इलेक्ट्रॉन द्रव्यमान: Difference between revisions
(Created page with "{{Short description|Mass of a stationary electron}} {| class="wikitable" style="float: right;" |- ! scope="col" | Constant ! scope="col" | Values ! scope="col" | Units |- ! s...") |
No edit summary |
||
Line 16: | Line 16: | ||
| {{val|8.1871057769|(25)|e=−14}} || [[Joule|J]] | | {{val|8.1871057769|(25)|e=−14}} || [[Joule|J]] | ||
|- | |- | ||
| {{physconst|mec2_MeV|unit=no}} || | | {{physconst|mec2_MeV|unit=no}} || | ||
|} | |} | ||
इलेक्ट्रॉन द्रव्यमान (प्रतीक: | इलेक्ट्रॉन द्रव्यमान (प्रतीक: m<sub>e</sub>) एक स्थिर [[इलेक्ट्रॉन]] का द्रव्यमान है, जिसे इलेक्ट्रॉन के [[अपरिवर्तनीय द्रव्यमान]] के रूप में भी जाना जाता है। यह भौतिकी के मूलभूत स्थिरांकों में से एक है। इसका मूल्य लगभग 9.109×10-31 किलोग्राम या लगभग 5.486×10-4 डाल्टन है, जिसका ऊर्जा-समतुल्य लगभग {{val|8.187|e=−14|u=जूल}} या लगभग 0.511 MeV है। | ||
== शब्दावली == | == शब्दावली == | ||
विराम द्रव्यमान शब्द का प्रयोग कभी-कभी किया जाता है क्योंकि [[विशेष सापेक्षता]] में किसी वस्तु के द्रव्यमान को संदर्भ के | विराम द्रव्यमान शब्द का प्रयोग कभी-कभी किया जाता है क्योंकि [[विशेष सापेक्षता]] में किसी वस्तु के द्रव्यमान को उस संदर्भ के फ्रेम में वृद्धि के रूप में कहा जा सकता है जो उस वस्तु के सापेक्ष चल रहा है (या यदि ऑब्जेक्ट संदर्भ के दिए गए फ्रेम में चल रहा है)। गतिमान इलेक्ट्रॉनों पर अधिकांश व्यावहारिक माप किए जाते हैं। यदि इलेक्ट्रॉन एक [[सापेक्ष गति|सापेक्षिक गति]] से गति कर रहा है, तो किसी भी माप को द्रव्यमान के लिए सही अभिव्यक्ति का उपयोग करना चाहिए। {{val|100|ul=kV}} से अधिक के वोल्टेज द्वारा त्वरित किए गए इलेक्ट्रॉनों के लिए ऐसा सुधार पर्याप्त हो जाता है। | ||
उदाहरण के लिए, गति से गतिमान एक इलेक्ट्रॉन की कुल ऊर्जा, E के लिए सापेक्षिक व्यंजक <math>v</math> है | उदाहरण के लिए, गति से गतिमान एक इलेक्ट्रॉन की कुल ऊर्जा, E के लिए सापेक्षिक व्यंजक <math>v</math> है | ||
:<math>E = \gamma m_\text{e} c^2 ,</math> जहां [[लोरेंत्ज़ कारक]] है <math>\gamma = 1/\sqrt{1-v^2/c^2} </math> | :<math>E = \gamma m_\text{e} c^2 ,</math> | ||
