विस्थापन धारा: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 5: Line 5:
[[विद्युत]] चुंबकत्व में, '''विस्थापन धारा''' घनत्व मैक्सवेल के समीकरणों में दिखाई देने वाली मात्रा {{math|∂'''D'''/∂''t''}} है जिसे [[विद्युत विस्थापन क्षेत्र]] '''''D''''' के परिवर्तन की दर के संदर्भ में परिभाषित किया गया है। विस्थापन वर्तमान घनत्व में [[विद्युत प्रवाह]] घनत्व के समान इकाइयाँ होती हैं, और यह [[चुंबकीय क्षेत्र]] का एक स्रोत होता है जैसे वास्तविक धारा होती है। हालाँकि यह गतिमान विद्युत आवेश का विद्युत प्रवाह नहीं है, बल्कि एक समय-परिवर्तनशील [[विद्युत क्षेत्र]] है। भौतिक सामग्रियों में (निर्वात के विपरीत), परमाणुओं में बंधे आवेशों की हल्की गति से भी योगदान होता है, जिसे परावैद्युत ध्रुवीकरण कहा जाता है।
[[विद्युत]] चुंबकत्व में, '''विस्थापन धारा''' घनत्व मैक्सवेल के समीकरणों में दिखाई देने वाली मात्रा {{math|∂'''D'''/∂''t''}} है जिसे [[विद्युत विस्थापन क्षेत्र]] '''''D''''' के परिवर्तन की दर के संदर्भ में परिभाषित किया गया है। विस्थापन वर्तमान घनत्व में [[विद्युत प्रवाह]] घनत्व के समान इकाइयाँ होती हैं, और यह [[चुंबकीय क्षेत्र]] का एक स्रोत होता है जैसे वास्तविक धारा होती है। हालाँकि यह गतिमान विद्युत आवेश का विद्युत प्रवाह नहीं है, बल्कि एक समय-परिवर्तनशील [[विद्युत क्षेत्र]] है। भौतिक सामग्रियों में (निर्वात के विपरीत), परमाणुओं में बंधे आवेशों की हल्की गति से भी योगदान होता है, जिसे परावैद्युत ध्रुवीकरण कहा जाता है।


इस विचार की कल्पना [[जेम्स क्लर्क मैक्सवेल]] ने अपने 1861 के पेपर [https://books.google.com/?id=v1YEAAAAYAAJ&pg=PA14 ऑन फिजिकल लाइन्स ऑफ फोर्स, भाग III] में एक परावैद्युत माध्यम में विद्युत कणों के विस्थापन के संबंध में की थी। मैक्सवेल ने एम्पीयर के परिपथीय नियम एम्पीयर के परिपथीय नियम में विद्युत धारा शब्द में विस्थापन धारा को जोड़ा। अपने 1865 के पेपर [[विद्युत चुम्बकीय क्षेत्र का एक गतिशील सिद्धांत]] में मैक्सवेल ने एम्पीयर के सर्किटल लॉ के इस संशोधित संस्करण का इस्तेमाल इलेक्ट्रोमैग्नेटिक तरंग समीकरण को प्राप्त करने के लिए किया। बिजली, चुंबकत्व और प्रकाशिकी को एक एकीकृत सिद्धांत में एकजुट करने के आधार पर इस व्युत्पत्ति को अब आम तौर पर भौतिकी में एक ऐतिहासिक मील के पत्थर के रूप में स्वीकार किया जाता है। विस्थापन वर्तमान शब्द को अब एक महत्वपूर्ण जोड़ के रूप में देखा जाता है जिसने मैक्सवेल के समीकरणों को पूरा किया और कई घटनाओं, विशेष रूप से [[विद्युत चुम्बकीय तरंग]]ों के अस्तित्व की व्याख्या करने के लिए आवश्यक है।
इस विचार की कल्पना [[जेम्स क्लर्क मैक्सवेल]] ने अपने 1861 के पेपर [https://books.google.com/?id=v1YEAAAAYAAJ&pg=PA14 ऑन फिजिकल लाइन्स ऑफ फोर्स, भाग III] में एक परावैद्युत माध्यम में विद्युत कणों के विस्थापन के संबंध में की थी। मैक्सवेल ने एम्पीयर के परिपथीय नियम एम्पीयर के परिपथीय नियम में विद्युत धारा शब्द में विस्थापन धारा को जोड़ा। अपने 1865 के पेपर [[विद्युत चुम्बकीय क्षेत्र का एक गतिशील सिद्धांत]] में मैक्सवेल ने एम्पीयर के सर्किटल लॉ के इस संशोधित संस्करण का इस्तेमाल विद्युत चुम्बकीय तरंग समीकरण को प्राप्त करने के लिए किया। बिजली, चुंबकत्व और प्रकाशिकी को एक एकीकृत सिद्धांत में एकजुट करने के आधार पर इस व्युत्पत्ति को अब आम तौर पर भौतिकी में एक ऐतिहासिक मील के पत्थर के रूप में स्वीकार किया जाता है। विस्थापन वर्तमान शब्द को अब एक महत्वपूर्ण जोड़ के रूप में देखा जाता है जिसने मैक्सवेल के समीकरणों को पूरा किया और कई घटनाओं, विशेष रूप से [[विद्युत चुम्बकीय तरंग|विद्युत चुम्बकीय तरंगों]] के अस्तित्व की व्याख्या करने के लिए आवश्यक है।


== स्पष्टीकरण ==
== स्पष्टीकरण ==


विद्युत विस्थापन क्षेत्र को इस प्रकार परिभाषित किया गया है:
विद्युत विस्थापन क्षेत्र को इस प्रकार परिभाषित किया गया है:<math display=block> \mathbf{D} = \varepsilon_0  \mathbf{E} +  \mathbf{P}\ ,</math>कहाँ:
 
<math display=block> \mathbf{D} = \varepsilon_0  \mathbf{E} +  \mathbf{P}\ ,</math>
कहाँ:
* {{math|''ε''<sub>0</sub>}} मुक्त स्थान की पारगम्यता है;
* {{math|''ε''<sub>0</sub>}} मुक्त स्थान की पारगम्यता है;
* {{math|'''E'''}} [[विद्युत क्षेत्र की तीव्रता]] है; और
* {{math|'''E'''}} [[विद्युत क्षेत्र की तीव्रता]] है; और
* {{math|'''P'''}} माध्यम का [[ध्रुवीकरण (इलेक्ट्रोस्टैटिक्स)]] है।
* {{math|'''P'''}} माध्यम का [[ध्रुवीकरण (इलेक्ट्रोस्टैटिक्स)|ध्रुवीकरण ( स्थिरवैद्युतिकी)]] है।


