विस्थापन धारा: Difference between revisions
No edit summary |
|||
Line 51: | Line 51: | ||
==== [[ संधारित्र ]]में धारा ==== | ==== [[ संधारित्र ]]में धारा ==== | ||
प्लेटों के बीच कोई माध्यम नहीं होने वाले | प्लेटों के बीच कोई माध्यम नहीं होने वाले संधारित्र के संबंध में विस्थापन धारा की आवश्यकता को दर्शाने वाला एक उदाहरण उत्पन्न होता है। चित्र में चार्जिंग संधारित्र पर विचार करें। संधारित्र एक परिपथ में होता है जो बायीं प्लेट और दायीं प्लेट पर समान और विपरीत चार्ज का कारण बनता है, संधारित्र को चार्ज करता है और इसकी प्लेटों के बीच विद्युत क्षेत्र को बढ़ाता है। इसकी प्लेटों के बीच निर्वात के माध्यम से कोई वास्तविक आवेश नहीं ले जाया जाता है। बहरहाल, प्लेटों के बीच एक चुंबकीय क्षेत्र मौजूद है जैसे कि वहां भी एक धारा मौजूद थी। एक व्याख्या यह है कि एक विस्थापन धारा ID निर्वात में "प्रवाहित" होती है, और यह धारा एम्पीयर के नियम के अनुसार प्लेटों के बीच के क्षेत्र में चुंबकीय क्षेत्र उत्पन्न करती है:[<ref name=Palmer> | ||
{{cite book | {{cite book | ||
|first1=Stuart B. |last1=Palmer | |first1=Stuart B. |last1=Palmer | ||
Line 96: | Line 96: | ||
<math display=block>Q(t) = \varepsilon_0 \oint_S \mathbf{E}(t) \cdot \operatorname{d}\!\mathbf{S}\, ,</math> | <math display=block>Q(t) = \varepsilon_0 \oint_S \mathbf{E}(t) \cdot \operatorname{d}\!\mathbf{S}\, ,</math> | ||
जहाँ {{mvar|S}} काल्पनिक बेलनाकार सतह को संदर्भित करता है। मैक्सवेल के समीकरणों के अनुसार, समान विद्युत क्षेत्र के साथ समानांतर प्लेट | जहाँ {{mvar|S}} काल्पनिक बेलनाकार सतह को संदर्भित करता है। मैक्सवेल के समीकरणों के अनुसार, समान विद्युत क्षेत्र के साथ समानांतर प्लेट संधारित्र की कल्पना करना और प्लेटों के किनारों के आसपास फ्रिंजिंग प्रभावों की उपेक्षा करना | ||
<math display=block>I = -\frac{\mathrm{d} Q}{\mathrm{d} t} = - \varepsilon_0 \oint_S\frac{\partial \mathbf{E}}{\partial t} \cdot \operatorname{d}\!\mathbf{S} = S \, \varepsilon_0 \Biggl. \frac{\partial \mathbf{E}}{\partial t} \Biggr|_R ~ , </math> | <math display=block>I = -\frac{\mathrm{d} Q}{\mathrm{d} t} = - \varepsilon_0 \oint_S\frac{\partial \mathbf{E}}{\partial t} \cdot \operatorname{d}\!\mathbf{S} = S \, \varepsilon_0 \Biggl. \frac{\partial \mathbf{E}}{\partial t} \Biggr|_R ~ , </math> | ||
जहाँ पहले पद का ऋणात्मक चिन्ह है क्योंकि आवेश सतह को छोड़ देता है {{mvar|L}} (आवेश घट रहा है), अंतिम पद का धनात्मक चिह्न है क्योंकि सतह का इकाई सदिश {{mvar|R}} बाएँ से दाएँ है जबकि विद्युत क्षेत्र की दिशा दाएँ से बाएँ है, {{mvar|S}} सतह का क्षेत्रफल है {{mvar|R}}. सतह पर विद्युत क्षेत्र {{mvar|L}} शून्य है क्योंकि सतह {{mvar|L}} | जहाँ पहले पद का ऋणात्मक चिन्ह है क्योंकि आवेश सतह को छोड़ देता है {{mvar|L}} (आवेश घट रहा है), अंतिम पद का धनात्मक चिह्न है क्योंकि सतह का इकाई सदिश {{mvar|R}} बाएँ से दाएँ है जबकि विद्युत क्षेत्र की दिशा दाएँ से बाएँ है, {{mvar|S}} सतह का क्षेत्रफल है {{mvar|R}}. सतह पर विद्युत क्षेत्र {{mvar|L}} शून्य है क्योंकि सतह {{mvar|L}} संधारित्र के बाहर है। संधारित्र के अंदर एक समान विद्युत क्षेत्र वितरण की धारणा के तहत, विस्थापन वर्तमान घनत्व{{math|J}}<sub>D</sub> सतह के क्षेत्र से विभाजित करके पाया जाता है: | ||