जहां [[लोरेंत्ज़ कारक]] है <math>\gamma = 1/\sqrt{1-v^2/c^2} </math> इस अभिव्यक्ति में मैं "विश्राम द्रव्यमान" है, या अधिक बस इलेक्ट्रॉन का "द्रव्यमान" है। यह मात्रा मी फ्रेम अपरिवर्तनीय और वेग स्वतंत्र है। हालांकि, कुछ ग्रंथों ने सापेक्षतावादी द्रव्यमान, {{nowrap|1=''m''<sub>relativistic</sub> = ''γm''<sub>e</sub>}} नामक एक नई मात्रा को परिभाषित करने के लिए द्रव्यमान कारक के साथ लोरेंत्ज़ कारक का समूह बनाया। | |||
== दृढ़ | == दृढ़ निश्चय == | ||
चूंकि इलेक्ट्रॉन द्रव्यमान परमाणु भौतिकी में कई देखे गए प्रभावों को निर्धारित करता है, इसलिए प्रयोग से इसके द्रव्यमान को निर्धारित करने के संभावित रूप से कई तरीके हैं, यदि अन्य भौतिक स्थिरांक के मान पहले से ही ज्ञात माने जाते हैं। | चूंकि इलेक्ट्रॉन द्रव्यमान परमाणु भौतिकी में कई देखे गए प्रभावों को निर्धारित करता है, इसलिए प्रयोग से इसके द्रव्यमान को निर्धारित करने के संभावित रूप से कई तरीके हैं, यदि अन्य भौतिक स्थिरांक के मान पहले से ही ज्ञात माने जाते हैं। | ||
Line 33: | Line 34: | ||
दूसरा माप इलेक्ट्रॉन के विद्युत आवेश का था। यह 1909 में रॉबर्ट ए. मिलिकन द्वारा अपने तेल ड्रॉप प्रयोग में 1% से बेहतर सटीकता के साथ निर्धारित किया गया था। द्रव्यमान-से-चार्ज अनुपात के साथ, इलेक्ट्रॉन द्रव्यमान को उचित सटीकता के साथ निर्धारित किया गया था। इलेक्ट्रॉन के लिए पाया गया द्रव्यमान का मान शुरू में भौतिकविदों द्वारा आश्चर्यचकित किया गया था, क्योंकि यह हाइड्रोजन परमाणु के ज्ञात द्रव्यमान की तुलना में बहुत छोटा (0.1% से कम) था। | दूसरा माप इलेक्ट्रॉन के विद्युत आवेश का था। यह 1909 में रॉबर्ट ए. मिलिकन द्वारा अपने तेल ड्रॉप प्रयोग में 1% से बेहतर सटीकता के साथ निर्धारित किया गया था। द्रव्यमान-से-चार्ज अनुपात के साथ, इलेक्ट्रॉन द्रव्यमान को उचित सटीकता के साथ निर्धारित किया गया था। इलेक्ट्रॉन के लिए पाया गया द्रव्यमान का मान शुरू में भौतिकविदों द्वारा आश्चर्यचकित किया गया था, क्योंकि यह हाइड्रोजन परमाणु के ज्ञात द्रव्यमान की तुलना में बहुत छोटा (0.1% से कम) था। | ||
इलेक्ट्रॉन विराम द्रव्यमान की गणना Rydberg स्थिरांक R | इलेक्ट्रॉन विराम द्रव्यमान की गणना Rydberg स्थिरांक R<sub>∞</sub> और स्पेक्ट्रोस्कोपिक मापन के माध्यम से प्राप्त [[ठीक-संरचना स्थिर|सूक्ष्म-संरचना स्थिरांक]] α से की जा सकती है। Rydberg स्थिरांक की परिभाषा का उपयोग करना: | ||
:<math>R_{\infty} = \frac{m_{\rm e}c\alpha^2}{2h} ,</math> | :<math>R_{\infty} = \frac{m_{\rm e}c\alpha^2}{2h} ,</math> | ||
Line 41: | Line 42: | ||
