<sup>2</sup>' में) में विसर्जन नहीं हो सकता है, हालांकि यह [[ codimension |सहआकार]]1(R<sup>3</sup>) में अंत:स्थापन होता है।  
उदाहरण के लिए, मोबियस पट्टी में गैर-नगण्य स्पर्शरेखा समूह है, इसलिए यह [[ codimension |सहआकार]] 0 (''''R'''<sup>2</sup>' में) में अंतर्वेशन नहीं हो सकता है, हालांकि यह [[ codimension |सहआकार]]1(R<sup>3</sup>) में अंत:स्थापन होता है।  


{{harvs|authorlink=विलियम एस मैसी|first=विलियम एस.|last=मैसी|year=1960|txt}} ने दिखाया कि स्टिफ़ेल-व्हिटनी द्वारा विकसित स्थिर सामान्य समूह श्रेणियों की विशेषता श्रेणी {{nowrap|''n'' − ''α''(''n'')}}डिग्री से ऊपर लुप्त हो जाते हैं, जहाँ {{nowrap|''α''(''n'')}} 1 अंकों की संख्या है जब n को बाइनरी में लिखा जाता है; [[वास्तविक प्रक्षेप्य स्थान]] के अनुसार यह बाधा स्पष्ट है। {{harvs|first=राल्फ लुइस|last=कोहेन|authorlink=राल्फ लुइस|year=1985|txt}} द्वारा इस विसर्जन अनुमान को प्रमाण दिया कि '''R'''<sup>2''n''−α(''n'') ,</sup>अर्थात् प्रत्येक n-बहुसंख्यक को सहआकार {{nowrap|''n'' − ''α''(''n'')}} में विसर्जन किया जा सकता है।  
{{harvs|authorlink=विलियम एस मैसी|first=विलियम एस.|last=मैसी|year=1960|txt}} ने दिखाया कि स्टिफ़ेल-व्हिटनी द्वारा विकसित स्थिर सामान्य समूह श्रेणियों की विशेषता श्रेणी {{nowrap|''n'' − ''α''(''n'')}}डिग्री से ऊपर लुप्त हो जाते हैं, जहाँ {{nowrap|''α''(''n'')}} 1 अंकों की संख्या है जब n को बाइनरी में लिखा जाता है; [[वास्तविक प्रक्षेप्य स्थान]] के अनुसार यह बाधा स्पष्ट है। {{harvs|first=राल्फ लुइस|last=कोहेन|authorlink=राल्फ लुइस|year=1985|txt}} द्वारा इस अंतर्वेशन अनुमान को प्रमाण दिया कि '''R'''<sup>2''n''−α(''n'') ,</sup>अर्थात् प्रत्येक n-बहुसंख्यक को सहआकार {{nowrap|''n'' − ''α''(''n'')}} में अंतर्वेशन किया जा सकता है।  


=== [[ codimension |सहआकार]] 0 ===
=== [[ codimension |सहआकार]] 0 ===
Codimension 0 विसर्जन समान रूप से सापेक्ष आकार 0 Submersion (गणित) हैं, और बेहतर रूप से Submersion के रूप में सोचा जाता है। एक बंद मैनिफोल्ड का कोडिमेंशन 0 विसर्जन ठीक एक [[ कवरिंग नक्शा ]] है, यानी 0-आकारी (असतत) फाइबर वाला एक [[फाइबर बंडल|फाइबर समूह]]। डूबने पर एह्रेसमैन के प्रमेय और फिलिप्स के प्रमेय द्वारा, मैनिफोल्ड्स का एक [[उचित नक्शा]] विसर्जन एक फाइबर समूह है, इसलिए कोडिमेंशन/सापेक्ष आकार 0 विसर्जन/विसर्जन जलमग्नता की तरह व्यवहार करते हैं।
Codimension 0 अंतर्वेशन समान रूप से सापेक्ष आकार 0 Submersion (गणित) हैं, और बेहतर रूप से Submersion के रूप में सोचा जाता है। एक बंद मैनिफोल्ड का कोडिमेंशन 0 अंतर्वेशन ठीक एक [[ कवरिंग नक्शा ]] है, यानी 0-आकारी (असतत) फाइबर वाला एक [[फाइबर बंडल|फाइबर समूह]]। डूबने पर एह्रेसमैन के प्रमेय और फिलिप्स के प्रमेय द्वारा, मैनिफोल्ड्स का एक [[उचित नक्शा]] अंतर्वेशन एक फाइबर समूह है, इसलिए कोडिमेंशन/सापेक्ष आकार 0 अंतर्वेशन/अंतर्वेशन जलमग्नता की तरह व्यवहार करते हैं।