<math display=block> \mathbf{J}_\mathrm{D} = \frac{\mathbf{I}_\mathrm{D}}{S} = \frac{\mathbf I}{S} = \varepsilon_0 \frac{\partial \mathbf E}{\partial t} = \frac{\partial \mathbf D}{\partial t} ~ , </math> | <math display=block> \mathbf{J}_\mathrm{D} = \frac{\mathbf{I}_\mathrm{D}}{S} = \frac{\mathbf I}{S} = \varepsilon_0 \frac{\partial \mathbf E}{\partial t} = \frac{\partial \mathbf D}{\partial t} ~ , </math> | ||
Line 125: | Line 125: | ||
यह समीकरण कहता है कि चुंबकीय क्षेत्र का अभिन्न अंग {{math|'''B'''}} किनारे के आसपास {{tmath|\partial S}} सतह का {{mvar|S}} एकीकृत धारा के बराबर है {{math|'''J'''}} किसी भी सतह के माध्यम से एक ही किनारे के साथ, साथ ही विस्थापन वर्तमान शब्द {{tmath|\varepsilon_0 \partial \mathbf{E} / \partial t}} किसी भी सतह के माध्यम से। | यह समीकरण कहता है कि चुंबकीय क्षेत्र का अभिन्न अंग {{math|'''B'''}} किनारे के आसपास {{tmath|\partial S}} सतह का {{mvar|S}} एकीकृत धारा के बराबर है {{math|'''J'''}} किसी भी सतह के माध्यम से एक ही किनारे के साथ, साथ ही विस्थापन वर्तमान शब्द {{tmath|\varepsilon_0 \partial \mathbf{E} / \partial t}} किसी भी सतह के माध्यम से। | ||
{{Clear}} | {{Clear}} | ||
[[File:Displacement current in capacitor.svg|thumb|200px|उदाहरण दो सतहों को दिखा रहा है {{math|''S''<sub>1</sub>}} और {{math|''S''<sub>2</sub>}} जो समान बाउंडिंग समोच्च साझा करते हैं {{math|∂''S''}}. हालाँकि, {{math|''S''<sub>1</sub>}} चालन धारा द्वारा छेदा जाता है, जबकि {{math|''S''<sub>2</sub>}} विस्थापन धारा द्वारा छेदित किया जाता है। सतह {{math|''S''<sub>2</sub>}} | [[File:Displacement current in capacitor.svg|thumb|200px|उदाहरण दो सतहों को दिखा रहा है {{math|''S''<sub>1</sub>}} और {{math|''S''<sub>2</sub>}} जो समान बाउंडिंग समोच्च साझा करते हैं {{math|∂''S''}}. हालाँकि, {{math|''S''<sub>1</sub>}} चालन धारा द्वारा छेदा जाता है, जबकि {{math|''S''<sub>2</sub>}} विस्थापन धारा द्वारा छेदित किया जाता है। सतह {{math|''S''<sub>2</sub>}} संधारित्र प्लेट के नीचे बंद है।]]जैसा कि चित्र में दाईं ओर दिखाया गया है, वर्तमान क्रॉसिंग सतह {{math|''S''<sub>1</sub>}} पूरी तरह से चालन धारा है। एम्पीयर-मैक्सवेल समीकरण को सतह पर लागू करना {{math|''S''<sub>1</sub>}} उपज: | ||
<math display=block>B = \frac {\mu_0 I}{2 \pi r} ~ .</math> | <math display=block>B = \frac {\mu_0 I}{2 \pi r} ~ .</math> | ||
Line 131: | Line 131: | ||
<math display=block>B = \frac {\mu_0 I_\mathrm{D}}{2 \pi r} ~ .</math> | <math display=block>B = \frac {\mu_0 I_\mathrm{D}}{2 \pi r} ~ .</math> | ||