जहाँ c प्रकाश की गति है और h [[प्लैंक स्थिरांक]] है।<ref name="CODATA">{{cite web|url=https://physics.nist.gov/cgi-bin/cuu/Value?me|title=CODATA Value: electron mass|website=The NIST Reference on Constants, Units and Uncertainty|date=May 20, 2019|access-date=May 20, 2019}}</ref> सापेक्ष अनिश्चितता, 5{{e|−8}} विज्ञान और प्रौद्योगिकी के लिए डेटा पर 2006 की समिति में अनुशंसित मूल्य,<ref name="NIST">{{citation | title = The NIST reference on Constants, Units, and Uncertainty | date = 10 June 2009 | url = http://physics.nist.gov/cuu/index.html | publisher = [[National Institute of Standards and Technology]]}}</ref> पूरी तरह से प्लैंक स्थिरांक के मान में अनिश्चितता के कारण है। 2019 में एसआई आधार इकाइयों की पुनर्परिभाषा के साथ| 2019 में किलोग्राम की फिर से परिभाषा, अब प्लैंक स्थिरांक में परिभाषा के अनुसार कोई अनिश्चितता नहीं बची है। | जहाँ c प्रकाश की गति है और h [[प्लैंक स्थिरांक]] है।<ref name="CODATA">{{cite web|url=https://physics.nist.gov/cgi-bin/cuu/Value?me|title=CODATA Value: electron mass|website=The NIST Reference on Constants, Units and Uncertainty|date=May 20, 2019|access-date=May 20, 2019}}</ref> सापेक्ष अनिश्चितता, 5{{e|−8}} विज्ञान और प्रौद्योगिकी के लिए डेटा पर 2006 की समिति में अनुशंसित मूल्य,<ref name="NIST">{{citation | title = The NIST reference on Constants, Units, and Uncertainty | date = 10 June 2009 | url = http://physics.nist.gov/cuu/index.html | publisher = [[National Institute of Standards and Technology]]}}</ref> पूरी तरह से प्लैंक स्थिरांक के मान में अनिश्चितता के कारण है। 2019 में एसआई आधार इकाइयों की पुनर्परिभाषा के साथ| 2019 में किलोग्राम की फिर से परिभाषा, अब प्लैंक स्थिरांक में परिभाषा के अनुसार कोई अनिश्चितता नहीं बची है। | ||
इलेक्ट्रॉन सापेक्ष परमाणु द्रव्यमान को [[पेनिंग ट्रैप]] में सीधे मापा जा सकता है। यह | इलेक्ट्रॉन सापेक्ष परमाणु द्रव्यमान को [[पेनिंग ट्रैप]] में सीधे मापा जा सकता है। यह एंटीप्रोटोनिक [[हीलियम]] परमाणुओं के स्पेक्ट्रा से भी अनुमान लगाया जा सकता है (हीलियम परमाणु जहां एक इलेक्ट्रॉन को एक एंटीप्रोटोन द्वारा प्रतिस्थापित किया गया है) या हाइड्रोजनिक आयनों <sup>12</sup>सी<sup>5+</sup> या <sup>16</sup>ओ<sup>7+</sup> में इलेक्ट्रॉन जी-कारक के माप से। | ||
इलेक्ट्रॉन सापेक्ष परमाणु द्रव्यमान मौलिक भौतिक | इलेक्ट्रॉन सापेक्ष परमाणु द्रव्यमान मौलिक भौतिक स्थिरांकों के CODATA सेट में एक समायोजित पैरामीटर है, जबकि किलोग्राम में इलेक्ट्रॉन बाकी द्रव्यमान की गणना प्लैंक स्थिरांक, ठीक-संरचना स्थिरांक और Rydberg स्थिरांक के मानों से की जाती है, जैसा कि ऊपर वर्णित है।<ref name="CODATA" /><ref name="NIST" /> | ||