इसके अलावा, कोडिमेंशन 0 विसर्जन अन्य विसर्जन की तरह व्यवहार नहीं करते हैं, जो मोटे तौर पर स्थिर सामान्य समूह द्वारा निर्धारित होते हैं: कोडिमेंशन 0 में [[मौलिक वर्ग]] और कवर रिक्त स्थान के मुद्दे हैं। उदाहरण के लिए, कोई कोडिमेंशन 0 विसर्जन नहीं है {{nowrap|'''S'''<sup>1</sup> → '''R'''<sup>1</sup>}}, वृत्त के समानांतर होने के बावजूद, जिसे सिद्ध किया जा सकता है क्योंकि रेखा का कोई मौलिक वर्ग नहीं है, इसलिए किसी को शीर्ष कोहोलॉजी पर आवश्यक नक्शा नहीं मिलता है। वैकल्पिक रूप से, यह डोमेन के व्युत्क्रम द्वारा है। इसी तरह, हालांकि एस<sup>3</sup> और 3-टोरस टी<sup>3</sup> दोनों समानांतर हैं, कोई विसर्जन नहीं है {{nowrap|'''T'''<sup>3</sup> → '''S'''<sup>3</sup>}} - ऐसे किसी भी आवरण को कुछ बिंदुओं पर शाखाबद्ध करना होगा, क्योंकि गोला सरलता से जुड़ा हुआ है।
इसके अलावा, कोडिमेंशन 0 अंतर्वेशन अन्य अंतर्वेशन की तरह व्यवहार नहीं करते हैं, जो मोटे तौर पर स्थिर सामान्य समूह द्वारा निर्धारित होते हैं: कोडिमेंशन 0 में [[मौलिक वर्ग]] और कवर रिक्त स्थान के मुद्दे हैं। उदाहरण के लिए, कोई कोडिमेंशन 0 अंतर्वेशन नहीं है {{nowrap|'''S'''<sup>1</sup> → '''R'''<sup>1</sup>}}, वृत्त के समानांतर होने के बावजूद, जिसे सिद्ध किया जा सकता है क्योंकि रेखा का कोई मौलिक वर्ग नहीं है, इसलिए किसी को शीर्ष कोहोलॉजी पर आवश्यक नक्शा नहीं मिलता है। वैकल्पिक रूप से, यह डोमेन के व्युत्क्रम द्वारा है। इसी तरह, हालांकि एस<sup>3</sup> और 3-टोरस टी<sup>3</sup> दोनों समानांतर हैं, कोई अंतर्वेशन नहीं है {{nowrap|'''T'''<sup>3</sup> → '''S'''<sup>3</sup>}} - ऐसे किसी भी आवरण को कुछ बिंदुओं पर शाखाबद्ध करना होगा, क्योंकि गोला सरलता से जुड़ा हुआ है।


इसे समझने का एक और तरीका यह है कि कई गुना का कोडिमेंशन k विसर्जन एक k-डायमेंशनल वेक्टर समूह के कोडिमेंशन 0 विसर्जन से मेल खाता है, जो कि ओपन मैनिफोल्ड है अगर कोडिमेंशन 0 से अधिक है, लेकिन कोडिमेंशन 0 में बंद मैनिफोल्ड ( अगर मूल कई गुना बंद है)।
इसे समझने का एक और तरीका यह है कि कई गुना का कोडिमेंशन k अंतर्वेशन एक k-डायमेंशनल वेक्टर समूह के कोडिमेंशन 0 अंतर्वेशन से मेल खाता है, जो कि ओपन मैनिफोल्ड है अगर कोडिमेंशन 0 से अधिक है, लेकिन कोडिमेंशन 0 में बंद मैनिफोल्ड ( अगर मूल कई गुना बंद है)।


== एकाधिक बिंदु ==
== एकाधिक बिंदु ==
विसर्जन का एक ''क''-टपल बिंदु (डबल, ट्रिपल, आदि)। {{nowrap|''f'' : ''M'' → ''N''}} एक अनियंत्रित सेट है {{nowrap|{''x''<sub>1</sub>, ..., ''x<sub>k</sub>''}{{null}}}} अलग-अलग बिंदु {{nowrap|''x<sub>i</sub>'' ∈ ''M''}} एक ही छवि के साथ {{nowrap|''f''(''x<sub>i</sub>'') ∈ ''N''}}. यदि एम एक एम-आकारी कई गुना है और एन एक विसर्जन के लिए एक एन-आकारी कई गुना है {{nowrap|''f'' : ''M'' → ''N''}} [[सामान्य स्थिति]] में के-ट्यूपल बिंदुओं का सेट एक है {{nowrap|(''n'' − ''k''(''n'' − ''m''))}}-आकारी कई गुना। प्रत्येक अंत:स्थापन कई बिंदुओं के बिना एक विसर्जन है (जहाँ {{nowrap|''k'' > 1}}). ध्यान दें, हालांकि, इसका विलोम गलत है: ऐसे अंतःक्षेपी वाले विसर्जन हैं जो अंत:स्थापन नहीं हैं।
अंतर्वेशन का एक ''क''-टपल बिंदु (डबल, ट्रिपल, आदि)। {{nowrap|''f'' : ''M'' → ''N''}} एक अनियंत्रित सेट है {{nowrap|{''x''<sub>1</sub>, ..., ''x<sub>k</sub>''}{{null}}}} अलग-अलग बिंदु {{nowrap|''x<sub>i</sub>'' ∈ ''M''}} एक ही छवि के साथ {{nowrap|''f''(''x<sub>i</sub>'') ∈ ''N''}}. यदि एम एक एम-आकारी कई गुना है और एन एक अंतर्वेशन के लिए एक एन-आकारी कई गुना है {{nowrap|''f'' : ''M'' → ''N''}} [[सामान्य स्थिति]] में के-ट्यूपल बिंदुओं का सेट एक है {{nowrap|(''n'' − ''k''(''n'' − ''m''))}}-आकारी कई गुना। प्रत्येक अंत:स्थापन कई बिंदुओं के बिना एक अंतर्वेशन है (जहाँ {{nowrap|''k'' > 1}}). ध्यान दें, हालांकि, इसका विलोम गलत है: ऐसे अंतःक्षेपी वाले अंतर्वेशन हैं जो अंत:स्थापन नहीं हैं।