कोई भी सतह {{math|''S''<sub>1</sub>}} जो तार को काटता है उसमें करंट होता है {{mvar|I}} इससे गुजरने पर एम्पीयर का नियम सही चुंबकीय क्षेत्र देता है। हालांकि एक दूसरी सतह {{math|''S''<sub>2</sub>}} एक ही किनारे से घिरा हुआ {{tmath|\partial S}} को | कोई भी सतह {{math|''S''<sub>1</sub>}} जो तार को काटता है उसमें करंट होता है {{mvar|I}} इससे गुजरने पर एम्पीयर का नियम सही चुंबकीय क्षेत्र देता है। हालांकि एक दूसरी सतह {{math|''S''<sub>2</sub>}} एक ही किनारे से घिरा हुआ {{tmath|\partial S}} को संधारित्र प्लेट्स के बीच से गुजरते हुए खींचा जा सकता है, इसलिए इससे कोई करंट नहीं गुजर रहा है। विस्थापन धारा के बिना एम्पीयर का नियम इस सतह के लिए शून्य चुंबकीय क्षेत्र देगा। इसलिए, विस्थापन वर्तमान शब्द के बिना एम्पीयर का नियम असंगत परिणाम देता है, चुंबकीय क्षेत्र एकीकरण के लिए चुनी गई सतह पर निर्भर करेगा। इस प्रकार विस्थापन वर्तमान अवधि {{tmath|\varepsilon_0 \partial \mathbf{E} / \partial t}} दूसरे स्रोत शब्द के रूप में आवश्यक है जो सही चुंबकीय क्षेत्र देता है जब समाकलन की सतह संधारित्र प्लेटों के बीच से गुजरती है। क्योंकि धारा संधारित्र की प्लेटों पर आवेश बढ़ा रही है, प्लेटों के बीच विद्युत क्षेत्र बढ़ रहा है, और विद्युत क्षेत्र के परिवर्तन की दर क्षेत्र के लिए सही मान देती है {{math|'''B'''}} ऊपर पाया गया। | ||
====गणितीय सूत्रीकरण==== | ====गणितीय सूत्रीकरण==== | ||
Line 225: | Line 225: | ||
ध्वनि की गति के लिए न्यूटन के समीकरण (बल की रेखाएँ, भाग III, समीकरण (132)) का उपयोग करते हुए मैक्सवेल ने निष्कर्ष निकाला कि प्रकाश में उसी माध्यम में अनुप्रस्थ तरंगें होती हैं जो विद्युत और चुंबकीय घटनाओं का कारण है। | ध्वनि की गति के लिए न्यूटन के समीकरण (बल की रेखाएँ, भाग III, समीकरण (132)) का उपयोग करते हुए मैक्सवेल ने निष्कर्ष निकाला कि प्रकाश में उसी माध्यम में अनुप्रस्थ तरंगें होती हैं जो विद्युत और चुंबकीय घटनाओं का कारण है। | ||
लेकिन यद्यपि उपरोक्त उद्धरण विस्थापन धारा के लिए एक चुंबकीय व्याख्या की ओर इशारा करते हैं, उदाहरण के लिए, उपरोक्त कर्ल समीकरण के विचलन के आधार पर, मैक्सवेल की व्याख्या ने अंततः | लेकिन यद्यपि उपरोक्त उद्धरण विस्थापन धारा के लिए एक चुंबकीय व्याख्या की ओर इशारा करते हैं, उदाहरण के लिए, उपरोक्त कर्ल समीकरण के विचलन के आधार पर, मैक्सवेल की व्याख्या ने अंततः डावैद्युत्स के रैखिक ध्रुवीकरण पर बल दिया: | ||
{{Blockquote|यह विस्थापन;... एक धारा का प्रारंभिक है;... विस्थापन की मात्रा शरीर की प्रकृति पर निर्भर करती है, and on the electromotive force so that if {{mvar|h}} is the displacement, {{mvar|R}} the electromotive force, and {{mvar|E}} a coefficient depending on the nature of the dielectric: | {{Blockquote|यह विस्थापन;... एक धारा का प्रारंभिक है;... विस्थापन की मात्रा शरीर की प्रकृति पर निर्भर करती है, and on the electromotive force so that if {{mvar|h}} is the displacement, {{mvar|R}} the electromotive force, and {{mvar|E}} a coefficient depending on the nature of the dielectric: | ||
Line 236: | Line 236: | ||
पीपी.14–15}} | पीपी.14–15}} | ||
प्रतीकों (और इकाइयों) के कुछ परिवर्तन | अनुभाग में निकाले गए परिणामों के साथ संयुक्त प्रतीकों (और इकाइयों) के कुछ परिवर्तन के साथ {{slink||संधारित्र में धारा}} ({{math|''r'' → ''J''}}, {{math|''R'' → −''E''}}, और सामग्री स्थिरांक {{math|E<sup>−2</sup> → 4π''ε''<sub>r</sub>''ε''<sub>0</sub>}} ये समीकरण समान विद्युत क्षेत्र वाले समानांतर प्लेट संधारित्र के बीच परिचित रूप लेते हैं, और प्लेटों के किनारों के आसपास फ्रिंजिंग प्रभावों की उपेक्षा करते हैं: | ||
