एक-पैरामीटर समूह: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Lie group homomorphism from the real numbers}}
{{Short description|Lie group homomorphism from the real numbers}}
गणित में, पैरामीटर समूह या पैरामीटर उपसमूह का अर्थ सामान्यतः सतत (टोपोलॉजी) [[समूह समरूपता]] होता है।
गणित में, पैरामीटर समूह या पैरामीटर उपसमूह का अर्थ सामान्यतः सतत '''(टोपोलॉजी)''' [[समूह समरूपता]] होता है।


:<math>\varphi : \mathbb{R} \rightarrow G</math>
:<math>\varphi : \mathbb{R} \rightarrow G</math>
[[वास्तविक रेखा]] से <math>\mathbb{R}</math> ([[एबेलियन समूह]] के रूप में) कुछ अन्य सामयिक समूह के लिए <math>G</math>. अगर <math>\varphi</math> [[इंजेक्शन]] है तो <math>\varphi(\mathbb{R})</math>, छवि, का उपसमूह होगा <math>G</math> यह आइसोमॉर्फिक है <math>\mathbb{R}</math> योजक समूह के रूप में।  
[[वास्तविक रेखा]] <math>\mathbb{R}</math> से ([[एबेलियन समूह|योगात्मक समूह]] के रूप में) कुछ अन्य सामयिक समूह <math>G</math> के लिए, यदि <math>\varphi</math> [[इंजेक्शन|अंतःक्षेपी]] है तो <math>\varphi(\mathbb{R})</math>, छवि, <math>G</math> का उपसमूह होगा  जो योजक समूह के रूप में <math>\mathbb{R}</math> के लिए आइसोमॉर्फिक है।  '''योजक समूह के रूप में।'''


1893 में [[ सोफस झूठ |सोफस लाई]] द्वारा पैरामीटर समूहों को अत्यल्प परिवर्तनों को परिभाषित करने के लिए प्रस्तुत किया गया था। ली के अनुसार, [[अतिसूक्ष्म परिवर्तन]] पैरामीटर समूह का असीम रूप से छोटा परिवर्तन है जो इसे उत्पन्न करता है।<ref>[[Sophus Lie]] (1893) [http://neo-classical-physics.info/uploads/3/0/6/5/3065888/lie-_infinite_continuous_groups_-_i.pdf Vorlesungen über Continuierliche Gruppen], English translation by D.H. Delphenich, §8, link from Neo-classical Physics</ref> यह इन असीम परिवर्तन हैं जो लाई बीजगणित उत्पन्न करते हैं जिसका उपयोग किसी भी आयाम के लाई समूह का वर्णन करने के लिए किया जाता है।
1893 में [[ सोफस झूठ |सोफस लाई]] द्वारा पैरामीटर समूहों को अत्यल्प परिवर्तनों को परिभाषित करने के लिए प्रस्तुत किया गया था। लाई के अनुसार, [[अतिसूक्ष्म परिवर्तन]] पैरामीटर समूह का असीम रूप से छोटा परिवर्तन है जो इसे उत्पन्न करता है।<ref>[[Sophus Lie]] (1893) [http://neo-classical-physics.info/uploads/3/0/6/5/3065888/lie-_infinite_continuous_groups_-_i.pdf Vorlesungen über Continuierliche Gruppen], English translation by D.H. Delphenich, §8, link from Neo-classical Physics</ref> यह इन असीम परिवर्तन हैं जो लाई बीजगणित उत्पन्न करते हैं जिसका उपयोग किसी भी आयाम के लाई समूह का वर्णन करने के लिए किया जाता है।