एकाधिक बिंदुओं की प्रकृति विसर्जन को वर्गीकृत करती है; उदाहरण के लिए, समतल में एक वृत्त के विसर्जन को दोहरे बिंदुओं की संख्या के आधार पर नियमित समरूपता तक वर्गीकृत किया जाता है।
एकाधिक बिंदुओं की प्रकृति अंतर्वेशन को वर्गीकृत करती है; उदाहरण के लिए, समतल में एक वृत्त के अंतर्वेशन को दोहरे बिंदुओं की संख्या के आधार पर नियमित समरूपता तक वर्गीकृत किया जाता है।


[[शल्य चिकित्सा सिद्धांत]] में एक महत्वपूर्ण बिंदु पर यह तय करना आवश्यक है कि विसर्जन है या नहीं {{nowrap|''f'' : '''S'''<sup>''m''</sup> → ''N''<sup>2''m''</sup>}2m-डायमेंशनल मैनिफोल्ड में एक m-sphere का एक अंत:स्थापन के लिए नियमित होमोटोपिक है, जिस स्थिति में इसे सर्जरी द्वारा खत्म किया जा सकता है। सी.टी.सी. [[मौलिक समूह]] वलय 'Z' के एक भागफल में f एक अपरिवर्तनीय μ(f) से जुड़ी दीवार [{{pi}}<sub>1</sub>(एन)] जो एन के सार्वभौमिक कवर में एफ के दोहरे बिंदुओं की गणना करता है। के लिए {{nowrap|''m'' > 2}}, एफ एक अंत:स्थापन के लिए नियमित होमोटोपिक है अगर और केवल अगर {{nowrap|1=''μ''(''f'') = 0}} हस्लर व्हिटनी ट्रिक द्वारा।
[[शल्य चिकित्सा सिद्धांत]]<nowiki> में एक महत्वपूर्ण बिंदु पर यह तय करना आवश्यक है कि अंतर्वेशन है या नहीं {{nowrap|</nowiki>''f'' : '''S'''<sup>''m''</sup> → ''N''<sup>2''m''</sup>}2m-डायमेंशनल मैनिफोल्ड में एक m-sphere का एक अंत:स्थापन के लिए नियमित होमोटोपिक है, जिस स्थिति में इसे सर्जरी द्वारा खत्म किया जा सकता है। सी.टी.सी. [[मौलिक समूह]] वलय 'Z' के एक भागफल में f एक अपरिवर्तनीय μ(f) से जुड़ी दीवार [{{pi}}<sub>1</sub>(एन)] जो एन के सार्वभौमिक कवर में एफ के दोहरे बिंदुओं की गणना करता है। के लिए {{nowrap|''m'' > 2}}, एफ एक अंत:स्थापन के लिए नियमित होमोटोपिक है अगर और केवल अगर {{nowrap|1=''μ''(''f'') = 0}} हस्लर व्हिटनी ट्रिक द्वारा।


एक से अधिक बिंदुओं के बिना अंत:स्थापन को विसर्जन के रूप में अध्ययन किया जा सकता है, क्योंकि विसर्जन को वर्गीकृत करना आसान होता है। इस प्रकार, कोई विसर्जन से शुरू कर सकता है और कई बिंदुओं को खत्म करने का प्रयास कर सकता है, यह देखते हुए कि क्या कोई अन्य विशिष्टताएं पेश किए बिना ऐसा कर सकता है - कई संयोजनों का अध्ययन करना। यह पहली बार एंड्रे हैफ्लिगर द्वारा किया गया था, और यह दृष्टिकोण कोडिमेंशन 3 या अधिक में उपयोगी है - सर्जरी सिद्धांत के दृष्टिकोण से, यह कोडिमेंशन 2 के विपरीत उच्च (को)आकार है, जो [[गाँठ सिद्धांत]] के रूप में गाँठ आकार है। यह [http://www.math.brown.edu/facademy/goodwillie.html थॉमस गुडविली], [http://www.math.wayne.edu/~klein/ जॉन क्लेन द्वारा फंक्शनलर्स की कलन के माध्यम से स्पष्ट रूप से अध्ययन किया गया है ], और [https://web.archive.org/web/20090215201210/http://maths.abdn.ac.uk/staff/display.php?key=m.weiss Michael S. Weiss]।
एक से अधिक बिंदुओं के बिना अंत:स्थापन को अंतर्वेशन के रूप में अध्ययन किया जा सकता है, क्योंकि अंतर्वेशन को वर्गीकृत करना आसान होता है। इस प्रकार, कोई अंतर्वेशन से शुरू कर सकता है और कई बिंदुओं को खत्म करने का प्रयास कर सकता है, यह देखते हुए कि क्या कोई अन्य विशिष्टताएं पेश किए बिना ऐसा कर सकता है - कई संयोजनों का अध्ययन करना। यह पहली बार एंड्रे हैफ्लिगर द्वारा किया गया था, और यह दृष्टिकोण कोडिमेंशन 3 या अधिक में उपयोगी है - सर्जरी सिद्धांत के दृष्टिकोण से, यह कोडिमेंशन 2 के विपरीत उच्च (को)आकार है, जो [[गाँठ सिद्धांत]] के रूप में गाँठ आकार है। यह [http://www.math.brown.edu/facademy/goodwillie.html थॉमस गुडविली], [http://www.math.wayne.edu/~klein/ जॉन क्लेन द्वारा फंक्शनलर्स की कलन के माध्यम से स्पष्ट रूप से अध्ययन किया गया है ], और [https://web.archive.org/web/20090215201210/http://maths.abdn.ac.uk/staff/display.php?key=m.weiss Michael S. Weiss]।