<math display=block>J = \frac{d}{dt} \frac {1}{4 \pi \mathrm E^2} E = \frac{d}{dt} \varepsilon_r\varepsilon_0 E = \frac{d}{dt} D\,.</math> | <math display=block>J = \frac{d}{dt} \frac {1}{4 \pi \mathrm E^2} E = \frac{d}{dt} \varepsilon_r\varepsilon_0 E = \frac{d}{dt} D\,.</math> | ||
जब उनके 1865 के पेपर | जब उनके 1865 के पेपर विद्युत चुम्बकीय क्षेत्र का एक गतिशील सिद्धांत में विस्थापन धारा से विद्युत चुम्बकीय तरंग समीकरण को प्राप्त करने की बात आई, उन्होंने गॉस के नियम और परावैद्युत विस्थापन से जुड़े गैर-शून्य विचलन की समस्या को हल किया, गॉस शब्द को समाप्त कर दिया और विशेष रूप से सोलनॉइडल चुंबकीय क्षेत्र वेक्टर के लिए तरंग समीकरण प्राप्त किया। | ||
ध्रुवीकरण पर मैक्सवेल के जोर ने | ध्रुवीकरण पर मैक्सवेल के जोर ने वैद्युत संधारित्र परिपथ की ओर ध्यान आकर्षित किया, और आम धारणा को जन्म दिया कि मैक्सवेल ने विस्थापन करंट की कल्पना की ताकि वैद्युत संधारित्र परिपथ में चार्ज के संरक्षण को बनाए रखा जा सके। मैक्सवेल की सोच के बारे में कई तरह की बहस योग्य धारणाएँ हैं, जिसमें क्षेत्र समीकरणों की समरूपता को पूर्ण करने की उनकी कथित इच्छा से लेकर निरंतरता समीकरण के साथ अनुकूलता प्राप्त करने की इच्छा सम्मलित होती है।<ref name=Nahin>{{cite book |title=Oliver Heaviside: The Life, Work, and Times of an Electrical Genius of the Victorian Age |url=https://books.google.com/books?id=e9wEntQmA0IC&pg=PA109|page=109 |author=Paul J. Nahin|author-link=Paul J. Nahin |isbn=978-0-8018-6909-9 |year=2002 |publisher=Johns Hopkins University Press }}</ref><ref name=Stepin>{{cite book |title=सैद्धांतिक ज्ञान|author=Vyacheslav Stepin |url=https://books.google.com/books?id=4LEns8rzBOEC&pg=PA202|page= 202|isbn=978-1-4020-3045-1 |year=2002 |publisher=Springer}}</ref> | ||
== यह भी देखें == | == यह भी देखें == | ||
*विद्युत चुम्बकीय तरंग समीकरण | *विद्युत चुम्बकीय तरंग समीकरण |
Revision as of 18:13, 20 March 2023
Articles about |
Electromagnetism |
---|
विद्युत चुंबकत्व में, विस्थापन धारा घनत्व मैक्सवेल के समीकरणों में दिखाई देने वाली मात्रा ∂D/∂t है जिसे विद्युत विस्थापन क्षेत्र D के परिवर्तन की दर के संदर्भ में परिभाषित किया गया है। विस्थापन वर्तमान घनत्व में विद्युत प्रवाह घनत्व के समान इकाइयाँ होती हैं, और यह चुंबकीय क्षेत्र का एक स्रोत होता है जैसे वास्तविक धारा होती है। हालाँकि यह गतिमान विद्युत आवेश का विद्युत प्रवाह नहीं है, बल्कि एक समय-परिवर्तनशील विद्युत क्षेत्र है। भौतिक सामग्रियों में (निर्वात के विपरीत), परमाणुओं में बंधे आवेशों की हल्की गति से भी योगदान होता है, जिसे परावैद्युत ध्रुवीकरण कहा जाता है।