सेट पर एक-पैरामीटर समूह की [[क्रिया (समूह सिद्धांत)]] को [[प्रवाह (गणित)]] के रूप में जाना जाता है। कई गुना पर चिकनी वेक्टर क्षेत्र, एक बिंदु पर, स्थानीय प्रवाह को प्रेरित करता है - स्थानीय भिन्नता का पैरामीटर समूह, इंटीग्रल कर्व के साथ अंक भेज रहा है वेक्टर क्षेत्र के अलग-अलग कई गुना सामान्यीकरण। सदिश क्षेत्र के स्थानीय प्रवाह का उपयोग सदिश क्षेत्र के साथ टेन्सर क्षेत्रों के [[झूठ व्युत्पन्न]] को परिभाषित करने के लिए किया जाता है।
सेट पर '''एक-'''पैरामीटर समूह की [[क्रिया (समूह सिद्धांत)|क्रिया '''(समूह सिद्धांत)''']] को [[प्रवाह (गणित)]] के रूप में जाना जाता है। कई गुना पर चिकनी सदिश क्षेत्र, एक बिंदु पर, स्थानीय प्रवाह को प्रेरित करती है - स्थानीय भिन्नता का पैरामीटर समूह, सदिश क्षेत्र के अभिन्न वक्रों के साथ अंक भेज रहा है। सदिश क्षेत्र के स्थानीय प्रवाह का उपयोग सदिश क्षेत्र के साथ टेन्सर क्षेत्रों के [[झूठ व्युत्पन्न|लाई डेरिवेटिव]] को परिभाषित करने के लिए किया जाता है। '''सदिश क्षेत्र के स्थानीय प्रवाह का उपयोग सदिश क्षेत्र के साथ टेन्सर क्षेत्रों के  को परिभाषित करने के लिए किया जाता है।'''


== उदाहरण ==
== उदाहरण ==
इस तरह के पैरामीटर समूह लाई समूहों के सिद्धांत में बुनियादी महत्व रखते हैं, जिसके लिए संबंधित लाई बीजगणित का प्रत्येक तत्व इस तरह के समरूपता, घातांक मानचित्र (झूठ सिद्धांत) को परिभाषित करता है। मैट्रिक्स समूहों के स्थितियों में यह [[ मैट्रिक्स घातीय |मैट्रिक्स घातीय]] द्वारा दिया जाता है।
इस तरह के पैरामीटर समूह लाई समूहों के सिद्धांत में मूलभूत महत्व रखते हैं, जिसके लिए संबंधित लाई बीजगणित का प्रत्येक तत्व इस तरह के समरूपता, घातांक मानचित्र (लाई सिद्धांत) को परिभाषित करता है। आव्यूह समूहों की स्थितियों में यह [[ मैट्रिक्स घातीय |आव्यूह घातीय]] द्वारा दिया जाता है।


[[कार्यात्मक विश्लेषण]] में एक और महत्वपूर्ण स्थितियां देखा जाता है <math>G</math> [[हिल्बर्ट अंतरिक्ष]] पर [[एकात्मक संचालक]] का समूह होना। स्टोन के प्रमेय को एक-पैरामीटर एकात्मक समूहों पर देखें।
एक अन्य महत्वपूर्ण स्थिति [[कार्यात्मक विश्लेषण]] में देखा जाता है,  '''में एक और महत्वपूर्ण स्थिति'''  जिसमें <math>G</math> [[हिल्बर्ट अंतरिक्ष]] पर [[एकात्मक संचालक|एकात्मक संचालकों]] का समूह है।  '''पर  का समूह होना।''' स्टोन के प्रमेय को पैरामीटर एकात्मक समूहों पर देखें।


अपने 1957 के मोनोग्राफ लाई ग्रुप्स में, पी. एम. कोह्न पृष्ठ 58 पर निम्नलिखित प्रमेय देते हैं:
अपने 1957 के मोनोग्राफ लाई समूहों में, पी. एम. कोह्न पृष्ठ 58 पर निम्नलिखित प्रमेय देते हैं:
: कोई भी जुड़ा हुआ 1-आयामी झूठ समूह विश्लेषणात्मक रूप से वास्तविक संख्याओं के योज्य समूह के लिए समरूप है <math>\mathfrak{R}</math>, या करने के लिए <math>\mathfrak{T}</math>, वास्तविक संख्याओं का योज्य समूह <math>\mod 1</math>. विशेष रूप से, प्रत्येक 1-आयामी झूठ समूह स्थानीय रूप से आइसोमोर्फिक होता है <math>\mathbb{R}</math>.
: कोई भी जुड़ा हुआ 1-आयामी लाई समूह विश्लेषणात्मक रूप से वास्तविक संख्याओं के योगात्मक समूह <math>\mathfrak{R}</math> या <math>\mathfrak{T}</math> के लिए, वास्तविक संख्याओं का योजक समूह <math>\mod 1</math> विशेष रूप से, प्रत्येक 1-आयामी लाई समूह स्थानीय रूप से <math>\mathbb{R}</math> के लिए आइसोमॉर्फिक होता है आइसोमॉर्फिक है। ''', या करने के लिए ,  . विशेष रूप से, प्रत्येक 1-आयामी लाई समूह स्थानीय रूप से आइसोमोर्फिक होता है .'''