== अन्य भौतिक स्थिरांक से संबंध == | |||
इलेक्ट्रॉन द्रव्यमान का उपयोग [[अवोगाद्रो स्थिरांक]] N<sub>A</sub> की गणना के लिए किया जाता है: | |||
:<math>N_{\rm A} = \frac{M_{\rm u} A_{\rm r}({\rm e})}{m_{\rm e}} = \frac{M_{\rm u} A_{\rm r}({\rm e})c\alpha^2}{2R_\infty h} .</math> | |||
इसलिए यह परमाणु द्रव्यमान स्थिर m<sub>u</sub> से भी संबंधित है: | |||
:<math>m_{\rm u} = \frac{M_{\rm u}}{N_{\rm A}} = \frac{m_{\rm e}}{A_{\rm r}({\rm e})} = \frac{2R_\infty h}{A_{\rm r}({\rm e})c\alpha^2} ,</math> | |||
जहां एम<sub>u</sub> [[दाढ़ जन स्थिरांक]] (एसआई में परिभाषित) [[और]] ए<sub>r</sub>(ई) सीधे मापी गई मात्रा है, इलेक्ट्रॉन के [[सापेक्ष परमाणु द्रव्यमान]]। | |||
ध्यान दें कि एम<sub>u</sub> को ए<sub>r</sub>(ई) के संदर्भ में परिभाषित किया गया है, न कि इसके विपरीत, और इसलिए ए<sub>r</sub>(ई) के लिए "परमाणु द्रव्यमान इकाइयों में इलेक्ट्रॉन द्रव्यमान" नाम में एक परिपत्र परिभाषा शामिल है (कम से कम व्यावहारिक माप के संदर्भ में) . | |||
इलेक्ट्रॉन सापेक्ष परमाणु द्रव्यमान अन्य सभी सापेक्ष परमाणु द्रव्यमानों की गणना में भी प्रवेश करता है। परंपरागत रूप से, सापेक्ष परमाणु द्रव्यमान तटस्थ परमाणुओं के लिए उद्धृत किए जाते हैं, लेकिन वास्तविक माप धनात्मक [[आयन]]ों पर या तो [[मास स्पेक्ट्रोमीटर]] या पेनिंग ट्रैप में किए जाते हैं। इसलिए सारणीकरण से पहले मापा मूल्यों पर इलेक्ट्रॉनों के द्रव्यमान को वापस जोड़ा जाना चाहिए। बाध्यकारी ऊर्जा ई के द्रव्यमान समकक्ष के लिए एक सुधार भी किया जाना चाहिए<sub>b</sub>. [[परमाणु संख्या]] Z के एक न्यूक्लाइड X के लिए, सभी इलेक्ट्रॉनों के पूर्ण आयनीकरण का सबसे सरल मामला लेते हुए,<ref name="CODATA" />: | |||
<math>A_{\rm r}({\rm X}) = A_{\rm r}({\rm X}^{Z+}) + ZA_{\rm r}({\rm e}) - E_{\rm b}/m_{\rm u}c^2\,</math> | |||
जैसा कि सापेक्ष परमाणु द्रव्यमान को द्रव्यमान के अनुपात के रूप में मापा जाता है, संशोधनों को दोनों आयनों पर लागू किया जाना चाहिए: सुधारों में अनिश्चितता नगण्य है, जैसा कि हाइड्रोजन 1 और ऑक्सीजन 16 के लिए नीचे दिखाया गया है। | जैसा कि सापेक्ष परमाणु द्रव्यमान को द्रव्यमान के अनुपात के रूप में मापा जाता है, संशोधनों को दोनों आयनों पर लागू किया जाना चाहिए: सुधारों में अनिश्चितता नगण्य है, जैसा कि हाइड्रोजन 1 और ऑक्सीजन 16 के लिए नीचे दिखाया गया है। | ||