समय के संबंध में इस समीकरण को अलग करना विस्थापन वर्तमान घनत्व को परिभाषित करता है, इसलिए एक ढांकता हुआ में दो घटक होते हैं:<ref name=Jackson>{{cite book |title=शास्त्रीय इलेक्ट्रोडायनामिक्स|url=https://archive.org/details/classicalelectro00jack_449 |url-access=limited |author=John D Jackson |edition=3rd |publisher=Wiley |year=1999 |page=[https://archive.org/details/classicalelectro00jack_449/page/n237 238] |isbn=978-0-471-30932-1}}</ref>(लेख [[वर्तमान घनत्व]] का विस्थापन वर्तमान अनुभाग भी देखें)
समय के संबंध में इस समीकरण को अलग करना विस्थापन वर्तमान घनत्व को परिभाषित करता है इसलिए एक परावैद्युत में दो घटक होते हैं: <ref name=Jackson>{{cite book |title=शास्त्रीय इलेक्ट्रोडायनामिक्स|url=https://archive.org/details/classicalelectro00jack_449 |url-access=limited |author=John D Jackson |edition=3rd |publisher=Wiley |year=1999 |page=[https://archive.org/details/classicalelectro00jack_449/page/n237 238] |isbn=978-0-471-30932-1}}</ref>([[वर्तमान घनत्व|"वर्तमान घनत्व"]] का विस्थापन वर्तमान अनुभाग भी देखें)


<math display=block>\mathbf{J}_\mathrm{D} = \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} + \frac{\partial  \mathbf{P}}{\partial t}\,.</math>
<math display=block>\mathbf{J}_\mathrm{D} = \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} + \frac{\partial  \mathbf{P}}{\partial t}\,.</math>
दायीं ओर का पहला पद भौतिक मीडिया और मुक्त स्थान में मौजूद है। यह जरूरी नहीं है कि आवेश के किसी वास्तविक संचलन से आया हो, लेकिन इसमें एक संबंधित चुंबकीय क्षेत्र होता है, ठीक वैसे ही जैसे आवेश की गति के कारण करंट होता है। कुछ लेखक नाम विस्थापन धारा को पहले पद के लिए ही लागू करते हैं।<ref name=Griffiths>For example, see {{cite book |author=David J Griffiths |page=[https://archive.org/details/introductiontoel00grif_0/page/323 323] |title=Introduction to Electrodynamics |edition=3rd |isbn=978-0-13-805326-0 |publisher=Pearson/Addison Wesley |year=1999 |url-access=registration |url=https://archive.org/details/introductiontoel00grif_0/page/323 }} and {{cite book |author=Tai L Chow |title=Introduction to Electromagnetic Theory |page=204 |publisher=Jones & Bartlett |year=2006 |isbn=978-0-7637-3827-3 |url=https://books.google.com/books?id=dpnpMhw1zo8C&pg=PA204}}</ref>
दायीं ओर का पहला पद भौतिक मीडिया और मुक्त स्थान में मौजूद है। यह आवश्यक नहीं है कि आवेश के किसी वास्तविक संचलन से आया हो, लेकिन इसका एक संबद्ध चुंबकीय क्षेत्र होता है, ठीक वैसे ही जैसे आवेश की गति के कारण धारा होती है। कुछ लेखक नाम विस्थापन धारा को पहले पद के लिए ही लागू करते हैं।<ref name=Griffiths>For example, see {{cite book |author=David J Griffiths |page=[https://archive.org/details/introductiontoel00grif_0/page/323 323] |title=Introduction to Electrodynamics |edition=3rd |isbn=978-0-13-805326-0 |publisher=Pearson/Addison Wesley |year=1999 |url-access=registration |url=https://archive.org/details/introductiontoel00grif_0/page/323 }} and {{cite book |author=Tai L Chow |title=Introduction to Electromagnetic Theory |page=204 |publisher=Jones & Bartlett |year=2006 |isbn=978-0-7637-3827-3 |url=https://books.google.com/books?id=dpnpMhw1zo8C&pg=PA204}}</ref> दाहिनी ओर का दूसरा पद, जिसे ध्रुवीकरण धारा घनत्व कहा जाता है, परावैद्युतिकी पदार्थ के अलग-अलग अणुओं के [[विद्युत ध्रुवीकरण]] में परिवर्तन से आता है। ध्रुवीकरण का परिणाम तब होता है, जब एक लागू विद्युत क्षेत्र के प्रभाव में, अणुओं में आवेश सटीक रद्दीकरण की स्थिति से चले जाते हैं। अणुओं में धनात्मक और ऋणात्मक आवेश अलग हो जाते हैं, जिससे ध्रुवीकरण '''P''' की स्थिति में वृद्धि होती है। ध्रुवीकरण की एक बदलती स्थिति आवेश की गति से मेल खाती है और इसलिए यह एक धारा के समतुल्य है, इसलिए ध्रुवीकरण धारा शब्द है। इस प्रकार,
दाहिनी ओर का दूसरा पद, जिसे ध्रुवीकरण धारा घनत्व कहा जाता है, ढांकता हुआ पदार्थ के अलग-अलग अणुओं के [[विद्युत ध्रुवीकरण]] में परिवर्तन से आता है। ध्रुवीकरण का परिणाम तब होता है, जब एक लागू विद्युत क्षेत्र के प्रभाव में, अणुओं में आवेश सटीक रद्दीकरण की स्थिति से चले जाते हैं। अणुओं में धनात्मक और ऋणात्मक आवेश अलग हो जाते हैं, जिससे ध्रुवीकरण की स्थिति में वृद्धि होती है {{math|'''P'''}}. ध्रुवीकरण की एक बदलती स्थिति आवेश की गति से मेल खाती है और इसलिए यह एक धारा के समतुल्य है, इसलिए ध्रुवीकरण धारा शब्द। इस प्रकार,


<math display="block">I_\mathrm{D} =\iint_S\mathbf{J}_\mathrm{D}\cdot\operatorname{d}\!\mathbf{S} = \iint_S\frac{\partial \mathbf{D}}{\partial t} \cdot \operatorname{d}\!\mathbf{S}=\frac{\partial}{\partial t}\iint_S \mathbf{D} \cdot \operatorname{d}\!\mathbf{S}=\frac{\partial \Phi_\mathrm{D}}{\partial t}\,.</math>
<math display="block">I_\mathrm{D} =\iint_S\mathbf{J}_\mathrm{D}\cdot\operatorname{d}\!\mathbf{S} = \iint_S\frac{\partial \mathbf{D}}{\partial t} \cdot \operatorname{d}\!\mathbf{S}=\frac{\partial}{\partial t}\iint_S \mathbf{D} \cdot \operatorname{d}\!\mathbf{S}=\frac{\partial \Phi_\mathrm{D}}{\partial t}\,.</math>
यह ध्रुवीकरण विस्थापन धारा है क्योंकि यह मूल रूप से मैक्सवेल द्वारा कल्पना की गई थी। मैक्सवेल ने निर्वात को भौतिक माध्यम मानकर कोई विशेष उपचार नहीं किया। मैक्सवेल के लिए, का प्रभाव {{math|'''P'''}} केवल [[सापेक्ष पारगम्यता]] को बदलने के लिए था {{math|''ε''<sub>r</sub>}} संबंध में {{math|1= '''D''' = ''ε''<sub>0</sub>''ε''<sub>r</sub> '''E'''}}.
यह ध्रुवीकरण विस्थापन धारा है क्योंकि यह मूल रूप से मैक्सवेल द्वारा कल्पना की गई थी। मैक्सवेल ने निर्वात को भौतिक माध्यम मानकर कोई विशेष उपचार नहीं किया। मैक्सवेल के लिए, {{math|'''P'''}} का प्रभाव संबंध {{math|1= '''D''' = ''ε''<sub>0</sub>''ε''<sub>r</sub> '''E'''}} में [[सापेक्ष पारगम्यता]] {{math|''ε''<sub>r</sub>}} को बदलने के लिए था।