== भौतिकी ==
== भौतिकी ==
भौतिकी में, पैरामीटर समूह गतिशील प्रणालियों का वर्णन करते हैं।<ref>Zeidler, E. (1995) ''Applied Functional Analysis: Main Principles and Their Applications'' Springer-Verlag</ref> इसके अतिरिक्त , जब भी भौतिक नियमो की प्रणाली व्युत्पन्न [[समरूपता समूह]] के एक-पैरामीटर समूह को स्वीकार करती है, तो नोएदर के प्रमेय द्वारा [[संरक्षण कानून (भौतिकी)]] होता है।
भौतिकी में, पैरामीटर समूह गतिशील प्रणालियों का वर्णन करते हैं।<ref>Zeidler, E. (1995) ''Applied Functional Analysis: Main Principles and Their Applications'' Springer-Verlag</ref> इसके अतिरिक्त, जब भी भौतिक नियमो की प्रणाली भिन्न-भिन्न [[समरूपता समूह]] के एक-पैरामीटर समूह को स्वीकार करती है, तो नोएदर के प्रमेय द्वारा [[संरक्षण कानून (भौतिकी)|संरक्षित मात्रा]] होती है।


अंतरिक्ष-समय के अध्ययन में अंतरिक्ष-लौकिक मापों को जांचने के लिए [[ इकाई अतिपरवलय |इकाई अतिपरवलय]] का उपयोग साधारण हो गया है क्योंकि [[हरमन मिन्कोव्स्की]] ने 1908 में इसकी चर्चा की थी। सापेक्षता के सिद्धांत को मनमाने ढंग से कम कर दिया गया था, जिसमें दुनिया का निर्धारण करने के लिए यूनिट हाइपरबोला के व्यास का उपयोग किया गया था- पंक्ति। [[अतिशयोक्तिपूर्ण कोण]] के साथ अतिपरवलय के पैरामीट्रिजेशन का उपयोग करते हुए, [[विशेष सापेक्षता]] के सिद्धांत ने गति से अनुक्रमित एक-पैरामीटर समूह के साथ सापेक्ष गति की गणना प्रदान की। आपेक्षिकता सिद्धांत की गतिकी और गतिकी में गति वेग की जगह लेती है। चूँकि [[ तेज़ी |तेज़ी से]] असीमित है, जिस एक-पैरामीटर समूह पर यह खड़ा है वह गैर-कॉम्पैक्ट है। रैपिडिटी अवधारणा को ई.टी. द्वारा प्रस्तुत किया गया था। 1910 में व्हिटेकर, और अगले वर्ष [[अल्फ्रेड रॉब]] द्वारा नामित किया गया। रैपिडिटी पैरामीटर एक छंद अतिसक्रिय छंद की लंबाई के बराबर है, जो उन्नीसवीं शताब्दी की अवधारणा है। गणितीय भौतिक विज्ञानी [[जेम्स कॉकल (वकील)]], [[विलियम किंग्डन क्लिफोर्ड]] और [[अलेक्जेंडर मैकफर्लेन]] ने अपने लेखन में ऑपरेटर द्वारा कार्टेशियन विमान के समकक्ष मानचित्रण को नियोजित किया था। <math>(\cosh{a} + r\sinh{a})</math>, कहाँ <math>a</math> अतिशयोक्तिपूर्ण कोण है और <math>r^2 = +1</math>.
अंतरिक्ष-समय के अध्ययन में अंतरिक्ष-लौकिक मापों को जांचने के लिए [[ इकाई अतिपरवलय |इकाई अतिपरवलय]] का उपयोग साधारण हो गया है क्योंकि [[हरमन मिन्कोव्स्की]] ने 1908 में इसकी चर्चा की थी। सापेक्षता के सिद्धांत को इच्छानुसार ढंग से कम कर दिया गया था, जिसमें विश्व-पंक्ति का निर्धारण करने के लिए इकाई अतिपरवलय के व्यास का उपयोग किया गया था। [[अतिशयोक्तिपूर्ण कोण]] के साथ अतिपरवलय के पैरामीट्रिजेशन का उपयोग करते हुए, [[विशेष सापेक्षता]] के सिद्धांत ने गति से अनुक्रमित एक-पैरामीटर समूह के साथ सापेक्ष गति की गणना प्रदान की थी। आपेक्षिकता सिद्धांत की गतिकी और गतिकी में गति वेग की स्थान लेती है। चूँकि [[ तेज़ी |रैपिडिटी]] असीमित है, जिस एक-पैरामीटर समूह पर यह खड़ा है वह गैर-सघन है। रैपिडिटी अवधारणा को ई.टी. द्वारा प्रस्तुत किया गया था। 1910 में व्हिटेकर, और अगले वर्ष [[अल्फ्रेड रॉब]] द्वारा नामित किया गया था। रैपिडिटी पैरामीटर एक छंद अतिशयोक्तिपूर्ण छंद की लंबाई के बराबर है, जो उन्नीसवीं शताब्दी की अवधारणा है। गणितीय भौतिक विज्ञानी [[जेम्स कॉकल (वकील)]], [[विलियम किंग्डन क्लिफोर्ड]] और [[अलेक्जेंडर मैकफर्लेन]] ने अपने लेखन में ऑपरेटर <math>(\cosh{a} + r\sinh{a})</math>, जहाँ <math>a</math> अतिशयोक्तिपूर्ण कोण है और <math>r^2 = +1</math> द्वारा कार्टेशियन विमान के समकक्ष मानचित्रण को नियोजित किया था।