Revision as of 18:09, 19 March 2023
Constant | Values | Units |
---|---|---|
me | 9.1093837015(28)×10−31[1] | kg |
5.48579909065(16)×10−4[2] | Da | |
MeV/c2 | ||
mec2 | 8.1871057769(25)×10−14 | J |
इलेक्ट्रॉन द्रव्यमान (प्रतीक: me) एक स्थिर इलेक्ट्रॉन का द्रव्यमान है, जिसे इलेक्ट्रॉन के अपरिवर्तनीय द्रव्यमान के रूप में भी जाना जाता है। यह भौतिकी के मूलभूत स्थिरांकों में से एक है। इसका मूल्य लगभग 9.109×10-31 किलोग्राम या लगभग 5.486×10-4 डाल्टन है, जिसका ऊर्जा-समतुल्य लगभग 8.187×10−14 जूल या लगभग 0.511 MeV है।
शब्दावली
विराम द्रव्यमान शब्द का प्रयोग कभी-कभी किया जाता है क्योंकि विशेष सापेक्षता में किसी वस्तु के द्रव्यमान को उस संदर्भ के फ्रेम में वृद्धि के रूप में कहा जा सकता है जो उस वस्तु के सापेक्ष चल रहा है (या यदि ऑब्जेक्ट संदर्भ के दिए गए फ्रेम में चल रहा है)। गतिमान इलेक्ट्रॉनों पर अधिकांश व्यावहारिक माप किए जाते हैं। यदि इलेक्ट्रॉन एक सापेक्षिक गति से गति कर रहा है, तो किसी भी माप को द्रव्यमान के लिए सही अभिव्यक्ति का उपयोग करना चाहिए। 100 kV से अधिक के वोल्टेज द्वारा त्वरित किए गए इलेक्ट्रॉनों के लिए ऐसा सुधार पर्याप्त हो जाता है।
उदाहरण के लिए, गति से गतिमान एक इलेक्ट्रॉन की कुल ऊर्जा, E के लिए सापेक्षिक व्यंजक है
जहां लोरेंत्ज़ कारक है इस अभिव्यक्ति में मैं "विश्राम द्रव्यमान" है, या अधिक बस इलेक्ट्रॉन का "द्रव्यमान" है। यह मात्रा मी फ्रेम अपरिवर्तनीय और वेग स्वतंत्र है। हालांकि, कुछ ग्रंथों ने सापेक्षतावादी द्रव्यमान, mrelativistic = γme नामक एक नई मात्रा को परिभाषित करने के लिए द्रव्यमान कारक के साथ लोरेंत्ज़ कारक का समूह बनाया।
दृढ़ निश्चय
चूंकि इलेक्ट्रॉन द्रव्यमान परमाणु भौतिकी में कई देखे गए प्रभावों को निर्धारित करता है, इसलिए प्रयोग से इसके द्रव्यमान को निर्धारित करने के संभावित रूप से कई तरीके हैं, यदि अन्य भौतिक स्थिरांक के मान पहले से ही ज्ञात माने जाते हैं।
ऐतिहासिक रूप से, इलेक्ट्रॉन का द्रव्यमान सीधे दो मापों के संयोजन से निर्धारित किया गया था। कैथोड रे ट्यूब में एक ज्ञात चुंबकीय क्षेत्र के कारण कैथोड किरणों के विक्षेपण को मापने के द्वारा 1890 में आर्थर शूस्टर द्वारा इलेक्ट्रॉन के द्रव्यमान-से-आवेश अनुपात का अनुमान लगाया गया था। सात साल बाद जे. जे. थॉमसन ने दिखाया कि कैथोड किरणों में कणों की धाराएं होती हैं, जिन्हें इलेक्ट्रॉन कहा जाता है, और कैथोड रे ट्यूब का उपयोग करके फिर से उनके द्रव्यमान-से-चार्ज अनुपात का अधिक सटीक मापन किया।