विस्थापन धारा के आधुनिक औचित्य को नीचे समझाया गया है।
विस्थापन धारा के आधुनिक औचित्य को नीचे समझाया गया है।


=== समदैशिक ढांकता हुआ मामला ===
=== समदैशिक परावैद्युतिकी हुआ मामला ===
एक बहुत ही सरल ढांकता हुआ पदार्थ के मामले में [[संवैधानिक संबंध]] रखता है:
एक बहुत ही सरल परावैद्युतिकी हुआ पदार्थ के मामले में [[संवैधानिक संबंध]] रखता है:


<math display=block> \mathbf{D} = \varepsilon \, \mathbf{E} ~ , </math>
<math display=block> \mathbf{D} = \varepsilon \, \mathbf{E} ~ , </math>
जहां अनुमति है {{nowrap|<math>\varepsilon = \varepsilon_0 \,  \varepsilon_\mathrm{r}</math>}} का उत्पाद है:
जहां अनुमति है {{nowrap|<math>\varepsilon = \varepsilon_0 \,  \varepsilon_\mathrm{r}</math>}} का उत्पाद है:
* {{math|''ε''<sub>0</sub>}}, मुक्त स्थान की पारगम्यता, या [[विद्युत स्थिरांक]]; और
* {{math|''ε''<sub>0</sub>}}, मुक्त स्थान की पारगम्यता, या [[विद्युत स्थिरांक]]; और
* {{math|''ε''<sub>r</sub>}}, ढांकता हुआ की सापेक्ष पारगम्यता।
* {{math|''ε''<sub>r</sub>}}, परावैद्युतिकी हुआ की सापेक्ष पारगम्यता।


उपरोक्त समीकरण में, का उपयोग  {{mvar|ε}}  के लिए जिम्मेदार
उपरोक्त समीकरण में, का उपयोग  {{mvar|ε}}  के लिए जिम्मेदार
ढांकता हुआ सामग्री का ध्रुवीकरण (यदि कोई हो)।
परावैद्युतिकी हुआ सामग्री का ध्रुवीकरण (यदि कोई हो)।


विद्युत प्रवाह के संदर्भ में विस्थापन धारा का स्केलर (भौतिकी) मान भी व्यक्त किया जा सकता है:
विद्युत प्रवाह के संदर्भ में विस्थापन धारा का स्केलर (भौतिकी) मान भी व्यक्त किया जा सकता है:
Line 44: Line 40:
अदिश (भौतिकी) के संदर्भ में रूप  {{mvar|ε}} केवल रेखीय [[समदैशिक]] सामग्री के लिए सही हैं। रैखिक गैर-आइसोट्रोपिक सामग्री के लिए, {{mvar|ε}} एक [[मैट्रिक्स (गणित)]] बन जाता है; और भी आम तौर पर,  {{mvar|ε}} को [[ टेन्सर ]] द्वारा प्रतिस्थापित किया जा सकता है, जो स्वयं विद्युत क्षेत्र पर निर्भर हो सकता है, या आवृत्ति निर्भरता प्रदर्शित कर सकता है (इसलिए फैलाव (ऑप्टिक्स))।
अदिश (भौतिकी) के संदर्भ में रूप  {{mvar|ε}} केवल रेखीय [[समदैशिक]] सामग्री के लिए सही हैं। रैखिक गैर-आइसोट्रोपिक सामग्री के लिए, {{mvar|ε}} एक [[मैट्रिक्स (गणित)]] बन जाता है; और भी आम तौर पर,  {{mvar|ε}} को [[ टेन्सर ]] द्वारा प्रतिस्थापित किया जा सकता है, जो स्वयं विद्युत क्षेत्र पर निर्भर हो सकता है, या आवृत्ति निर्भरता प्रदर्शित कर सकता है (इसलिए फैलाव (ऑप्टिक्स))।


एक रैखिक आइसोट्रोपिक ढांकता हुआ के लिए, ध्रुवीकरण {{math|'''P'''}} द्वारा दिया गया है:
एक रैखिक आइसोट्रोपिक परावैद्युतिकी हुआ के लिए, ध्रुवीकरण {{math|'''P'''}} द्वारा दिया गया है:


<math display=block>\mathbf{P} = \varepsilon_0 \chi_\mathrm{e}  \, \mathbf{E} = \varepsilon_0 (\varepsilon_\mathrm{r} - 1) \, \mathbf{E} ~,</math>
<math display=block>\mathbf{P} = \varepsilon_0 \chi_\mathrm{e}  \, \mathbf{E} = \varepsilon_0 (\varepsilon_\mathrm{r} - 1) \, \mathbf{E} ~,</math>
कहाँ  {{math|''χ''<sub>e</sub>}} विद्युत क्षेत्रों के लिए ढांकता हुआ की विद्युत संवेदनशीलता के रूप में जाना जाता है। ध्यान दें कि
कहाँ  {{math|''χ''<sub>e</sub>}} विद्युत क्षेत्रों के लिए परावैद्युतिकी हुआ की विद्युत संवेदनशीलता के रूप में जाना जाता है। ध्यान दें कि


<math display=block>\varepsilon = \varepsilon_\mathrm{r} \, \varepsilon_0 = \left( 1 + \chi_\mathrm{e} \right) \, \varepsilon_0 ~. </math>
<math display=block>\varepsilon = \varepsilon_\mathrm{r} \, \varepsilon_0 = \left( 1 + \chi_\mathrm{e} \right) \, \varepsilon_0 ~. </math>
Line 100: Line 96:
जो वर्तमान की धारणा को मात्र आवेश के परिवहन से आगे बढ़ाता है।
जो वर्तमान की धारणा को मात्र आवेश के परिवहन से आगे बढ़ाता है।


अगला, यह विस्थापन धारा संधारित्र की चार्जिंग से संबंधित है। बाईं प्लेट के चारों ओर दिखाई गई काल्पनिक बेलनाकार सतह में धारा पर विचार करें। एक वर्तमान, कहते हैं {{mvar|I}}, बाईं सतह से बाहर की ओर जाता है {{mvar|L}} सिलेंडर का, लेकिन कोई चालन धारा (वास्तविक आवेशों का कोई परिवहन नहीं) सही सतह को पार करती है {{mvar|R}}. ध्यान दें कि विद्युत क्षेत्र {{math|'''E'''}} संधारित्र आवेशों के रूप में प्लेटों के बीच बढ़ता है। यही है, गॉस के कानून द्वारा वर्णित तरीके से, प्लेटों के बीच कोई ढांकता हुआ नहीं मानते हुए:
अगला, यह विस्थापन धारा संधारित्र की चार्जिंग से संबंधित है। बाईं प्लेट के चारों ओर दिखाई गई काल्पनिक बेलनाकार सतह में धारा पर विचार करें। एक वर्तमान, कहते हैं {{mvar|I}}, बाईं सतह से बाहर की ओर जाता है {{mvar|L}} सिलेंडर का, लेकिन कोई चालन धारा (वास्तविक आवेशों का कोई परिवहन नहीं) सही सतह को पार करती है {{mvar|R}}. ध्यान दें कि विद्युत क्षेत्र {{math|'''E'''}} संधारित्र आवेशों के रूप में प्लेटों के बीच बढ़ता है। यही है, गॉस के कानून द्वारा वर्णित तरीके से, प्लेटों के बीच कोई परावैद्युतिकी हुआ नहीं मानते हुए:


<math display=block>Q(t) = \varepsilon_0  \oint_S \mathbf{E}(t) \cdot \operatorname{d}\!\mathbf{S}\, ,</math>
<math display=block>Q(t) = \varepsilon_0  \oint_S \mathbf{E}(t) \cdot \operatorname{d}\!\mathbf{S}\, ,</math>
Line 228: Line 224:
{{Blockquote|I conceived the rotating matter to be the substance of certain cells, divided from each other by cell-walls composed of particles which are very small compared with the cells, and that it is by the motions of these particles, and their tangential action on the substance in the cells, that the rotation is communicated from one cell to another.}}
{{Blockquote|I conceived the rotating matter to be the substance of certain cells, divided from each other by cell-walls composed of particles which are very small compared with the cells, and that it is by the motions of these particles, and their tangential action on the substance in the cells, that the rotation is communicated from one cell to another.}}


स्पष्ट रूप से मैक्सवेल चुंबकीयकरण पर गाड़ी चला रहा था, हालांकि वही परिचय स्पष्ट रूप से ढांकता हुआ ध्रुवीकरण के बारे में बात करता है।
स्पष्ट रूप से मैक्सवेल चुंबकीयकरण पर गाड़ी चला रहा था, हालांकि वही परिचय स्पष्ट रूप से परावैद्युतिकी हुआ ध्रुवीकरण के बारे में बात करता है।


ध्वनि की गति के लिए न्यूटन के समीकरण (बल की रेखाएँ, भाग III, समीकरण (132)) का उपयोग करते हुए मैक्सवेल ने निष्कर्ष निकाला कि प्रकाश में उसी माध्यम में अनुप्रस्थ तरंगें होती हैं जो विद्युत और चुंबकीय घटनाओं का कारण है।
ध्वनि की गति के लिए न्यूटन के समीकरण (बल की रेखाएँ, भाग III, समीकरण (132)) का उपयोग करते हुए मैक्सवेल ने निष्कर्ष निकाला कि प्रकाश में उसी माध्यम में अनुप्रस्थ तरंगें होती हैं जो विद्युत और चुंबकीय घटनाओं का कारण है।
Line 245: Line 241:


<math display=block>J = \frac{d}{dt} \frac {1}{4 \pi \mathrm E^2} E = \frac{d}{dt} \varepsilon_r\varepsilon_0 E = \frac{d}{dt} D\,.</math>
<math display=block>J = \frac{d}{dt} \frac {1}{4 \pi \mathrm E^2} E = \frac{d}{dt} \varepsilon_r\varepsilon_0 E = \frac{d}{dt} D\,.</math>
जब उनके 1865 के पेपर ए डायनेमिकल थ्योरी ऑफ द इलेक्ट्रोमैग्नेटिक फील्ड में विस्थापन करंट से इलेक्ट्रोमैग्नेटिक वेव इक्वेशन निकालने की बात आई, तो उन्होंने गॉस टर्म को खत्म करके और गॉस टर्म को खत्म करके और डाइइलेक्ट्रिक विस्थापन से जुड़े नॉन-जीरो डायवर्जेंस की समस्या को हल किया। सोलेनोइडल चुंबकीय क्षेत्र वेक्टर के लिए विशेष रूप से तरंग समीकरण।
जब उनके 1865 के पेपर ए डायनेमिकल थ्योरी ऑफ द विद्युत चुम्बकीय फील्ड में विस्थापन करंट से विद्युत चुम्बकीय वेव इक्वेशन निकालने की बात आई, तो उन्होंने गॉस टर्म को खत्म करके और गॉस टर्म को खत्म करके और डाइइलेक्ट्रिक विस्थापन से जुड़े नॉन-जीरो डायवर्जेंस की समस्या को हल किया। सोलेनोइडल चुंबकीय क्षेत्र वेक्टर के लिए विशेष रूप से तरंग समीकरण।


ध्रुवीकरण पर मैक्सवेल के जोर ने इलेक्ट्रिक कैपेसिटर सर्किट की ओर ध्यान आकर्षित किया, और आम धारणा को जन्म दिया कि मैक्सवेल ने विस्थापन करंट की कल्पना की ताकि इलेक्ट्रिक कैपेसिटर सर्किट में चार्ज के संरक्षण को बनाए रखा जा सके। मैक्सवेल की सोच के बारे में कई तरह की बहस योग्य धारणाएँ हैं, जिसमें क्षेत्र समीकरणों की समरूपता को पूर्ण करने की उनकी कथित इच्छा से लेकर निरंतरता समीकरण के साथ अनुकूलता प्राप्त करने की इच्छा शामिल है।<ref name=Nahin>{{cite book |title=Oliver Heaviside: The Life, Work, and Times of an Electrical Genius of the Victorian Age |url=https://books.google.com/books?id=e9wEntQmA0IC&pg=PA109|page=109 |author=Paul J. Nahin|author-link=Paul J. Nahin |isbn=978-0-8018-6909-9 |year=2002 |publisher=Johns Hopkins University Press }}</ref><ref name=Stepin>{{cite book |title=सैद्धांतिक ज्ञान|author=Vyacheslav Stepin |url=https://books.google.com/books?id=4LEns8rzBOEC&pg=PA202|page= 202|isbn=978-1-4020-3045-1 |year=2002 |publisher=Springer}}</ref>
ध्रुवीकरण पर मैक्सवेल के जोर ने इलेक्ट्रिक कैपेसिटर सर्किट की ओर ध्यान आकर्षित किया, और आम धारणा को जन्म दिया कि मैक्सवेल ने विस्थापन करंट की कल्पना की ताकि इलेक्ट्रिक कैपेसिटर सर्किट में चार्ज के संरक्षण को बनाए रखा जा सके। मैक्सवेल की सोच के बारे में कई तरह की बहस योग्य धारणाएँ हैं, जिसमें क्षेत्र समीकरणों की समरूपता को पूर्ण करने की उनकी कथित इच्छा से लेकर निरंतरता समीकरण के साथ अनुकूलता प्राप्त करने की इच्छा शामिल है।<ref name=Nahin>{{cite book |title=Oliver Heaviside: The Life, Work, and Times of an Electrical Genius of the Victorian Age |url=https://books.google.com/books?id=e9wEntQmA0IC&pg=PA109|page=109 |author=Paul J. Nahin|author-link=Paul J. Nahin |isbn=978-0-8018-6909-9 |year=2002 |publisher=Johns Hopkins University Press }}</ref><ref name=Stepin>{{cite book |title=सैद्धांतिक ज्ञान|author=Vyacheslav Stepin |url=https://books.google.com/books?id=4LEns8rzBOEC&pg=PA202|page= 202|isbn=978-1-4020-3045-1 |year=2002 |publisher=Springer}}</ref>
Line 262: Line 258:
*[https://web.archive.org/web/20101215085100/http://blazelabs.com/On%20Faraday%27s%20Lines%20of%20Force.pdf फैराडे की बल की रेखाओं पर] मैक्सवेल का 1855 का पेपर
*[https://web.archive.org/web/20101215085100/http://blazelabs.com/On%20Faraday%27s%20Lines%20of%20Force.pdf फैराडे की बल की रेखाओं पर] मैक्सवेल का 1855 का पेपर
*मीडिया: बल की भौतिक रेखाओं पर.pdf मैक्सवेल का 1861 का पेपर
*मीडिया: बल की भौतिक रेखाओं पर.pdf मैक्सवेल का 1861 का पेपर
*मीडिया: इलेक्ट्रोमैग्नेटिक फील्ड का एक गतिशील सिद्धांत। पीडीएफ मैक्सवेल का 1864 का पेपर
*मीडिया: विद्युत चुम्बकीय फील्ड का एक गतिशील सिद्धांत। पीडीएफ मैक्सवेल का 1864 का पेपर


