फाइबोनैचि बहुपद: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
No edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 117: | Line 117: | ||
*{{OEIS el|sequencenumber=A162515|name=Triangle of coefficients of polynomials defined by Binet form|formalname=Triangle of coefficients of polynomials defined by Binet form: P(n,x) = (U^n-L^n)/d, where U=(x+d)/2, L=(x-d)/2, d=(4 + x^2)^(1/2)}} | *{{OEIS el|sequencenumber=A162515|name=Triangle of coefficients of polynomials defined by Binet form|formalname=Triangle of coefficients of polynomials defined by Binet form: P(n,x) = (U^n-L^n)/d, where U=(x+d)/2, L=(x-d)/2, d=(4 + x^2)^(1/2)}} | ||
*{{OEIS el|sequencenumber=A011973|name=Triangle of coefficients of Fibonacci polynomials|formalname=Triangle of numbers {C(n-k,k), n >= 0, 0 <= k <= floor(n/2)}; or, triangle of coefficients of (one version of) Fibonacci polynomials}} | *{{OEIS el|sequencenumber=A011973|name=Triangle of coefficients of Fibonacci polynomials|formalname=Triangle of numbers {C(n-k,k), n >= 0, 0 <= k <= floor(n/2)}; or, triangle of coefficients of (one version of) Fibonacci polynomials}} | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category: | |||
[[Category:Created On 03/03/2023]] | [[Category:Created On 03/03/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Machine Translated Page]] | ||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:फाइबोनैचि संख्या]] | |||
[[Category:बहुपदों]] |
Latest revision as of 11:45, 24 March 2023
गणित में, फाइबोनैचि बहुपद एक बहुपद अनुक्रम है जिसे फाइबोनैचि संख्याओं के सामान्यीकरण के रूप में माना जा सकता है। लुकास संख्या से समान तरीके से उत्पन्न बहुपदों को लुकास बहुपद कहा जाता है।
परिभाषा
ये फाइबोनैचि बहुपद एक पुनरावृत्ति संबंध द्वारा परिभाषित किए गए हैं:[1]
लुकास बहुपद अलग-अलग शुरुआती मूल्यों के साथ समान पुनरावृत्ति का उपयोग करते हैं:[2]
उन्हें नकारात्मक सूचकांकों के लिए परिभाषित किया जा सकता है[3]
फाइबोनैचि बहुपद के साथ ओर्थोगोनल बहुपद पुनरावृत्ति संबंध का एक अनुक्रम बनाते हैं और .
उदाहरण
पहले कुछ फाइबोनैचि बहुपद हैं:
पहले कुछ लुकास बहुपद हैं:
गुण
- Fn की डिग्री n − 1 है और Ln की डिग्री n है
- x = 1 पर बहुपदों का मूल्यांकन करके फाइबोनैचि और लुकास संख्याएं पुनर्प्राप्त की जाती हैं; पेल संख्याएँ Fn का मूल्यांकन करके प्राप्त की जाती हैं Fn पर x = 2 हैं।
- अनुक्रमों के लिए जनरेटिंग फ़ंक्शन, साधारण जनरेटिंग फ़ंक्शन हैं:[4]
- बहुपदों को लुकास अनुक्रमों के रूप में व्यक्त किया जा सकता है
- उन्हें चेबिशेव बहुपदों के संदर्भ में भी व्यक्त किया जा सकता है और जैसा
- जहाँ काल्पनिक इकाई है।
पहचान
लुकास अनुक्रमों के विशेष मामलों के रूप में, फाइबोनैचि बहुपद कई सर्वसमिकाओं को संतुष्ट करते हैं, जैसे[3]:
बिनेट के फार्मूले के समान क्लोज्ड फॉर्म एक्सप्रेशन हैं:[3]:
जहाँ
के समाधान (t में) हैं
लुकास बहुपद n > 0 के लिए, हमारे पास है
फाइबोनैचि बहुपदों और मानक आधार बहुपदों के बीच संबंध निम्न द्वारा दिया जाता है[5]
उदाहरण के लिए,
मिश्रित व्याख्या
यदि F(n,k) xk का गुणांक है Fn(x) में अर्थात्
फिर F(n,k) तरीकों की संख्या है n−1 बटा 1 आयत को 2 बटा 1 डॉमिनोज़ और 1 बटा 1 वर्ग के साथ टाइल किया जा सकता है ताकि बिल्कुल k वर्गों का उपयोग किया जाए।[1]समान रूप से, F(n,k) केवल 1 और 2 को सम्मिलित करने वाली संरचना (संख्या सिद्धांत) के रूप में n−1 लिखने के तरीकों की संख्या है, ताकि 1 का उपयोग ठीक k बार किया जा सके। उदाहरण के लिए F(6,3)=4 और 5 को 4 तरह से लिखा जा सकता है, 1+1+1+2, 1+1+2+1, 1+2+1+1, 2+1+1+1 , केवल 1 और 2 वाली राशि के रूप में 1 के साथ 3 बार उपयोग किया जाता है। इस तरह की राशि में 1 और 2 दोनों का उपयोग कितनी बार किया जाता है, इसकी संख्या की गणना करने से यह स्पष्ट होता है
यह पास्कल के त्रिकोण से गुणांकों को पढ़ने का एक तरीका देता है जैसा कि दाईं ओर दिखाया गया है।
संदर्भ
- ↑ 1.0 1.1 Benjamin & Quinn p. 141
- ↑ Benjamin & Quinn p. 142
- ↑ 3.0 3.1 3.2 Springer
- ↑ Weisstein, Eric W. "Fibonacci Polynomial". MathWorld.
- ↑ A proof starts from page 5 in Algebra Solutions Packet (no author).
- Benjamin, Arthur T.; Quinn, Jennifer J. (2003). "Fibonacci and Lucas Polynomial". Proofs that Really Count: The Art of Combinatorial Proof. Dolciani Mathematical Expositions. Vol. 27. Mathematical Association of America. p. 141. ISBN 978-0-88385-333-7.
- Philippou, Andreas N. (2001) [1994], "Fibonacci polynomials", Encyclopedia of Mathematics, EMS Press
- Philippou, Andreas N. (2001) [1994], "Lucas polynomials", Encyclopedia of Mathematics, EMS Press
- Weisstein, Eric W. "Lucas Polynomial". MathWorld.
- Jin, Z. On the Lucas polynomials and some of their new identities. Advances in Differential Equations 2018, 126 (2018). https://doi.org/10.1186/s13662-018-1527-9
अग्रिम पठन
- Hoggatt, V. E.; Bicknell, Marjorie (1973). "Roots of Fibonacci polynomials". Fibonacci Quarterly. 11: 271–274. ISSN 0015-0517. MR 0332645.
- Hoggatt, V. E.; Long, Calvin T. (1974). "Divisibility properties of generalized Fibonacci Polynomials". Fibonacci Quarterly. 12: 113. MR 0352034.
- Ricci, Paolo Emilio (1995). "Generalized Lucas polynomials and Fibonacci polynomials". Rivista di Matematica della Università di Parma. V. Ser. 4: 137–146. MR 1395332.
- Yuan, Yi; Zhang, Wenpeng (2002). "Some identities involving the Fibonacci Polynomials". Fibonacci Quarterly. 40 (4): 314. MR 1920571.
- Cigler, Johann (2003). "q-Fibonacci polynomials". Fibonacci Quarterly (41): 31–40. MR 1962279.