इस विचार की कल्पना जेम्स क्लर्क मैक्सवेल ने अपने 1861 के पेपर ऑन फिजिकल लाइन्स ऑफ फोर्स, भाग III में एक परावैद्युत माध्यम में विद्युत कणों के विस्थापन के संबंध में की थी। मैक्सवेल ने एम्पीयर के परिपथीय नियम एम्पीयर के परिपथीय नियम में विद्युत धारा शब्द में विस्थापन धारा को जोड़ा। अपने 1865 के पेपर विद्युत चुम्बकीय क्षेत्र का एक गतिशील सिद्धांत में मैक्सवेल ने एम्पीयर के परिपथल लॉ के इस संशोधित संस्करण का इस्तेमाल विद्युत चुम्बकीय तरंग समीकरण को प्राप्त करने के लिए किया। बिजली, चुंबकत्व और प्रकाशिकी को एक एकीकृत सिद्धांत में एकजुट करने के आधार पर इस व्युत्पत्ति को अब सामान्यतः भौतिकी में एक ऐतिहासिक मील के पत्थर के रूप में स्वीकार किया जाता है। विस्थापन वर्तमान शब्द को अब एक महत्वपूर्ण जोड़ के रूप में देखा जाता है जिसने मैक्सवेल के समीकरणों को पूरा किया और कई घटनाओं, विशेष रूप से विद्युत चुम्बकीय तरंगों के अस्तित्व की व्याख्या करने के लिए आवश्यक है।
स्पष्टीकरण
विद्युत विस्थापन क्षेत्र को इस प्रकार परिभाषित किया गया है:
- ε0 मुक्त स्थान की पारगम्यता है;
- E विद्युत क्षेत्र की तीव्रता है; और
- P माध्यम का ध्रुवीकरण ( स्थिरवैद्युतिकी) है।
समय के संबंध में इस समीकरण को अलग करना विस्थापन वर्तमान घनत्व को परिभाषित करता है इसलिए एक परावैद्युत में दो घटक होते हैं: [1]("वर्तमान घनत्व" का विस्थापन वर्तमान अनुभाग भी देखें)
विस्थापन धारा के आधुनिक औचित्य को नीचे समझाया गया है।
समदैशिक परावैद्युतिकी मामला
एक बहुत ही सरल परावैद्युतिकी पदार्थ के स्थिति में संवैधानिक संबंध रखता है:
- ε0, मुक्त स्थान की पारगम्यता, या विद्युत स्थिरांक; और
- εr, परावैद्युतिकी की सापेक्ष पारगम्यता।
उपरोक्त समीकरण में, ε का उपयोग परावैद्युतिकी के ध्रुवीकरण (यदि कोई हो) के लिए होता है।
विद्युत प्रवाह के संदर्भ में विस्थापन धारा का अदिष्ट मान भी व्यक्त किया जा सकता है:
एक रैखिक आइसोट्रोपिक परावैद्युतिकी के लिए, ध्रुवीकरण P द्वारा दिया गया है:
आवश्यकता
विस्थापन धारा के कुछ निहितार्थ अनुसरण करते हैं, जो प्रायोगिक अवलोकन से सहमत हैं, और विद्युत चुंबकत्व के सिद्धांत के लिए तार्किक स्थिरता की आवश्यकताओं के साथ हैं।
एम्पीयर के परिपथीय नियम का सामान्यीकरण
संधारित्र में धारा
प्लेटों के बीच कोई माध्यम नहीं होने वाले संधारित्र के संबंध में विस्थापन धारा की आवश्यकता को दर्शाने वाला एक उदाहरण उत्पन्न होता है। चित्र में चार्जिंग संधारित्र पर विचार करें। संधारित्र एक परिपथ में होता है जो बायीं प्लेट और दायीं प्लेट पर समान और विपरीत चार्ज का कारण बनता है, संधारित्र को चार्ज करता है और इसकी प्लेटों के बीच विद्युत क्षेत्र को बढ़ाता है। इसकी प्लेटों के बीच निर्वात के माध्यम से कोई वास्तविक आवेश नहीं ले जाया जाता है। बहरहाल, प्लेटों के बीच एक चुंबकीय क्षेत्र मौजूद है जैसे कि वहां भी एक धारा मौजूद थी। एक व्याख्या यह है कि एक विस्थापन धारा ID निर्वात में "प्रवाहित" होती है, और यह धारा एम्पीयर के नियम के अनुसार प्लेटों के बीच के क्षेत्र में चुंबकीय क्षेत्र उत्पन्न करती है:[[3][4]
- किसी बंद वक्र के चारों ओर बंद रेखा समाकल है C;
- टेस्ला (यूनिट) में मापा गया चुंबकीय क्षेत्र है;
- वेक्टर डॉट उत्पाद है;
- वक्र के साथ एक अतिसूक्ष्म रेखा तत्व है C, यानी एक वेक्टर जिसकी लंबाई के तत्व के बराबर परिमाण है C, और वक्र को स्पर्शरेखा द्वारा दी गई दिशा C;
- चुंबकीय स्थिरांक है, जिसे मुक्त स्थान की पारगम्यता भी कहा जाता है; और
- शुद्ध विस्थापन धारा है जो वक्र द्वारा बंधी एक छोटी सतह से होकर गुजरती है C.