==अग्रिम पठन==
==अग्रिम पठन==

Revision as of 23:40, 19 March 2023

विद्युत चुंबकत्व में, विस्थापन धारा घनत्व मैक्सवेल के समीकरणों में दिखाई देने वाली मात्रा D/∂t है जिसे विद्युत विस्थापन क्षेत्र D के परिवर्तन की दर के संदर्भ में परिभाषित किया गया है। विस्थापन वर्तमान घनत्व में विद्युत प्रवाह घनत्व के समान इकाइयाँ होती हैं, और यह चुंबकीय क्षेत्र का एक स्रोत होता है जैसे वास्तविक धारा होती है। हालाँकि यह गतिमान विद्युत आवेश का विद्युत प्रवाह नहीं है, बल्कि एक समय-परिवर्तनशील विद्युत क्षेत्र है। भौतिक सामग्रियों में (निर्वात के विपरीत), परमाणुओं में बंधे आवेशों की हल्की गति से भी योगदान होता है, जिसे परावैद्युत ध्रुवीकरण कहा जाता है।

इस विचार की कल्पना जेम्स क्लर्क मैक्सवेल ने अपने 1861 के पेपर ऑन फिजिकल लाइन्स ऑफ फोर्स, भाग III में एक परावैद्युत माध्यम में विद्युत कणों के विस्थापन के संबंध में की थी। मैक्सवेल ने एम्पीयर के परिपथीय नियम एम्पीयर के परिपथीय नियम में विद्युत धारा शब्द में विस्थापन धारा को जोड़ा। अपने 1865 के पेपर विद्युत चुम्बकीय क्षेत्र का एक गतिशील सिद्धांत में मैक्सवेल ने एम्पीयर के सर्किटल लॉ के इस संशोधित संस्करण का इस्तेमाल विद्युत चुम्बकीय तरंग समीकरण को प्राप्त करने के लिए किया। बिजली, चुंबकत्व और प्रकाशिकी को एक एकीकृत सिद्धांत में एकजुट करने के आधार पर इस व्युत्पत्ति को अब आम तौर पर भौतिकी में एक ऐतिहासिक मील के पत्थर के रूप में स्वीकार किया जाता है। विस्थापन वर्तमान शब्द को अब एक महत्वपूर्ण जोड़ के रूप में देखा जाता है जिसने मैक्सवेल के समीकरणों को पूरा किया और कई घटनाओं, विशेष रूप से विद्युत चुम्बकीय तरंगों के अस्तित्व की व्याख्या करने के लिए आवश्यक है।

स्पष्टीकरण

विद्युत विस्थापन क्षेत्र को इस प्रकार परिभाषित किया गया है:

कहाँ:

समय के संबंध में इस समीकरण को अलग करना विस्थापन वर्तमान घनत्व को परिभाषित करता है इसलिए एक परावैद्युत में दो घटक होते हैं: [1]("वर्तमान घनत्व" का विस्थापन वर्तमान अनुभाग भी देखें)

दायीं ओर का पहला पद भौतिक मीडिया और मुक्त स्थान में मौजूद है। यह आवश्यक नहीं है कि आवेश के किसी वास्तविक संचलन से आया हो, लेकिन इसका एक संबद्ध चुंबकीय क्षेत्र होता है, ठीक वैसे ही जैसे आवेश की गति के कारण धारा होती है। कुछ लेखक नाम विस्थापन धारा को पहले पद के लिए ही लागू करते हैं।[2] दाहिनी ओर का दूसरा पद, जिसे ध्रुवीकरण धारा घनत्व कहा जाता है, परावैद्युतिकी पदार्थ के अलग-अलग अणुओं के विद्युत ध्रुवीकरण में परिवर्तन से आता है। ध्रुवीकरण का परिणाम तब होता है, जब एक लागू विद्युत क्षेत्र के प्रभाव में, अणुओं में आवेश सटीक रद्दीकरण की स्थिति से चले जाते हैं। अणुओं में धनात्मक और ऋणात्मक आवेश अलग हो जाते हैं, जिससे ध्रुवीकरण P की स्थिति में वृद्धि होती है। ध्रुवीकरण की एक बदलती स्थिति आवेश की गति से मेल खाती है और इसलिए यह एक धारा के समतुल्य है, इसलिए ध्रुवीकरण धारा शब्द है। इस प्रकार,

यह ध्रुवीकरण विस्थापन धारा है क्योंकि यह मूल रूप से मैक्सवेल द्वारा कल्पना की गई थी। मैक्सवेल ने निर्वात को भौतिक माध्यम मानकर कोई विशेष उपचार नहीं किया। मैक्सवेल के लिए, P का प्रभाव संबंध D = ε0εr E में सापेक्ष पारगम्यता εr को बदलने के लिए था।

विस्थापन धारा के आधुनिक औचित्य को नीचे समझाया गया है।

समदैशिक परावैद्युतिकी हुआ मामला

एक बहुत ही सरल परावैद्युतिकी हुआ पदार्थ के मामले में संवैधानिक संबंध रखता है:

जहां अनुमति है का उत्पाद है:

  • ε0, मुक्त स्थान की पारगम्यता, या विद्युत स्थिरांक; और
  • εr, परावैद्युतिकी हुआ की सापेक्ष पारगम्यता।

उपरोक्त समीकरण में, का उपयोग ε के लिए जिम्मेदार परावैद्युतिकी हुआ सामग्री का ध्रुवीकरण (यदि कोई हो)।

विद्युत प्रवाह के संदर्भ में विस्थापन धारा का स्केलर (भौतिकी) मान भी व्यक्त किया जा सकता है:

अदिश (भौतिकी) के संदर्भ में रूप ε केवल रेखीय समदैशिक सामग्री के लिए सही हैं। रैखिक गैर-आइसोट्रोपिक सामग्री के लिए, ε एक मैट्रिक्स (गणित) बन जाता है; और भी आम तौर पर, ε को टेन्सर द्वारा प्रतिस्थापित किया जा सकता है, जो स्वयं विद्युत क्षेत्र पर निर्भर हो सकता है, या आवृत्ति निर्भरता प्रदर्शित कर सकता है (इसलिए फैलाव (ऑप्टिक्स))।