== उदाहरण और गुण ==
== उदाहरण और गुण ==
[[File:Quadrifolium.svg|thumb|upright=1.1|[[चार मुखी तिपतिया]], 4 पंखुड़ी वाला गुलाब।]]* k पंखुड़ियों वाला एक गणितीय [[गुलाब (गणित)]] एक एकल k-ट्यूपल बिंदु के साथ समतल में वृत्त का विसर्जन है; k कोई भी विषम संख्या हो सकती है, लेकिन यदि 4 का गुणक भी होना चाहिए, तो k = 2 के साथ आंकड़ा 8, गुलाब नहीं है।
[[File:Quadrifolium.svg|thumb|upright=1.1|[[चार मुखी तिपतिया]], 4 पंखुड़ी वाला गुलाब।]]* k पंखुड़ियों वाला एक गणितीय [[गुलाब (गणित)]] एक एकल k-ट्यूपल बिंदु के साथ समतल में वृत्त का अंतर्वेशन है; k कोई भी विषम संख्या हो सकती है, लेकिन यदि 4 का गुणक भी होना चाहिए, तो k = 2 के साथ आंकड़ा 8, गुलाब नहीं है।
* क्लेन बोतल, और अन्य सभी गैर-उन्मुख बंद सतहों को 3-स्पेस में डुबोया जा सकता है लेकिन एम्बेड नहीं किया जा सकता है।
* क्लेन बोतल, और अन्य सभी गैर-उन्मुख बंद सतहों को 3-स्पेस में डुबोया जा सकता है लेकिन एम्बेड नहीं किया जा सकता है।
* व्हिटनी-ग्रौस्टीन प्रमेय द्वारा, विमान में सर्कल के विसर्जन के नियमित समरूपता वर्गों को [[घुमावदार संख्या]] द्वारा वर्गीकृत किया जाता है, जो कि बीजगणितीय रूप से गिने जाने वाले दोहरे बिंदुओं की संख्या भी है (अर्थात संकेतों के साथ)।
* व्हिटनी-ग्रौस्टीन प्रमेय द्वारा, विमान में सर्कल के अंतर्वेशन के नियमित समरूपता वर्गों को [[घुमावदार संख्या]] द्वारा वर्गीकृत किया जाता है, जो कि बीजगणितीय रूप से गिने जाने वाले दोहरे बिंदुओं की संख्या भी है (अर्थात संकेतों के साथ)।
* क्षेत्र का फैलाव: मानक अंत:स्थापन {{nowrap|''f''<sub>0</sub> : '''S'''<sup>2</sup> → '''R'''<sup>3</sup>}} से संबंधित है {{nowrap|1=''f''<sub>1</sub> = −''f''<sub>0</sub> : '''S'''<sup>2</sup> → '''R'''<sup>3</sup>}} विसर्जन की एक नियमित समरूपता द्वारा {{nowrap|''f<sub>t</sub>'' : '''S'''<sup>2</sup> → '''R'''<sup>3</sup>}}.
* क्षेत्र का फैलाव: मानक अंत:स्थापन {{nowrap|''f''<sub>0</sub> : '''S'''<sup>2</sup> → '''R'''<sup>3</sup>}} से संबंधित है {{nowrap|1=''f''<sub>1</sub> = −''f''<sub>0</sub> : '''S'''<sup>2</sup> → '''R'''<sup>3</sup>}} अंतर्वेशन की एक नियमित समरूपता द्वारा {{nowrap|''f<sub>t</sub>'' : '''S'''<sup>2</sup> → '''R'''<sup>3</sup>}}.
* लड़के की सतह 3-अंतरिक्ष में वास्तविक प्रक्षेपी तल का विसर्जन है; इस प्रकार गोले का 2-टू-1 विसर्जन भी।
* लड़के की सतह 3-अंतरिक्ष में वास्तविक प्रक्षेपी तल का अंतर्वेशन है; इस प्रकार गोले का 2-टू-1 अंतर्वेशन भी।
* मोरिन सतह गोले का विसर्जन है; यह और बॉय की सतह दोनों गोलाकार विचलन में मिडवे मॉडल के रूप में उत्पन्न होती हैं।
* मोरिन सतह गोले का अंतर्वेशन है; यह और बॉय की सतह दोनों गोलाकार विचलन में मिडवे मॉडल के रूप में उत्पन्न होती हैं।


<gallery widths="250px" heights="200px">
<gallery widths="250px" heights="200px">
Line 77: Line 77:
== सामान्यीकरण ==
== सामान्यीकरण ==
{{main|Homotopy principle}}
{{main|Homotopy principle}}
विसर्जन सिद्धांत का एक दूरगामी सामान्यीकरण [[होमोटॉपी सिद्धांत|समरूपता सिद्धांत]] है:
अंतर्वेशन सिद्धांत का एक दूरगामी सामान्यीकरण [[होमोटॉपी सिद्धांत|समरूपता सिद्धांत]] है:
एक [[आंशिक अंतर संबंध]] (पीडीआर) के रूप में विसर्जन की स्थिति (व्युत्पन्न का रैंक हमेशा k होता है) पर विचार किया जा सकता है, क्योंकि इसे फ़ंक्शन के आंशिक डेरिवेटिव के संदर्भ में कहा जा सकता है। फिर स्मेल-हिर्श विसर्जन सिद्धांत परिणाम है कि यह समरूपता सिद्धांत को कम कर देता है, और समरूपता सिद्धांत पीडीआर को होमोटोपी सिद्धांत में कम करने के लिए सामान्य स्थितियां और कारण देता है।
एक [[आंशिक अंतर संबंध]] (पीडीआर) के रूप में अंतर्वेशन की स्थिति (व्युत्पन्न का रैंक हमेशा k होता है) पर विचार किया जा सकता है, क्योंकि इसे फ़ंक्शन के आंशिक डेरिवेटिव के संदर्भ में कहा जा सकता है। फिर स्मेल-हिर्श अंतर्वेशन सिद्धांत परिणाम है कि यह समरूपता सिद्धांत को कम कर देता है, और समरूपता सिद्धांत पीडीआर को होमोटोपी सिद्धांत में कम करने के लिए सामान्य स्थितियां और कारण देता है।