== जीएल में (एन, ℂ) ==
== जीएल में (n, ℂ) ==
{{see also|एक-पैरामीटर एकात्मक समूहों पर स्टोन का प्रमेय}}
{{see also|एक-पैरामीटर एकात्मक समूहों पर स्टोन का प्रमेय}}
झूठ समूहों के सिद्धांत में महत्वपूर्ण उदाहरण तब उत्पन्न होता है जब <math>G</math> होने के लिए लिया जाता है <math>\mathrm{GL}(n;\mathbb C)</math>, उलटा का समूह <math>n\times n</math> जटिल प्रविष्टियों के साथ मैट्रिक्स। उस स्थिति में, मूल परिणाम निम्न है:<ref>{{harvnb|Hall|2015}} Theorem 2.14</ref>
लाई समूहों के सिद्धांत में महत्वपूर्ण उदाहरण तब उत्पन्न होता है जब <math>G</math> होने के लिए <math>\mathrm{GL}(n;\mathbb C)</math> लिया जाता है, '''उलटा का समूह'''  जटिल प्रविष्टियों के साथ व्युत्क्रमणीय <math>n\times n</math> आव्यूहों का समूह लिया जाता है। उस स्थिति में, मूल परिणाम निम्न है:<ref>{{harvnb|Hall|2015}} Theorem 2.14</ref>
: प्रमेय: मान लीजिए <math>\varphi : \mathbb{R} \rightarrow\mathrm{GL}(n;\mathbb C)</math> एक-पैरामीटर समूह है। फिर अनूठा अस्तित्व है <math>n\times n</math> आव्यूह <math>X</math> ऐसा है कि
: प्रमेय: मान लीजिए <math>\varphi : \mathbb{R} \rightarrow\mathrm{GL}(n;\mathbb C)</math> एक-पैरामीटर समूह है। फिर वहाँ अद्वितीय <math>n\times n</math> आव्यूह <math>X</math> उपस्थित है, जैसे कि
::<math>\varphi(t)=e^{tX}</math>
::<math>\varphi(t)=e^{tX}</math>
:सभी के लिए <math>t\in\mathbb R</math>.
:<math>t\in\mathbb R</math> सभी के लिए है।
इस परिणाम से यह पता चलता है <math>\varphi</math> अवकलनीय है, भले ही यह प्रमेय की धारणा नहीं थी। गणित का सवाल <math>X</math> से पुनर्प्राप्त किया जा सकता है <math>\varphi</math> जैसा
इस परिणाम से यह पता चलता है कि <math>\varphi</math> अवकलनीय है, तथापि यह प्रमेय की धारणा नहीं थी। आव्यूह <math>X</math> से <math>\varphi</math> पुनर्प्राप्त किया जा सकता है, जैसे '''किया जा सकता है  जैसा'''