दूसरा माप इलेक्ट्रॉन के विद्युत आवेश का था। यह 1909 में रॉबर्ट ए. मिलिकन द्वारा अपने तेल ड्रॉप प्रयोग में 1% से बेहतर सटीकता के साथ निर्धारित किया गया था। द्रव्यमान-से-चार्ज अनुपात के साथ, इलेक्ट्रॉन द्रव्यमान को उचित सटीकता के साथ निर्धारित किया गया था। इलेक्ट्रॉन के लिए पाया गया द्रव्यमान का मान शुरू में भौतिकविदों द्वारा आश्चर्यचकित किया गया था, क्योंकि यह हाइड्रोजन परमाणु के ज्ञात द्रव्यमान की तुलना में बहुत छोटा (0.1% से कम) था।
इलेक्ट्रॉन विराम द्रव्यमान की गणना Rydberg स्थिरांक R∞ और स्पेक्ट्रोस्कोपिक मापन के माध्यम से प्राप्त सूक्ष्म-संरचना स्थिरांक α से की जा सकती है। Rydberg स्थिरांक की परिभाषा का उपयोग करना:
इस प्रकार
जहाँ c प्रकाश की गति है और h प्लैंक स्थिरांक है।[3] सापेक्ष अनिश्चितता, 5×10−8 विज्ञान और प्रौद्योगिकी के लिए डेटा पर 2006 की समिति में अनुशंसित मूल्य,[4] पूरी तरह से प्लैंक स्थिरांक के मान में अनिश्चितता के कारण है। 2019 में एसआई आधार इकाइयों की पुनर्परिभाषा के साथ| 2019 में किलोग्राम की फिर से परिभाषा, अब प्लैंक स्थिरांक में परिभाषा के अनुसार कोई अनिश्चितता नहीं बची है।
इलेक्ट्रॉन सापेक्ष परमाणु द्रव्यमान को पेनिंग ट्रैप में सीधे मापा जा सकता है। यह एंटीप्रोटोनिक हीलियम परमाणुओं के स्पेक्ट्रा से भी अनुमान लगाया जा सकता है (हीलियम परमाणु जहां एक इलेक्ट्रॉन को एक एंटीप्रोटोन द्वारा प्रतिस्थापित किया गया है) या हाइड्रोजनिक आयनों 12सी5+ या 16ओ7+ में इलेक्ट्रॉन जी-कारक के माप से।
इलेक्ट्रॉन सापेक्ष परमाणु द्रव्यमान मौलिक भौतिक स्थिरांकों के CODATA सेट में एक समायोजित पैरामीटर है, जबकि किलोग्राम में इलेक्ट्रॉन बाकी द्रव्यमान की गणना प्लैंक स्थिरांक, ठीक-संरचना स्थिरांक और Rydberg स्थिरांक के मानों से की जाती है, जैसा कि ऊपर वर्णित है।[3][4]
अन्य भौतिक स्थिरांक से संबंध
इलेक्ट्रॉन द्रव्यमान का उपयोग अवोगाद्रो स्थिरांक NA की गणना के लिए किया जाता है:
इसलिए यह परमाणु द्रव्यमान स्थिर mu से भी संबंधित है:
जहां एमu दाढ़ जन स्थिरांक (एसआई में परिभाषित) और एr(ई) सीधे मापी गई मात्रा है, इलेक्ट्रॉन के सापेक्ष परमाणु द्रव्यमान।
ध्यान दें कि एमu को एr(ई) के संदर्भ में परिभाषित किया गया है, न कि इसके विपरीत, और इसलिए एr(ई) के लिए "परमाणु द्रव्यमान इकाइयों में इलेक्ट्रॉन द्रव्यमान" नाम में एक परिपत्र परिभाषा शामिल है (कम से कम व्यावहारिक माप के संदर्भ में) .