== यह भी देखें ==
== यह भी देखें ==


* डूबे हुए सबमनीफोल्ड
* डूबे हुए सबमनीफोल्ड
* [[आइसोमेट्रिक विसर्जन]]
* [[आइसोमेट्रिक विसर्जन|आइसोमेट्रिक अंतर्वेशन]]
*विसर्जन (गणित)
*अंतर्वेशन (गणित)


==टिप्पणियाँ==
==टिप्पणियाँ==

Revision as of 21:30, 16 March 2023

क्लेन बोतल, 3-स्पेस में डूबी हुई।

गणित में, अंतर्वेशन एक विभेदक बहुसंख्यक के बीच एक विभेदक कार्य है जिसका पुशफॉरवर्ड (विभेदक) हर जगह अंतःक्षेपक होता है।[1] स्पष्ट रूप से, f : MN एक अंतर्वेशन है अगर

M के प्रत्येक बिंदु p पर एक अंतःक्षेपी कार्य है, जहाँ TpX में एक बिंदु p पर बहुसंख्यक X के स्पर्शरेखा स्थान को दर्शाता है। समतुल्य रूप से, f एक अंतर्वेशन है यदि इसके व्युत्पन्न में M के आकार के बराबर निरंतर रैंक (अंतर टोपोलॉजी) है:[2]

कार्य f को अंतःक्षेपी होने की आवश्यकता नहीं है, केवल इसका व्युत्पन्न अंतःक्षेपी होना चाहिए।

अंतर्वेशन से संबंधित अवधारणा एक अंत:स्थापन भी है। एक सुचारु अंत:स्थापन एक अंतःक्षेपी अंतर्वेशन है f : MN जो एक संस्थानिक अंत:स्थापन भी है, ताकि N की छवि में M भिन्न हो। अंतर्वेशन एक निश्चित रूप से स्थानीय अंत:स्थापन है - यानी किसी भी बिंदु xM के लिए एक UM, बिंदु x का प्रतिवेश(टोपोलॉजी) है और इस तरह, f : UN एक अंत:स्थापन है, और इसके विपरीत एक स्थानीय अंत:स्थापन एक अंतर्वेशन है।[3] कभी-कभी अनंत बहुसंख्यक परिमाण के लिए, इसे अंतर्वेशन की परिभाषा के रूप में लिया जाता है।[4]

अंतःक्षेपी द्वारा डूबा हुआ सबमेनिफोल्ड जो अंत:स्थापन नहीं है।

यदि M कॉम्पैक्ट है, तो अंतःक्षेपी अंतर्वेशन एक अंत:स्थापन हो सकते है, लेकिन यदि M कॉम्पैक्ट नहीं है तो अंतःक्षेपी वाले अंतर्वेशन अंत:स्थापन नहीं हो सकते है। निरंतर आक्षेप बनाम समरूपता की तुलना करें।

नियमित समरूपता

बहुसंख्यक M से बहुसंख्यक N तक दो अंतर्वेशन f और g के बीच एक नियमित समरूपता को एक भिन्न कार्य H : M × [0,1] → N के रूप में परिभाषित किया जाता है। जैसे कि [0, 1] में सभी t के लिए क्रिया Ht : MN द्वारा परिभाषित Ht(x) = H(x, t) सभी xM के लिए H0 = f, H1 = g के साथ एक अंतर्वेशन है। इस प्रकार अंतर्वेशन के माध्यम से नियमित समरूपता एक समरूपता है।

वर्गीकरण

हस्लर व्हिटनी ने 1940 के दशक में अंतर्वेशन और नियमित समरूपता के व्यवस्थित अध्ययन की शुरुआत की, यह साबित करते हुए कि 2m < n + 1 प्रत्येक मानचित्र के f  : M mN n में बहुसंख्यक आकार M से बहुसंख्यक आकार N एक अंतर्वेशन के लिए समरूपता है, और वास्तव में 2m < n के लिए एक अंत:स्थापन है; ये व्हिटनी अंतर्वेशन सिद्धांत और व्हिटनी अंत:स्थापन सिद्धांत हैं।

स्टीफन स्मेल ने अंतर्वेशन की नियमित समरूपता श्रेणियों f : MmRn को एक निश्चित स्टिफ़ेल बहुसंख्यक के समरूपता समूहों के रूप में व्यक्त किया। विशेष रूप से गोले का फैलाव एक विचित्र परिणाम था।

मॉरिस हिर्श ने स्मेल की अभिव्यक्ति किसी भी m -बहुसंख्यक आकार Mm को किसी भी n-बहुसंख्यक आकार Nn में अंतर्वेशन के नियमित समरूपता श्रेणियों के समरूपता सिद्धांत विवरण के लिए सामान्यीकृत किया था।