प्लेटों के बीच चुंबकीय क्षेत्र वही होता है जो प्लेटों के बाहर होता है, इसलिए विस्थापन धारा तारों में चालन धारा के समान होनी चाहिए, अर्थात,
अगला, यह विस्थापन धारा संधारित्र की चार्जिंग से संबंधित है। बाईं प्लेट के चारों ओर दिखाई गई काल्पनिक बेलनाकार सतह में धारा पर विचार करें। एक वर्तमान, कहते हैं I, बाईं सतह से बाहर की ओर जाता है L सिलेंडर का, लेकिन कोई चालन धारा (वास्तविक आवेशों का कोई परिवहन नहीं) सही सतह को पार करती है R. ध्यान दें कि विद्युत क्षेत्र E संधारित्र आवेशों के रूप में प्लेटों के बीच बढ़ता है। यही है, गॉस के कानून द्वारा वर्णित तरीके से, प्लेटों के बीच कोई परावैद्युतिकी नहीं मानते हुए:
इन परिणामों के संयोजन से, चुंबकीय क्षेत्र को एम्पीयर के नियम के अभिन्न रूप का उपयोग करते हुए समोच्च के मनमाने विकल्प के साथ पाया जाता है, बशर्ते विस्थापन वर्तमान घनत्व शब्द चालन वर्तमान घनत्व (एम्पीयर-मैक्सवेल समीकरण) में जोड़ा जाता है:[5]
जैसा कि चित्र में दाईं ओर दिखाया गया है, वर्तमान क्रॉसिंग सतह S1 पूरी तरह से चालन धारा है। एम्पीयर-मैक्सवेल समीकरण को सतह पर लागू करना S1 उपज:
गणितीय सूत्रीकरण
अधिक गणितीय नस में, समान परिणाम अंतर्निहित अंतर समीकरणों से प्राप्त किए जा सकते हैं। सादगी के लिए एक गैर-चुंबकीय माध्यम पर विचार करें जहां चुंबकीय पारगम्यता # सापेक्ष पारगम्यता एकता है, और चुंबकीयकरण वर्तमान # चुंबकीयकरण वर्तमान (बाध्य वर्तमान) की जटिलता अनुपस्थित है, ताकि और . आयतन छोड़ने वाली धारा को आयतन में आवेश के घटने की दर के बराबर होना चाहिए। विभेदक रूप में यह वर्तमान घनत्व#निरंतरता समीकरण बन जाता है:
तरंग प्रसार
जोड़ा गया विस्थापन करंट भी चुंबकीय क्षेत्र के समीकरण के कर्ल को लेकर तरंग प्रसार की ओर जाता है।[8]
इतिहास और व्याख्या
मैक्सवेल का विस्थापन करंट उनके 1861 के पेपर 'मीडिया: ऑन फिजिकल लाइन्स ऑफ फोर्स.पीडीएफ' के भाग III में पोस्ट किया गया था। आधुनिक भौतिकी के कुछ विषयों ने विस्थापन धारा के समान भ्रम और भ्रांति पैदा की है।[10] यह आंशिक रूप से इस तथ्य के कारण है कि मैक्सवेल ने अपनी व्युत्पत्ति में आणविक भंवरों के समुद्र का उपयोग किया, जबकि आधुनिक पाठ्यपुस्तकें इस आधार पर संचालित होती हैं कि मुक्त स्थान में विस्थापन धारा मौजूद हो सकती है। मैक्सवेल की व्युत्पत्ति निर्वात में विस्थापन धारा के लिए आधुनिक दिन की व्युत्पत्ति से संबंधित नहीं है, जो चुंबकीय क्षेत्र के लिए एम्पीयर के परिपथीय नियम और विद्युत आवेश के लिए निरंतरता समीकरण के बीच संगति पर आधारित है।
मैक्सवेल का उद्देश्य उनके द्वारा (भाग I, पृष्ठ 161) में बताया गया है:
मैं अब एक यांत्रिक दृष्टिकोण से चुंबकीय घटना की जांच करने का प्रस्ताव करता हूं, और यह निर्धारित करने के लिए कि एक माध्यम में कौन से तनाव, या गति, देखी गई यांत्रिक घटनाओं का उत्पादन करने में सक्षम हैं।
वह यह इंगित करने के लिए सावधान है कि उपचार सादृश्य में से एक है:
प्रतिनिधित्व की इस पद्धति के लेखक लोचदार ठोस में इन तनावों के कारण प्रभावों द्वारा प्रेक्षित बलों की उत्पत्ति की व्याख्या करने का प्रयास नहीं करते हैं, लेकिन दोनों के अध्ययन में कल्पना की सहायता के लिए दो समस्याओं की गणितीय उपमाओं का उपयोग करते हैं। .
भाग III में, वे विस्थापन धारा के संबंध में कहते हैं
मैंने घूमने वाले पदार्थ को कुछ कोशिकाओं के पदार्थ के रूप में माना, जो कोशिकाओं की तुलना में बहुत छोटे कणों से बनी कोशिका-दीवारों द्वारा एक दूसरे से विभाजित होते हैं, और यह इन कणों की गतियों और उनकी स्पर्शरेखा क्रिया द्वारा होता है। कोशिकाओं में पदार्थ, कि घूर्णन एक कोशिका से दूसरे कोशिका में संचारित होता है।
स्पष्ट रूप से मैक्सवेल चुंबकीयकरण पर गाड़ी चला रहा था, हालांकि वही परिचय स्पष्ट रूप से परावैद्युतिकी ध्रुवीकरण के बारे में बात करता है।
ध्वनि की गति के लिए न्यूटन के समीकरण (बल की रेखाएँ, भाग III, समीकरण (132)) का उपयोग करते हुए मैक्सवेल ने निष्कर्ष निकाला कि प्रकाश में उसी माध्यम में अनुप्रस्थ तरंगें होती हैं जो विद्युत और चुंबकीय घटनाओं का कारण है।
लेकिन यद्यपि उपरोक्त उद्धरण विस्थापन धारा के लिए एक चुंबकीय व्याख्या की ओर इशारा करते हैं, उदाहरण के लिए, उपरोक्त कर्ल समीकरण के विचलन के आधार पर, मैक्सवेल की व्याख्या ने अंततः डावैद्युत्स के रैखिक ध्रुवीकरण पर बल दिया:
यह विस्थापन;... एक धारा का प्रारंभिक है;... विस्थापन की मात्रा शरीर की प्रकृति पर निर्भर करती है, and on the electromotive force so that if h is the displacement, R the electromotive force, and E a coefficient depending on the nature of the dielectric:
और यदि r विस्थापन के कारण विद्युत धारा का मान हैये संबंध डाइलेक्ट्रिक्स के तंत्र के बारे में किसी भी सिद्धांत से स्वतंत्र हैं; लेकिन जब हम एक परावैद्युत में वैद्युत वाहक बल को विद्युत विस्थापन उत्पन्न करते हुए पाते हैं, और जब हम परावैद्युत को विद्युत विस्थापन की स्थिति से उबरते हुए पाते हैं... हम घटना के बारे में मदद नहीं कर सकते हैं जैसे कि एक लोचदार पिंड, एक दबाव के आगे झुकना और इसकी पुनः प्राप्ति जब दबाव हटा दिया जाता है तो बनता है।— बल की भौतिक रेखाओं पर, भाग III, "आण्विक चक्रवात का सिद्धांत स्थैतिक बिजली पर लागू होता है", पीपी.14–15
अनुभाग में निकाले गए परिणामों के साथ संयुक्त प्रतीकों (और इकाइयों) के कुछ परिवर्तन के साथ § संधारित्र में धारा (r → J, R → −E, और सामग्री स्थिरांक E−2 → 4πεrε0 ये समीकरण समान विद्युत क्षेत्र वाले समानांतर प्लेट संधारित्र के बीच परिचित रूप लेते हैं, और प्लेटों के किनारों के आसपास फ्रिंजिंग प्रभावों की उपेक्षा करते हैं:
ध्रुवीकरण पर मैक्सवेल के जोर ने वैद्युत संधारित्र परिपथ की ओर ध्यान आकर्षित किया, और आम धारणा को जन्म दिया कि मैक्सवेल ने विस्थापन करंट की कल्पना की ताकि वैद्युत संधारित्र परिपथ में चार्ज के संरक्षण को बनाए रखा जा सके। मैक्सवेल की सोच के बारे में कई तरह की बहस योग्य धारणाएँ हैं, जिसमें क्षेत्र समीकरणों की समरूपता को पूर्ण करने की उनकी कथित इच्छा से लेकर निरंतरता समीकरण के साथ अनुकूलता प्राप्त करने की इच्छा सम्मलित होती है।[11][12]