इलेक्ट्रॉन सापेक्ष परमाणु द्रव्यमान अन्य सभी सापेक्ष परमाणु द्रव्यमानों की गणना में भी प्रवेश करता है। परंपरागत रूप से, सापेक्ष परमाणु द्रव्यमान तटस्थ परमाणुओं के लिए उद्धृत किए जाते हैं, लेकिन वास्तविक माप धनात्मक आयनों पर या तो मास स्पेक्ट्रोमीटर या पेनिंग ट्रैप में किए जाते हैं। इसलिए सारणीकरण से पहले मापा मूल्यों पर इलेक्ट्रॉनों के द्रव्यमान को वापस जोड़ा जाना चाहिए। बाध्यकारी ऊर्जा ई के द्रव्यमान समकक्ष के लिए एक सुधार भी किया जाना चाहिएb. परमाणु संख्या Z के एक न्यूक्लाइड X के लिए, सभी इलेक्ट्रॉनों के पूर्ण आयनीकरण का सबसे सरल मामला लेते हुए,[3]:
जैसा कि सापेक्ष परमाणु द्रव्यमान को द्रव्यमान के अनुपात के रूप में मापा जाता है, संशोधनों को दोनों आयनों पर लागू किया जाना चाहिए: सुधारों में अनिश्चितता नगण्य है, जैसा कि हाइड्रोजन 1 और ऑक्सीजन 16 के लिए नीचे दिखाया गया है।
Physical parameter | 1H | 16O |
---|---|---|
relative atomic mass of the XZ+ ion | 1.00727646677(10) | 15.99052817445(18) |
relative atomic mass of the Z electrons | 0.00054857990943(23) | 0.0043886392754(18) |
correction for the binding energy | −0.0000000145985 | −0.0000021941559 |
relative atomic mass of the neutral atom | 1.00782503207(10) | 15.99491461957(18) |
फ़र्नहैम एट अल द्वारा इलेक्ट्रॉन सापेक्ष परमाणु द्रव्यमान के निर्धारण द्वारा सिद्धांत दिखाया जा सकता है। वाशिंगटन विश्वविद्यालय (1995) में।[5] इसमें इलेक्ट्रॉनों और द्वारा उत्सर्जित साइक्लोट्रॉन विकिरण की आवृत्तियों का माप शामिल है 12सीपेनिंग ट्रैप में 6+ आयन। दो आवृत्तियों का अनुपात दो कणों के द्रव्यमान के व्युत्क्रम अनुपात के छह गुना के बराबर होता है (कण जितना भारी होता है, साइक्लोट्रॉन विकिरण की आवृत्ति कम होती है; कण पर आवेश जितना अधिक होता है, आवृत्ति उतनी ही अधिक होती है):
के सापेक्ष परमाणु द्रव्यमान के रूप में 12सी6+ आयन लगभग 12 हैं, आवृत्तियों के अनुपात का उपयोग ए के पहले सन्निकटन की गणना के लिए किया जा सकता हैr(यह है), 5.4863037178×10−4. यह अनुमानित मान तब A के पहले सन्निकटन की गणना के लिए उपयोग किया जाता हैr(12सी6+), यह जानते हुए कि ईb(12सी)/एमuc2 (कार्बन की छह आयनीकरण ऊर्जाओं के योग से) है 1.1058674×10−6: Ar(12C6+) ≈ 11.9967087236367. इस मान का उपयोग ए के लिए एक नए सन्निकटन की गणना करने के लिए किया जाता हैr(ई), और प्रक्रिया तब तक दोहराई जाती है जब तक मान भिन्न नहीं होते (माप की सापेक्ष अनिश्चितता को देखते हुए, 2.1×10−9): यह इन परिणामों के लिए पुनरावृत्तियों के चौथे चक्र से होता है, दे रहा है Ar(e) = 5.485799111(12)×10−4 इन आंकड़ों के लिए।
संदर्भ
- ↑ "2018 CODATA Value: electron mass". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 2019-05-20.
- ↑ "2018 CODATA Value: electron mass in u". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 2020-06-21.
- ↑ 3.0 3.1 3.2 "CODATA Value: electron mass". The NIST Reference on Constants, Units and Uncertainty. May 20, 2019. Retrieved May 20, 2019.
- ↑ 4.0 4.1 The NIST reference on Constants, Units, and Uncertainty, National Institute of Standards and Technology, 10 June 2009
- ↑ Farnham, D. L.; Van Dyck Jr., R. S.; Schwinberg, P. B. (1995), "Determination of the Electron's Atomic Mass and the Proton/Electron Mass Ratio via Penning Trap Mass Spectroscopy", Phys. Rev. Lett., 75 (20): 3598–3601, Bibcode:1995PhRvL..75.3598F, doi:10.1103/PhysRevLett.75.3598, PMID 10059680