अंतर्वेशन के हिर्श-स्माइल वर्गीकरण को गणितज्ञ मिखाइल ग्रोमोव द्वारा सामान्यीकृत किया गया था।

अस्तित्व

मोबियस पट्टी कोडिमेंशन 0 में नहीं डूबती है क्योंकि इसकी स्पर्शरेखा समूह गैर-नगण्य है।

स्टिफ़ेल-व्हिटनी श्रेणियों के विशेषता वर्गों के अनुसार अंतर्वेशन के अस्तित्व के लिए प्राथमिक बाधा i : MmRn में M का स्थिर सामान्य समूह है। अर्थात् Rn समानांतर है, और इसके स्पर्शरेखा समूह का M पर रुकावट नगण्य है; इसलिए यह रुकावट M स्पर्शरेखा समूह का प्रत्यक्ष योग है, TM पर जिसका आकार m है, और अंतर्वेशन i के सामान्य समूह ν का, जिसका आकार है nm, M का सहआकार k अंतर्वेशन होने के लिए, आकार k का एक वेक्टर समूह होना चाहिए, ξk, सामान्य समूह ν के लिए स्थित है, जैसे कि TMξk नगण्य है। इसके विपरीत, इस तरह के एक समूह को देखते हुए, इस सामान्य समूह के साथ M का अंतर्वेशन इस समूह के कुल स्थान के कोडिंग 0 अंतर्वेशन के बराबर होता है, जो एक खुली परत है।

स्थिर सामान्य समूह, सामान्य समूहों और नगण्य समूहों का वर्ग है, और इस प्रकार यदि स्थिर सामान्य समूह में सह समरूपता.आकार k है, तो यह k से कम आकार के (अस्थिर) सामान्य समूह से नहीं आ सकता है। इस प्रकार, स्थिर सामान्य समूह का सह समरूप आकार, जैसा कि इसकी उच्चतम गैर-लुप्त होने वाली विशेषता वर्ग द्वारा पता चला है, अंतर्वेशन के लिए एक बाधा है।

चूंकि विशेषता वर्ग सदिश समूहों के प्रत्यक्ष योग के तहत गुणा करते हैं, इसलिए आंतरिक रूप से अंतरिक्ष M और इसके स्पर्शरेखा समूह और सह समरूप बीजगणित के संदर्भ में इसे बाधा कहा जा सकता है। स्पर्शरेखा समूह के संदर्भ में व्हिटनी द्वारा इसे बाधा कहा गया था।

उदाहरण के लिए, मोबियस पट्टी में गैर-नगण्य स्पर्शरेखा समूह है, इसलिए यह सहआकार 0 ('R2' में) में अंतर्वेशन नहीं हो सकता है, हालांकि यह सहआकार1(R3) में अंत:स्थापन होता है।

विलियम एस. मैसी (1960) ने दिखाया कि स्टिफ़ेल-व्हिटनी द्वारा विकसित स्थिर सामान्य समूह श्रेणियों की विशेषता श्रेणी nα(n)डिग्री से ऊपर लुप्त हो जाते हैं, जहाँ α(n) 1 अंकों की संख्या है जब n को बाइनरी में लिखा जाता है; वास्तविक प्रक्षेप्य स्थान के अनुसार यह बाधा स्पष्ट है। राल्फ लुइस कोहेन (1985) द्वारा इस अंतर्वेशन अनुमान को प्रमाण दिया कि R2n−α(n) ,अर्थात् प्रत्येक n-बहुसंख्यक को सहआकार nα(n) में अंतर्वेशन किया जा सकता है।

सहआकार 0

Codimension 0 अंतर्वेशन समान रूप से सापेक्ष आकार 0 Submersion (गणित) हैं, और बेहतर रूप से Submersion के रूप में सोचा जाता है। एक बंद मैनिफोल्ड का कोडिमेंशन 0 अंतर्वेशन ठीक एक कवरिंग नक्शा है, यानी 0-आकारी (असतत) फाइबर वाला एक फाइबर समूह। डूबने पर एह्रेसमैन के प्रमेय और फिलिप्स के प्रमेय द्वारा, मैनिफोल्ड्स का एक उचित नक्शा अंतर्वेशन एक फाइबर समूह है, इसलिए कोडिमेंशन/सापेक्ष आकार 0 अंतर्वेशन/अंतर्वेशन जलमग्नता की तरह व्यवहार करते हैं।

इसके अलावा, कोडिमेंशन 0 अंतर्वेशन अन्य अंतर्वेशन की तरह व्यवहार नहीं करते हैं, जो मोटे तौर पर स्थिर सामान्य समूह द्वारा निर्धारित होते हैं: कोडिमेंशन 0 में मौलिक वर्ग और कवर रिक्त स्थान के मुद्दे हैं। उदाहरण के लिए, कोई कोडिमेंशन 0 अंतर्वेशन नहीं है S1R1, वृत्त के समानांतर होने के बावजूद, जिसे सिद्ध किया जा सकता है क्योंकि रेखा का कोई मौलिक वर्ग नहीं है, इसलिए किसी को शीर्ष कोहोलॉजी पर आवश्यक नक्शा नहीं मिलता है। वैकल्पिक रूप से, यह डोमेन के व्युत्क्रम द्वारा है। इसी तरह, हालांकि एस3 और 3-टोरस टी3 दोनों समानांतर हैं, कोई अंतर्वेशन नहीं है T3S3 - ऐसे किसी भी आवरण को कुछ बिंदुओं पर शाखाबद्ध करना होगा, क्योंकि गोला सरलता से जुड़ा हुआ है।