:<math>\left.\frac{d\varphi(t)}{dt}\right|_{t=0} = \left.\frac{d}{dt}\right|_{t=0}e^{tX}=\left.(Xe^{tX})\right|_{t=0} = Xe^0=X</math>.
:<math>\left.\frac{d\varphi(t)}{dt}\right|_{t=0} = \left.\frac{d}{dt}\right|_{t=0}e^{tX}=\left.(Xe^{tX})\right|_{t=0} = Xe^0=X</math>
इस परिणाम का उपयोग किया जा सकता है, उदाहरण के लिए, यह दिखाने के लिए कि मैट्रिक्स लाई समूहों के बीच कोई निरंतर समरूपता सहज है।<ref>{{harvnb|Hall|2015}} Corollary 3.50</ref>
इस परिणाम का उपयोग किया जा सकता है, उदाहरण के लिए, यह दिखाने के लिए कि आव्यूह लाई समूहों के बीच कोई निरंतर समरूपता सहज है।<ref>{{harvnb|Hall|2015}} Corollary 3.50</ref>




== टोपोलॉजी ==
== टोपोलॉजी ==
तकनीकी जटिलता यह है <math>\varphi(\mathbb{R})</math> उप-स्थान टोपोलॉजी के रूप में <math>G</math> टोपोलॉजी ले सकता है जो उससे [[बेहतर टोपोलॉजी]] है <math>\mathbb{R}</math>; यह उन स्थितियों में हो सकता है जहां <math>\varphi</math> इंजेक्शन है। स्थितियों के उदाहरण के लिए सोचें जहां <math>G</math> [[ टोरस्र्स |टोरस्र्स]] है <math>T</math>, और <math>\varphi</math> सीधी रेखा के चक्कर लगाकर बनाया गया है <math>T</math> तर्कहीन ढलान पर उस स्थिति में प्रेरित टोपोलॉजी वास्तविक रेखा का मानक नहीं हो सकता है।
तकनीकी जटिलता यह है कि <math>\varphi(\mathbb{R})</math>, <math>G</math> के उप-स्थान टोपोलॉजी के रूप में  टोपोलॉजी ले सकता है जो <math>\mathbb{R}</math> की तुलना में उससे [[बेहतर टोपोलॉजी|उत्तम]] है; यह उन स्थितियों में हो सकता है जहां <math>\varphi</math> अंतःक्षेपी है। स्थितियों के उदाहरण के लिए उस स्थिति के बारे में सोचें जहां <math>G</math> [[ टोरस्र्स |टोरस]] <math>T</math> है, और <math>\varphi</math> का निर्माण एक अपरिमेय ढलान पर <math>T</math> के चारों ओर एक सीधी रेखा को घुमावदार करके किया गया है। '''रेखा के चक्कर लगाकर बनाया गया है तर्कहीन ढलान पर उस स्थिति में प्रेरित टोपोलॉजी वास्तविक रेखा का मानक नहीं हो सकता है।'''