एक रैखिक आइसोट्रोपिक परावैद्युतिकी हुआ के लिए, ध्रुवीकरण P द्वारा दिया गया है:

कहाँ χe विद्युत क्षेत्रों के लिए परावैद्युतिकी हुआ की विद्युत संवेदनशीलता के रूप में जाना जाता है। ध्यान दें कि


आवश्यकता

विस्थापन धारा के कुछ निहितार्थ अनुसरण करते हैं, जो प्रायोगिक अवलोकन से सहमत हैं, और विद्युत चुंबकत्व के सिद्धांत के लिए तार्किक स्थिरता की आवश्यकताओं के साथ हैं।

एम्पीयर के परिपथीय नियम का सामान्यीकरण

संधारित्र में करंट

प्लेटों के बीच कोई माध्यम नहीं होने वाले कैपेसिटर के संबंध में विस्थापन धारा की आवश्यकता को दर्शाने वाला एक उदाहरण उत्पन्न होता है। चित्र में चार्जिंग कैपेसिटर पर विचार करें। कैपेसिटर एक सर्किट में होता है जो बायीं प्लेट और दायीं प्लेट पर समान और विपरीत चार्ज का कारण बनता है, कैपेसिटर को चार्ज करता है और इसकी प्लेटों के बीच विद्युत क्षेत्र को बढ़ाता है। इसकी प्लेटों के बीच निर्वात के माध्यम से कोई वास्तविक आवेश नहीं ले जाया जाता है। बहरहाल, प्लेटों के बीच एक चुंबकीय क्षेत्र मौजूद है जैसे कि वहां भी एक धारा मौजूद थी। एक व्याख्या यह है कि एक विस्थापन धारा ID निर्वात में प्रवाहित होता है, और यह धारा एम्पीयर के नियम के अनुसार प्लेटों के बीच के क्षेत्र में चुंबकीय क्षेत्र उत्पन्न करती है:[3][4]

बाएं हाथ की प्लेट के चारों ओर एक काल्पनिक बेलनाकार सतह वाला एक विद्युत आवेशित संधारित्र। दाहिने हाथ की सतह R प्लेटों और बाईं ओर की सतह के बीच की जगह में स्थित है L बाईं प्लेट के बाईं ओर स्थित है। कोई चालन धारा सिलेंडर की सतह में प्रवेश नहीं करती है R, जबकि वर्तमान I सतह से निकल जाता है L. एम्पीयर के नियम की संगति के लिए विस्थापन धारा की आवश्यकता होती है ID = I सतह पर बहने के लिए R.

कहाँ

  • किसी बंद वक्र के चारों ओर बंद रेखा समाकल है C;
  • टेस्ला (यूनिट) में मापा गया चुंबकीय क्षेत्र है;
  • वेक्टर डॉट उत्पाद है;
  • वक्र के साथ एक अतिसूक्ष्म रेखा तत्व है C, यानी एक वेक्टर जिसकी लंबाई के तत्व के बराबर परिमाण है C, और वक्र को स्पर्शरेखा द्वारा दी गई दिशा C;
  • चुंबकीय स्थिरांक है, जिसे मुक्त स्थान की पारगम्यता भी कहा जाता है; और
  • शुद्ध विस्थापन धारा है जो वक्र द्वारा बंधी एक छोटी सतह से होकर गुजरती है C.

प्लेटों के बीच चुंबकीय क्षेत्र वही होता है जो प्लेटों के बाहर होता है, इसलिए विस्थापन धारा तारों में चालन धारा के समान होनी चाहिए, अर्थात,

जो वर्तमान की धारणा को मात्र आवेश के परिवहन से आगे बढ़ाता है।

अगला, यह विस्थापन धारा संधारित्र की चार्जिंग से संबंधित है। बाईं प्लेट के चारों ओर दिखाई गई काल्पनिक बेलनाकार सतह में धारा पर विचार करें। एक वर्तमान, कहते हैं I, बाईं सतह से बाहर की ओर जाता है L सिलेंडर का, लेकिन कोई चालन धारा (वास्तविक आवेशों का कोई परिवहन नहीं) सही सतह को पार करती है R. ध्यान दें कि विद्युत क्षेत्र E संधारित्र आवेशों के रूप में प्लेटों के बीच बढ़ता है। यही है, गॉस के कानून द्वारा वर्णित तरीके से, प्लेटों के बीच कोई परावैद्युतिकी हुआ नहीं मानते हुए:

कहाँ S काल्पनिक बेलनाकार सतह को संदर्भित करता है। मैक्सवेल के समीकरणों के अनुसार, समान विद्युत क्षेत्र के साथ समानांतर प्लेट कैपेसिटर की कल्पना करना और प्लेटों के किनारों के आसपास फ्रिंजिंग प्रभावों की उपेक्षा करना

जहाँ पहले पद का ऋणात्मक चिन्ह है क्योंकि आवेश सतह को छोड़ देता है L (आवेश घट रहा है), अंतिम पद का धनात्मक चिह्न है क्योंकि सतह का इकाई सदिश R बाएँ से दाएँ है जबकि विद्युत क्षेत्र की दिशा दाएँ से बाएँ है, S सतह का क्षेत्रफल है R. सतह पर विद्युत क्षेत्र L शून्य है क्योंकि सतह L कैपेसिटर के बाहर है। संधारित्र के अंदर एक समान विद्युत क्षेत्र वितरण की धारणा के तहत, विस्थापन वर्तमान घनत्वJD सतह के क्षेत्र से विभाजित करके पाया जाता है:

कहाँI बेलनाकार सतह से निकलने वाली धारा है (जो बराबर होनी चाहिएID) औरJD चेहरे के माध्यम से बेलनाकार सतह में प्रति इकाई क्षेत्र में आवेश का प्रवाह है R.

इन परिणामों के संयोजन से, चुंबकीय क्षेत्र को एम्पीयर के नियम के अभिन्न रूप का उपयोग करते हुए समोच्च के मनमाने विकल्प के साथ पाया जाता है, बशर्ते विस्थापन वर्तमान घनत्व शब्द चालन वर्तमान घनत्व (एम्पीयर-मैक्सवेल समीकरण) में जोड़ा जाता है:[5]

यह समीकरण कहता है कि चुंबकीय क्षेत्र का अभिन्न अंग B किनारे के आसपास सतह का S एकीकृत धारा के बराबर है J किसी भी सतह के माध्यम से एक ही किनारे के साथ, साथ ही विस्थापन वर्तमान शब्द किसी भी सतह के माध्यम से।

उदाहरण दो सतहों को दिखा रहा है S1 और S2 जो समान बाउंडिंग समोच्च साझा करते हैं S. हालाँकि, S1 चालन धारा द्वारा छेदा जाता है, जबकि S2 विस्थापन धारा द्वारा छेदित किया जाता है। सतह S2 कैपेसिटर प्लेट के नीचे बंद है।