इसे समझने का एक और तरीका यह है कि कई गुना का कोडिमेंशन k अंतर्वेशन एक k-डायमेंशनल वेक्टर समूह के कोडिमेंशन 0 अंतर्वेशन से मेल खाता है, जो कि ओपन मैनिफोल्ड है अगर कोडिमेंशन 0 से अधिक है, लेकिन कोडिमेंशन 0 में बंद मैनिफोल्ड ( अगर मूल कई गुना बंद है)।

एकाधिक बिंदु

अंतर्वेशन का एक -टपल बिंदु (डबल, ट्रिपल, आदि)। f : MN एक अनियंत्रित सेट है {x1, ..., xk} अलग-अलग बिंदु xiM एक ही छवि के साथ f(xi) ∈ N. यदि एम एक एम-आकारी कई गुना है और एन एक अंतर्वेशन के लिए एक एन-आकारी कई गुना है f : MN सामान्य स्थिति में के-ट्यूपल बिंदुओं का सेट एक है (nk(nm))-आकारी कई गुना। प्रत्येक अंत:स्थापन कई बिंदुओं के बिना एक अंतर्वेशन है (जहाँ k > 1). ध्यान दें, हालांकि, इसका विलोम गलत है: ऐसे अंतःक्षेपी वाले अंतर्वेशन हैं जो अंत:स्थापन नहीं हैं।

एकाधिक बिंदुओं की प्रकृति अंतर्वेशन को वर्गीकृत करती है; उदाहरण के लिए, समतल में एक वृत्त के अंतर्वेशन को दोहरे बिंदुओं की संख्या के आधार पर नियमित समरूपता तक वर्गीकृत किया जाता है।

शल्य चिकित्सा सिद्धांत में एक महत्वपूर्ण बिंदु पर यह तय करना आवश्यक है कि अंतर्वेशन है या नहीं {{nowrap|f : SmN2m}2m-डायमेंशनल मैनिफोल्ड में एक m-sphere का एक अंत:स्थापन के लिए नियमित होमोटोपिक है, जिस स्थिति में इसे सर्जरी द्वारा खत्म किया जा सकता है। सी.टी.सी. मौलिक समूह वलय 'Z' के एक भागफल में f एक अपरिवर्तनीय μ(f) से जुड़ी दीवार [π1(एन)] जो एन के सार्वभौमिक कवर में एफ के दोहरे बिंदुओं की गणना करता है। के लिए m > 2, एफ एक अंत:स्थापन के लिए नियमित होमोटोपिक है अगर और केवल अगर μ(f) = 0 हस्लर व्हिटनी ट्रिक द्वारा।

एक से अधिक बिंदुओं के बिना अंत:स्थापन को अंतर्वेशन के रूप में अध्ययन किया जा सकता है, क्योंकि अंतर्वेशन को वर्गीकृत करना आसान होता है। इस प्रकार, कोई अंतर्वेशन से शुरू कर सकता है और कई बिंदुओं को खत्म करने का प्रयास कर सकता है, यह देखते हुए कि क्या कोई अन्य विशिष्टताएं पेश किए बिना ऐसा कर सकता है - कई संयोजनों का अध्ययन करना। यह पहली बार एंड्रे हैफ्लिगर द्वारा किया गया था, और यह दृष्टिकोण कोडिमेंशन 3 या अधिक में उपयोगी है - सर्जरी सिद्धांत के दृष्टिकोण से, यह कोडिमेंशन 2 के विपरीत उच्च (को)आकार है, जो गाँठ सिद्धांत के रूप में गाँठ आकार है। यह थॉमस गुडविली, जॉन क्लेन द्वारा फंक्शनलर्स की कलन के माध्यम से स्पष्ट रूप से अध्ययन किया गया है , और Michael S. Weiss

उदाहरण और गुण

चार मुखी तिपतिया, 4 पंखुड़ी वाला गुलाब।

* k पंखुड़ियों वाला एक गणितीय गुलाब (गणित) एक एकल k-ट्यूपल बिंदु के साथ समतल में वृत्त का अंतर्वेशन है; k कोई भी विषम संख्या हो सकती है, लेकिन यदि 4 का गुणक भी होना चाहिए, तो k = 2 के साथ आंकड़ा 8, गुलाब नहीं है।

  • क्लेन बोतल, और अन्य सभी गैर-उन्मुख बंद सतहों को 3-स्पेस में डुबोया जा सकता है लेकिन एम्बेड नहीं किया जा सकता है।
  • व्हिटनी-ग्रौस्टीन प्रमेय द्वारा, विमान में सर्कल के अंतर्वेशन के नियमित समरूपता वर्गों को घुमावदार संख्या द्वारा वर्गीकृत किया जाता है, जो कि बीजगणितीय रूप से गिने जाने वाले दोहरे बिंदुओं की संख्या भी है (अर्थात संकेतों के साथ)।
  • क्षेत्र का फैलाव: मानक अंत:स्थापन f0 : S2R3 से संबंधित है f1 = −f0 : S2R3 अंतर्वेशन की एक नियमित समरूपता द्वारा ft : S2R3.
  • लड़के की सतह 3-अंतरिक्ष में वास्तविक प्रक्षेपी तल का अंतर्वेशन है; इस प्रकार गोले का 2-टू-1 अंतर्वेशन भी।
  • मोरिन सतह गोले का अंतर्वेशन है; यह और बॉय की सतह दोनों गोलाकार विचलन में मिडवे मॉडल के रूप में उत्पन्न होती हैं।