== यह भी देखें ==
== यह भी देखें ==

Revision as of 00:29, 17 March 2023

गणित में, पैरामीटर समूह या पैरामीटर उपसमूह का अर्थ सामान्यतः सतत (टोपोलॉजी) समूह समरूपता होता है।

वास्तविक रेखा से (योगात्मक समूह के रूप में) कुछ अन्य सामयिक समूह के लिए, यदि अंतःक्षेपी है तो , छवि, का उपसमूह होगा जो योजक समूह के रूप में के लिए आइसोमॉर्फिक है। योजक समूह के रूप में।

1893 में सोफस लाई द्वारा पैरामीटर समूहों को अत्यल्प परिवर्तनों को परिभाषित करने के लिए प्रस्तुत किया गया था। लाई के अनुसार, अतिसूक्ष्म परिवर्तन पैरामीटर समूह का असीम रूप से छोटा परिवर्तन है जो इसे उत्पन्न करता है।[1] यह इन असीम परिवर्तन हैं जो लाई बीजगणित उत्पन्न करते हैं जिसका उपयोग किसी भी आयाम के लाई समूह का वर्णन करने के लिए किया जाता है।

सेट पर एक-पैरामीटर समूह की क्रिया (समूह सिद्धांत) को प्रवाह (गणित) के रूप में जाना जाता है। कई गुना पर चिकनी सदिश क्षेत्र, एक बिंदु पर, स्थानीय प्रवाह को प्रेरित करती है - स्थानीय भिन्नता का पैरामीटर समूह, सदिश क्षेत्र के अभिन्न वक्रों के साथ अंक भेज रहा है। सदिश क्षेत्र के स्थानीय प्रवाह का उपयोग सदिश क्षेत्र के साथ टेन्सर क्षेत्रों के लाई डेरिवेटिव को परिभाषित करने के लिए किया जाता है। सदिश क्षेत्र के स्थानीय प्रवाह का उपयोग सदिश क्षेत्र के साथ टेन्सर क्षेत्रों के को परिभाषित करने के लिए किया जाता है।

उदाहरण

इस तरह के पैरामीटर समूह लाई समूहों के सिद्धांत में मूलभूत महत्व रखते हैं, जिसके लिए संबंधित लाई बीजगणित का प्रत्येक तत्व इस तरह के समरूपता, घातांक मानचित्र (लाई सिद्धांत) को परिभाषित करता है। आव्यूह समूहों की स्थितियों में यह आव्यूह घातीय द्वारा दिया जाता है।

एक अन्य महत्वपूर्ण स्थिति कार्यात्मक विश्लेषण में देखा जाता है, में एक और महत्वपूर्ण स्थिति जिसमें हिल्बर्ट अंतरिक्ष पर एकात्मक संचालकों का समूह है। पर का समूह होना। स्टोन के प्रमेय को पैरामीटर एकात्मक समूहों पर देखें।

अपने 1957 के मोनोग्राफ लाई समूहों में, पी. एम. कोह्न पृष्ठ 58 पर निम्नलिखित प्रमेय देते हैं:

कोई भी जुड़ा हुआ 1-आयामी लाई समूह विश्लेषणात्मक रूप से वास्तविक संख्याओं के योगात्मक समूह या के लिए, वास्तविक संख्याओं का योजक समूह विशेष रूप से, प्रत्येक 1-आयामी लाई समूह स्थानीय रूप से के लिए आइसोमॉर्फिक होता है आइसोमॉर्फिक है। , या करने के लिए , . विशेष रूप से, प्रत्येक 1-आयामी लाई समूह स्थानीय रूप से आइसोमोर्फिक होता है .