यह भी देखें
- विद्युत चुम्बकीय तरंग समीकरण
- एम्पीयर का नियम
- समाई और 'विस्थापन धारा'
संदर्भ
- ↑ John D Jackson (1999). शास्त्रीय इलेक्ट्रोडायनामिक्स (3rd ed.). Wiley. p. 238. ISBN 978-0-471-30932-1.
- ↑ For example, see David J Griffiths (1999). Introduction to Electrodynamics (3rd ed.). Pearson/Addison Wesley. p. 323. ISBN 978-0-13-805326-0. and Tai L Chow (2006). Introduction to Electromagnetic Theory. Jones & Bartlett. p. 204. ISBN 978-0-7637-3827-3.
- ↑ Palmer, Stuart B. & Rogalski, Mircea S. (1996). Advanced University Physics. Taylor & Francis. p. 214. ISBN 978-2-88449-065-8 – via Google Books.
- ↑ Serway, Raymond A. & Jewett, John W. (2006). Principles of Physics. Thomson Brooks/Cole. p. 807. ISBN 978-0-534-49143-7 – via Google Books.
- ↑ Feynman, Richard P.; Leighton, Robert & Sands, Matthew (1963). The Feynman Lectures on Physics. Vol. 2. Massachusetts, USA: Addison-Wesley. p. 18‑4. ISBN 978-0-201-02116-5 – via archive.org.
- ↑ Bonnett, Raymond & Cloude, Shane (1995). An Introduction to Electromagnetic Wave Propagation and Antennas. Taylor & Francis. p. 16. ISBN 978-1-85728-241-2 – via Google Books.
- ↑ Slater, J.C. & Frank, N.H. (1969) [1947]. Electromagnetism (reprint ed.). Courier Dover Publications. p. 84. ISBN 978-0-486-62263-7 – via Google Books.
- ↑ JC Slater and NH Frank (1969). विद्युत चुंबकत्व (op. cit. ed.). p. 91. ISBN 978-0-486-62263-7.
- ↑ J Billingham, A C King (2006). तरंग चलन. Cambridge University Press. p. 182. ISBN 978-0-521-63450-2.
- ↑ Daniel M. Siegel (2003). मैक्सवेल के इलेक्ट्रोमैग्नेटिक थ्योरी में इनोवेशन. Cambridge University Press. p. 85. ISBN 978-0-521-53329-4.
- ↑ Paul J. Nahin (2002). Oliver Heaviside: The Life, Work, and Times of an Electrical Genius of the Victorian Age. Johns Hopkins University Press. p. 109. ISBN 978-0-8018-6909-9.
- ↑ Vyacheslav Stepin (2002). सैद्धांतिक ज्ञान. Springer. p. 202. ISBN 978-1-4020-3045-1.
मैक्सवेल के कागजात
- फैराडे की बल की रेखाओं पर मैक्सवेल का 1855 का पेपर
- मीडिया: बल की भौतिक रेखाओं पर.pdf मैक्सवेल का 1861 का पेपर
- मीडिया: विद्युत चुम्बकीय फील्ड का एक गतिशील सिद्धांत। पीडीएफ मैक्सवेल का 1864 का पेपर
अग्रिम पठन
- AM Bork Maxwell, Displacement Current, and Symmetry (1963)
- AM Bork Maxwell and the Electromagnetic Wave Equation (1967)
बाहरी संबंध
- Media related to विस्थापन धारा at Wikimedia Commons