डूबे हुए समतल वक्र

इस वक्र की कुल वक्रता 6 हैπ, और टर्निंग नंबर 3, हालांकि इसमें p के बारे में केवल वाइंडिंग नंबर 2 है।

डूबे हुए समतल वक्रों में एक अच्छी तरह से परिभाषित मोड़ संख्या होती है, जिसे कुल वक्रता को 2 से विभाजित करके परिभाषित किया जा सकता हैπ. व्हिटनी-ग्रौस्टीन प्रमेय द्वारा यह नियमित समरूपता के तहत अपरिवर्तनीय है - स्थलीय रूप से, यह गॉस का नक्शा की डिग्री है, या मूल के बारे में इकाई स्पर्शरेखा (जो गायब नहीं होती) की घुमावदार संख्या है। इसके अलावा, यह इनवेरिएंट्स का एक पूरा सेट है - समान टर्निंग नंबर वाले कोई भी दो प्लेन वक्र नियमित होमोटोपिक हैं।

हर डूबा हुआ समतल वक्र चौराहे के बिंदुओं को अलग करके एक एम्बेडेड अंतरिक्ष वक्र में ले जाता है, जो उच्च आकारों में सही नहीं है। अतिरिक्त डेटा (जो किनारा शीर्ष पर है) के साथ, विसर्जित विमान वक्र गाँठ आरेख उत्पन्न करते हैं, जो गाँठ सिद्धांत में केंद्रीय रुचि रखते हैं। जबकि विसर्जित विमान वक्र, नियमित होमोटोपी तक, उनकी मोड़ संख्या से निर्धारित होते हैं, नॉट्स में बहुत समृद्ध और जटिल संरचना होती है।

=== 3-स्पेस === में डूबी हुई सतहें 3-स्पेस में विसर्जित सतहों का अध्ययन 4-स्पेस में नॉटेड (एम्बेडेड) सतहों के अध्ययन से निकटता से जुड़ा हुआ है, नॉट डायग्राम के सिद्धांत के अनुरूप (3 में नॉटेड कर्व्स के प्रोजेक्शन के रूप में डूबे हुए प्लेन कर्व्स (2-स्पेस) -स्पेस): 4-स्पेस में एक नॉटेड सतह दी गई है, कोई इसे 3-स्पेस में एक डूबे हुए सतह पर प्रोजेक्ट कर सकता है, और इसके विपरीत, 3-स्पेस में एक डूबे हुए सतह को देखते हुए, कोई पूछ सकता है कि क्या यह 4-स्पेस में लिफ्ट करता है - है यह 4-अंतरिक्ष में एक गांठदार सतह का प्रक्षेपण है? यह इन वस्तुओं के बारे में प्रश्नों को संबंधित करने की अनुमति देता है।

एक मूल परिणाम, समतल वक्रों के मामले के विपरीत, यह है कि प्रत्येक डूबी हुई सतह एक गांठदार सतह तक नहीं उठती है।[5] कुछ मामलों में बाधा 2-मरोड़ है, जैसे कि कोस्चोर्क का उदाहरण,[6] जो एक डूबी हुई सतह है (3 मोबियस बैंड से निर्मित, एक ट्रिपपॉइंट (बहुविकल्पी) के साथ) जो एक गाँठ वाली सतह तक नहीं उठती है, लेकिन इसमें एक दोहरा आवरण होता है जो लिफ्ट करता है। में विस्तृत विश्लेषण दिया गया है Carter & Saito (1998a), जबकि एक और हालिया सर्वेक्षण में दिया गया है Carter, Kamada & Saito (2004).

सामान्यीकरण

अंतर्वेशन सिद्धांत का एक दूरगामी सामान्यीकरण समरूपता सिद्धांत है: एक आंशिक अंतर संबंध (पीडीआर) के रूप में अंतर्वेशन की स्थिति (व्युत्पन्न का रैंक हमेशा k होता है) पर विचार किया जा सकता है, क्योंकि इसे फ़ंक्शन के आंशिक डेरिवेटिव के संदर्भ में कहा जा सकता है। फिर स्मेल-हिर्श अंतर्वेशन सिद्धांत परिणाम है कि यह समरूपता सिद्धांत को कम कर देता है, और समरूपता सिद्धांत पीडीआर को होमोटोपी सिद्धांत में कम करने के लिए सामान्य स्थितियां और कारण देता है।

यह भी देखें

टिप्पणियाँ

  1. This definition is given by Bishop & Crittenden 1964, p. 185, Darling 1994, p. 53, do Carmo 1994, p. 11, Frankel 1997, p. 169, Gallot, Hulin & Lafontaine 2004, p. 12, Kobayashi & Nomizu 1963, p. 9, Kosinski 2007, p. 27, Szekeres 2004, p. 429.
  2. This definition is given by Crampin & Pirani 1994, p. 243, Spivak 1999, p. 46.
  3. This kind of definition, based on local diffeomorphisms, is given by Bishop & Goldberg 1968, p. 40, Lang 1999, p. 26.
  4. This kind of infinite-dimensional definition is given by Lang 1999, p. 26.
  5. Carter & Saito 1998; Carter, Kamada & Saito 2004, Remark 1.23, p. 17
  6. Koschorke 1979


संदर्भ


बाहरी संबंध