जैसा कि चित्र में दाईं ओर दिखाया गया है, वर्तमान क्रॉसिंग सतह S1 पूरी तरह से चालन धारा है। एम्पीयर-मैक्सवेल समीकरण को सतह पर लागू करना S1 उपज:

हालांकि, वर्तमान क्रॉसिंग सतह S2 पूरी तरह से विस्थापन धारा है। इस कानून को सतह पर लागू करना S2, जो ठीक उसी वक्र से घिरा है , लेकिन प्लेटों के बीच स्थित है, उत्पादन करता है:

कोई भी सतह S1 जो तार को काटता है उसमें करंट होता है I इससे गुजरने पर एम्पीयर का नियम सही चुंबकीय क्षेत्र देता है। हालांकि एक दूसरी सतह S2 एक ही किनारे से घिरा हुआ को कैपेसिटर प्लेट्स के बीच से गुजरते हुए खींचा जा सकता है, इसलिए इससे कोई करंट नहीं गुजर रहा है। विस्थापन धारा के बिना एम्पीयर का नियम इस सतह के लिए शून्य चुंबकीय क्षेत्र देगा। इसलिए, विस्थापन वर्तमान शब्द के बिना एम्पीयर का नियम असंगत परिणाम देता है, चुंबकीय क्षेत्र एकीकरण के लिए चुनी गई सतह पर निर्भर करेगा। इस प्रकार विस्थापन वर्तमान अवधि दूसरे स्रोत शब्द के रूप में आवश्यक है जो सही चुंबकीय क्षेत्र देता है जब समाकलन की सतह संधारित्र प्लेटों के बीच से गुजरती है। क्योंकि धारा संधारित्र की प्लेटों पर आवेश बढ़ा रही है, प्लेटों के बीच विद्युत क्षेत्र बढ़ रहा है, और विद्युत क्षेत्र के परिवर्तन की दर क्षेत्र के लिए सही मान देती है B ऊपर पाया गया।

गणितीय सूत्रीकरण

अधिक गणितीय नस में, समान परिणाम अंतर्निहित अंतर समीकरणों से प्राप्त किए जा सकते हैं। सादगी के लिए एक गैर-चुंबकीय माध्यम पर विचार करें जहां चुंबकीय पारगम्यता # सापेक्ष पारगम्यता एकता है, और चुंबकीयकरण वर्तमान # चुंबकीयकरण वर्तमान (बाध्य वर्तमान) की जटिलता अनुपस्थित है, ताकि और . आयतन छोड़ने वाली धारा को आयतन में आवेश के घटने की दर के बराबर होना चाहिए। विभेदक रूप में यह वर्तमान घनत्व#निरंतरता समीकरण बन जाता है:

जहां बाईं ओर मुक्त धारा घनत्व का अपसरण है और दाईं ओर मुक्त आवेश घनत्व में कमी की दर है। हालाँकि, एम्पीयर का नियम अपने मूल रूप में कहता है:

जिसका तात्पर्य है कि निरंतरता समीकरण के विपरीत, वर्तमान शब्द का विचलन गायब हो जाता है। (डाइवर्जेंस का गायब होना वेक्टर कैलकुलस आइडेंटिटीज # डाइवर्जेंस ऑफ कर्ल का परिणाम है जो बताता है कि कर्ल का डाइवर्जेंस हमेशा शून्य होता है।) इस संघर्ष को विस्थापन करंट के अतिरिक्त हटा दिया जाता है, तब:[6][7]

और

जो गॉस के नियम के कारण निरंतरता समीकरण के अनुरूप है:


तरंग प्रसार

जोड़ा गया विस्थापन करंट भी चुंबकीय क्षेत्र के समीकरण के कर्ल को लेकर तरंग प्रसार की ओर जाता है।[8]

के लिए इस फॉर्म को प्रतिस्थापित करना J एम्पीयर के कानून में, और यह मानते हुए कि इसमें योगदान करने के लिए कोई बाध्य या मुक्त वर्तमान घनत्व नहीं है J:

नतीजे के साथ:

हालाँकि,
तरंग समीकरण के लिए अग्रणी:[9]
जहां उपयोग सदिश पहचान से किया जाता है जो किसी भी सदिश क्षेत्र के लिए होता है V(r, t):

और तथ्य यह है कि चुंबकीय क्षेत्र का विचलन शून्य है। कर्ल लेकर विद्युत क्षेत्र के लिए एक समान तरंग समीकरण पाया जा सकता है:

अगर J, P, और ρ शून्य हैं, परिणाम है:

विद्युत क्षेत्र को सामान्य रूप में व्यक्त किया जा सकता है:

कहाँ φ विद्युत क्षमता है (जिसे पोइसन के समीकरण को संतुष्ट करने के लिए चुना जा सकता है) और A एक वेक्टर क्षमता है (यानी चुंबकीय वेक्टर क्षमता, सतह क्षेत्र के साथ भ्रमित नहीं होना चाहिए, जैसा कि A अन्यत्र दर्शाया गया है)। वह φ दाहिनी ओर का घटक गॉस का नियम घटक है, और यह वह घटक है जो उपरोक्त आवेश तर्क के संरक्षण के लिए प्रासंगिक है। दाहिनी ओर का दूसरा पद वैद्युतचुंबकीय तरंग समीकरण के लिए प्रासंगिक है, क्योंकि यह वह पद है जो के कर्ल में योगदान देता है E. सदिश पहचान के कारण जो कहता है कि ग्रेडिएंट का कर्ल शून्य है, φ में योगदान नहीं करता है ∇×E.

इतिहास और व्याख्या

मैक्सवेल का विस्थापन करंट उनके 1861 के पेपर 'मीडिया: ऑन फिजिकल लाइन्स ऑफ फोर्स.पीडीएफ' के भाग III में पोस्ट किया गया था। आधुनिक भौतिकी के कुछ विषयों ने विस्थापन धारा के समान भ्रम और भ्रांति पैदा की है।[10] यह आंशिक रूप से इस तथ्य के कारण है कि मैक्सवेल ने अपनी व्युत्पत्ति में आणविक भंवरों के समुद्र का उपयोग किया, जबकि आधुनिक पाठ्यपुस्तकें इस आधार पर संचालित होती हैं कि मुक्त स्थान में विस्थापन धारा मौजूद हो सकती है। मैक्सवेल की व्युत्पत्ति निर्वात में विस्थापन धारा के लिए आधुनिक दिन की व्युत्पत्ति से संबंधित नहीं है, जो चुंबकीय क्षेत्र के लिए एम्पीयर के परिपथीय नियम और विद्युत आवेश के लिए निरंतरता समीकरण के बीच संगति पर आधारित है।

मैक्सवेल का उद्देश्य उनके द्वारा (भाग I, पृष्ठ 161) में बताया गया है:

I propose now to examine magnetic phenomena from a mechanical point of view, and to determine what tensions in, or motions of, a medium are capable of producing the mechanical phenomena observed.

वह यह इंगित करने के लिए सावधान है कि उपचार सादृश्य में से एक है:

The author of this method of representation does not attempt to explain the origin of the observed forces by the effects due to these strains in the elastic solid, but makes use of the mathematical analogies of the two problems to assist the imagination in the study of both.