भौतिकी

भौतिकी में, पैरामीटर समूह गतिशील प्रणालियों का वर्णन करते हैं।[2] इसके अतिरिक्त, जब भी भौतिक नियमो की प्रणाली भिन्न-भिन्न समरूपता समूह के एक-पैरामीटर समूह को स्वीकार करती है, तो नोएदर के प्रमेय द्वारा संरक्षित मात्रा होती है।

अंतरिक्ष-समय के अध्ययन में अंतरिक्ष-लौकिक मापों को जांचने के लिए इकाई अतिपरवलय का उपयोग साधारण हो गया है क्योंकि हरमन मिन्कोव्स्की ने 1908 में इसकी चर्चा की थी। सापेक्षता के सिद्धांत को इच्छानुसार ढंग से कम कर दिया गया था, जिसमें विश्व-पंक्ति का निर्धारण करने के लिए इकाई अतिपरवलय के व्यास का उपयोग किया गया था। अतिशयोक्तिपूर्ण कोण के साथ अतिपरवलय के पैरामीट्रिजेशन का उपयोग करते हुए, विशेष सापेक्षता के सिद्धांत ने गति से अनुक्रमित एक-पैरामीटर समूह के साथ सापेक्ष गति की गणना प्रदान की थी। आपेक्षिकता सिद्धांत की गतिकी और गतिकी में गति वेग की स्थान लेती है। चूँकि रैपिडिटी असीमित है, जिस एक-पैरामीटर समूह पर यह खड़ा है वह गैर-सघन है। रैपिडिटी अवधारणा को ई.टी. द्वारा प्रस्तुत किया गया था। 1910 में व्हिटेकर, और अगले वर्ष अल्फ्रेड रॉब द्वारा नामित किया गया था। रैपिडिटी पैरामीटर एक छंद अतिशयोक्तिपूर्ण छंद की लंबाई के बराबर है, जो उन्नीसवीं शताब्दी की अवधारणा है। गणितीय भौतिक विज्ञानी जेम्स कॉकल (वकील), विलियम किंग्डन क्लिफोर्ड और अलेक्जेंडर मैकफर्लेन ने अपने लेखन में ऑपरेटर , जहाँ अतिशयोक्तिपूर्ण कोण है और द्वारा कार्टेशियन विमान के समकक्ष मानचित्रण को नियोजित किया था।

जीएल में (n, ℂ)

लाई समूहों के सिद्धांत में महत्वपूर्ण उदाहरण तब उत्पन्न होता है जब होने के लिए लिया जाता है, उलटा का समूह जटिल प्रविष्टियों के साथ व्युत्क्रमणीय आव्यूहों का समूह लिया जाता है। उस स्थिति में, मूल परिणाम निम्न है:[3]

प्रमेय: मान लीजिए एक-पैरामीटर समूह है। फिर वहाँ अद्वितीय आव्यूह उपस्थित है, जैसे कि
सभी के लिए है।

इस परिणाम से यह पता चलता है कि अवकलनीय है, तथापि यह प्रमेय की धारणा नहीं थी। आव्यूह से पुनर्प्राप्त किया जा सकता है, जैसे किया जा सकता है जैसा

इस परिणाम का उपयोग किया जा सकता है, उदाहरण के लिए, यह दिखाने के लिए कि आव्यूह लाई समूहों के बीच कोई निरंतर समरूपता सहज है।[4]


टोपोलॉजी

तकनीकी जटिलता यह है कि , के उप-स्थान टोपोलॉजी के रूप में टोपोलॉजी ले सकता है जो की तुलना में उससे उत्तम है; यह उन स्थितियों में हो सकता है जहां अंतःक्षेपी है। स्थितियों के उदाहरण के लिए उस स्थिति के बारे में सोचें जहां टोरस है, और का निर्माण एक अपरिमेय ढलान पर के चारों ओर एक सीधी रेखा को घुमावदार करके किया गया है। रेखा के चक्कर लगाकर बनाया गया है तर्कहीन ढलान पर उस स्थिति में प्रेरित टोपोलॉजी वास्तविक रेखा का मानक नहीं हो सकता है।

यह भी देखें

संदर्भ

  • Hall, Brian C. (2015), Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer, ISBN 978-3319134666.
  1. Sophus Lie (1893) Vorlesungen über Continuierliche Gruppen, English translation by D.H. Delphenich, §8, link from Neo-classical Physics
  2. Zeidler, E. (1995) Applied Functional Analysis: Main Principles and Their Applications Springer-Verlag
  3. Hall 2015 Theorem 2.14
  4. Hall 2015 Corollary 3.50