भाग III में, वे विस्थापन धारा के संबंध में कहते हैं

I conceived the rotating matter to be the substance of certain cells, divided from each other by cell-walls composed of particles which are very small compared with the cells, and that it is by the motions of these particles, and their tangential action on the substance in the cells, that the rotation is communicated from one cell to another.

स्पष्ट रूप से मैक्सवेल चुंबकीयकरण पर गाड़ी चला रहा था, हालांकि वही परिचय स्पष्ट रूप से परावैद्युतिकी हुआ ध्रुवीकरण के बारे में बात करता है।

ध्वनि की गति के लिए न्यूटन के समीकरण (बल की रेखाएँ, भाग III, समीकरण (132)) का उपयोग करते हुए मैक्सवेल ने निष्कर्ष निकाला कि प्रकाश में उसी माध्यम में अनुप्रस्थ तरंगें होती हैं जो विद्युत और चुंबकीय घटनाओं का कारण है।

लेकिन यद्यपि उपरोक्त उद्धरण विस्थापन धारा के लिए एक चुंबकीय व्याख्या की ओर इशारा करते हैं, उदाहरण के लिए, उपरोक्त कर्ल समीकरण के विचलन के आधार पर, मैक्सवेल की व्याख्या ने अंततः डाइलेक्ट्रिक्स के रैखिक ध्रुवीकरण पर बल दिया:

This displacement ... is the commencement of a current ... The amount of displacement depends on the nature of the body, and on the electromotive force so that if h is the displacement, R the electromotive force, and E a coefficient depending on the nature of the dielectric:

and if r is the value of the electric current due to displacement
These relations are independent of any theory about the mechanism of dielectrics; but when we find electromotive force producing electric displacement in a dielectric, and when we find the dielectric recovering from its state of electric displacement ... we cannot help regarding the phenomena as those of an elastic body, yielding to a pressure and recovering its form when the pressure is removed.

— On Physical Lines of Force, Part III, The theory of molecular vortices applied to statical electricity, pp. 14–15

प्रतीकों (और इकाइयों) के कुछ परिवर्तन के साथ अनुभाग में निकाले गए परिणामों के साथ § Current in capacitors (rJ, R → −E, और सामग्री स्थिरांक E−2 → 4πεrε0 ये समीकरण समान विद्युत क्षेत्र वाले समानांतर प्लेट कैपेसिटर के बीच परिचित रूप लेते हैं, और प्लेटों के किनारों के आसपास फ्रिंजिंग प्रभावों की उपेक्षा करते हैं:

जब उनके 1865 के पेपर ए डायनेमिकल थ्योरी ऑफ द विद्युत चुम्बकीय फील्ड में विस्थापन करंट से विद्युत चुम्बकीय वेव इक्वेशन निकालने की बात आई, तो उन्होंने गॉस टर्म को खत्म करके और गॉस टर्म को खत्म करके और डाइइलेक्ट्रिक विस्थापन से जुड़े नॉन-जीरो डायवर्जेंस की समस्या को हल किया। सोलेनोइडल चुंबकीय क्षेत्र वेक्टर के लिए विशेष रूप से तरंग समीकरण।

ध्रुवीकरण पर मैक्सवेल के जोर ने इलेक्ट्रिक कैपेसिटर सर्किट की ओर ध्यान आकर्षित किया, और आम धारणा को जन्म दिया कि मैक्सवेल ने विस्थापन करंट की कल्पना की ताकि इलेक्ट्रिक कैपेसिटर सर्किट में चार्ज के संरक्षण को बनाए रखा जा सके। मैक्सवेल की सोच के बारे में कई तरह की बहस योग्य धारणाएँ हैं, जिसमें क्षेत्र समीकरणों की समरूपता को पूर्ण करने की उनकी कथित इच्छा से लेकर निरंतरता समीकरण के साथ अनुकूलता प्राप्त करने की इच्छा शामिल है।[11][12]


यह भी देखें

  • विद्युत चुम्बकीय तरंग समीकरण
  • एम्पीयर का नियम
  • समाई#समाई और 'विस्थापन धारा'

संदर्भ

  1. John D Jackson (1999). शास्त्रीय इलेक्ट्रोडायनामिक्स (3rd ed.). Wiley. p. 238. ISBN 978-0-471-30932-1.
  2. For example, see David J Griffiths (1999). Introduction to Electrodynamics (3rd ed.). Pearson/Addison Wesley. p. 323. ISBN 978-0-13-805326-0. and Tai L Chow (2006). Introduction to Electromagnetic Theory. Jones & Bartlett. p. 204. ISBN 978-0-7637-3827-3.
  3. Palmer, Stuart B. & Rogalski, Mircea S. (1996). Advanced University Physics. Taylor & Francis. p. 214. ISBN 978-2-88449-065-8 – via Google Books.
  4. Serway, Raymond A. & Jewett, John W. (2006). Principles of Physics. Thomson Brooks/Cole. p. 807. ISBN 978-0-534-49143-7 – via Google Books.
  5. Feynman, Richard P.; Leighton, Robert & Sands, Matthew (1963). The Feynman Lectures on Physics. Vol. 2. Massachusetts, USA: Addison-Wesley. p. 18‑4. ISBN 978-0-201-02116-5 – via archive.org.
  6. Bonnett, Raymond & Cloude, Shane (1995). An Introduction to Electromagnetic Wave Propagation and Antennas. Taylor & Francis. p. 16. ISBN 978-1-85728-241-2 – via Google Books.
  7. Slater, J.C. & Frank, N.H. (1969) [1947]. Electromagnetism (reprint ed.). Courier Dover Publications. p. 84. ISBN 978-0-486-62263-7 – via Google Books.
  8. JC Slater and NH Frank (1969). विद्युत चुंबकत्व (op. cit. ed.). p. 91. ISBN 978-0-486-62263-7.
  9. J Billingham, A C King (2006). तरंग चलन. Cambridge University Press. p. 182. ISBN 978-0-521-63450-2.
  10. Daniel M. Siegel (2003). मैक्सवेल के इलेक्ट्रोमैग्नेटिक थ्योरी में इनोवेशन. Cambridge University Press. p. 85. ISBN 978-0-521-53329-4.
  11. Paul J. Nahin (2002). Oliver Heaviside: The Life, Work, and Times of an Electrical Genius of the Victorian Age. Johns Hopkins University Press. p. 109. ISBN 978-0-8018-6909-9.
  12. Vyacheslav Stepin (2002). सैद्धांतिक ज्ञान. Springer. p. 202. ISBN 978-1-4020-3045-1.


मैक्सवेल के कागजात

  • फैराडे की बल की रेखाओं पर मैक्सवेल का 1855 का पेपर
  • मीडिया: बल की भौतिक रेखाओं पर.pdf मैक्सवेल का 1861 का पेपर
  • मीडिया: विद्युत चुम्बकीय फील्ड का एक गतिशील सिद्धांत। पीडीएफ मैक्सवेल का 1864 का पेपर

अग्रिम पठन

  • AM Bork Maxwell, Displacement Current, and Symmetry (1963)
  • AM Bork Maxwell and the Electromagnetic Wave Equation (1967)


बाहरी संबंध