अपकेंद्री विभाजन क्रोमैटोग्राफी: Difference between revisions

From Vigyanwiki
(TEXT)
(TEXT)
Line 1: Line 1:
केन्द्रापसारक विभाजन [[क्रोमैटोग्राफी]] एक विशेष क्रोमैटोग्राफी तकनीक है जहां स्थिर और मोबाइल चरण दोनों तरल होते हैं, और स्थिर चरण एक मजबूत केन्द्रापसारक बल द्वारा स्थिर होता है। केन्द्रापसारक विभाजन क्रोमैटोग्राफी में निष्कर्षण सेल की एक श्रृंखला-संबंधन नेटवर्क होता है, जो मौलिक निष्कर्षक के रूप में कार्य करता है, और दक्षता की गारंटित कैस्केड द्वारा दी जाती है।<ref>{{Cite book|title=केन्द्रापसारक विभाजन क्रोमैटोग्राफी|last=P, Foucault|first=Alain|publisher=Marcel Dekker, Inc|year=1995|isbn=0-8247-9257-2|location=New York}}</ref>
केन्द्रापसारक विभाजन [[क्रोमैटोग्राफी]] एक विशेष क्रोमैटोग्राफी तकनीक है जहां स्थिर और गतिशील प्रावस्था दोनों तरल होते हैं, और स्थिर प्रावस्था एक मजबूत केन्द्रापसारक बल द्वारा स्थिर होती है। केन्द्रापसारक विभाजन क्रोमैटोग्राफी में निष्कर्षण सेल की एक श्रृंखला-संबंधन नेटवर्क होता है, जो मौलिक निष्कर्षक के रूप में कार्य करता है, और दक्षता की गारंटित सोपानी (कैस्केड) द्वारा दी जाती है।<ref>{{Cite book|title=केन्द्रापसारक विभाजन क्रोमैटोग्राफी|last=P, Foucault|first=Alain|publisher=Marcel Dekker, Inc|year=1995|isbn=0-8247-9257-2|location=New York}}</ref>
== इतिहास ==
== इतिहास ==
1940 के दशक में क्रेग ने प्रतिधारा विभाजन करने के लिए पहले उपकरण का आविष्कार किया; उन्होंने इस प्रतिधारा वितरण क्रेग उपकरण को ग्लास ट्यूबों की एक श्रृंखला कहा है जो डिज़ाइन और व्यवस्थित हैं कि हल्का तरल चरण एक ट्यूब से दूसरे में स्थानांतरित किया जाता है। अगला प्रमुख मील का पत्थर बिंदुक प्रतिधारा क्रोमैटोग्राफी (DCCC) था। यह मोबाइल चरण को स्थिर चरण के माध्यम से स्थानांतरित करने के लिए केवल गुरुत्वाकर्षण का उपयोग करता है जो श्रृंखला में जुड़े लंबे ऊर्ध्वाधर ट्यूबों में आयोजित होता है। सीसीसी का आधुनिक युग इटो द्वारा ग्रहों के अपकेंद्रित्र के विकास के साथ प्रारंभ हुआ, जिसे पहली बार 1966 में एक बंद पेचदार ट्यूब के रूप में प्रस्तावित किया गया था, जिसे "ग्रह" अक्ष पर घुमाया गया था, जैसा कि "सूर्य" अक्ष पर मुड़ा हुआ है। केन्द्रापसारक विभाजन क्रोमैटोग्राफी को 1982 में जापान में प्रस्तावित किया गया था; पहला उपकरण Sanki Eng. Ltd. में बनाया गया था। पहले उपकरण में अपकेंद्रित्र के रोटर के चारों ओर व्यवस्थित बारह कारतूस सम्मिलित थे; 50 चैनलों के लिए प्रत्येक कारतूस की आंतरिक मात्रा लगभग 15 mL थी। 1999 में रेडियल सेल के साथ पहले एफसीसीसी का क्रोमैटन विकसित किया गया था। सेल के विकास के दौरान, Z सेल को 2005 में और ट्विन सेल को 2009 में पूरा हुआ। 2017 में रोटाक्रोम ने संगणित द्रव गतिशील अनुकरण सॉफ़्टवेयर के माध्यम से अपने शीर्ष प्रदर्शन करने वाले CPC सेल डिज़ाइन किए। हजारों अनुकरण के बाद, इस उपकरण ने पारंपरिक सीपीसी सेल डिजाइनों की कमियों का खुलासा किया और रोटाक्रोम की अद्वितीय भार क्षमता और मापनीय सेल डिजाइन पर प्रकाश डाला।<ref>{{cite web | url=https://patents.justia.com/patent/20180280830 | title=US Patent Application for Extraction cell for a centrifugal partition chromatograph, a centrifugal partition chromatograph containing such a cell, and a method for producing such an extraction cell Patent Application (Application #20180280830 issued October 4, 2018) - Justia Patents Search }}</ref>
1940 के दशक में क्रेग ने प्रतिधारा विभाजन करने के लिए पहले उपकरण का आविष्कार किया; उन्होंने इस प्रतिधारा वितरण क्रेग उपकरण को ग्लास ट्यूबों की एक श्रृंखला कहा है जो डिज़ाइन और व्यवस्थित हैं कि हल्के तरल प्रावस्था एक ट्यूब से दूसरे में स्थानांतरित किया जाता है। अगला प्रमुख मील का पत्थर बिंदुक प्रतिधारा क्रोमैटोग्राफी (DCCC) था। यह गतिशील प्रावस्था को स्थिर प्रावस्था के माध्यम से स्थानांतरित करने के लिए केवल गुरुत्वाकर्षण का उपयोग करता है जो श्रृंखला में जुड़े लंबे ऊर्ध्वाधर ट्यूबों में आयोजित होता है। सीसीसी का आधुनिक युग इटो द्वारा ग्रहों के अपकेंद्रित्र के विकास के साथ प्रारंभ हुआ, जिसे पहली बार 1966 में एक बंद पेचदार ट्यूब के रूप में प्रस्तावित किया गया था, जिसे "ग्रह" अक्ष पर घुमाया गया था, जैसा कि "सूर्य" अक्ष पर मुड़ा हुआ है। केन्द्रापसारक विभाजन क्रोमैटोग्राफी को 1982 में जापान में प्रस्तावित किया गया था; पहला उपकरण सैंकी इंजी. लि. में बनाया गया था। पहले उपकरण में अपकेंद्रित्र के रोटर के चारों ओर व्यवस्थित बारह कारतूस सम्मिलित थे; 50 चैनलों के लिए प्रत्येक कारतूस की आंतरिक मात्रा लगभग 15 mL थी। 1999 में रेडियल सेल के साथ पहले एफसीसीसी का क्रोमैटन विकसित किया गया था। सेल के विकास के अंतर्गत, Z सेल 2005 में और ट्विन सेल 2009 में पूरा हुआ। 2017 में रोटाक्रोम ने संगणित द्रव गतिशील अनुकरण सॉफ़्टवेयर के माध्यम से अपने शीर्ष प्रदर्शन करने वाले सीपीसी सेल डिज़ाइन किए। हजारों अनुकरण के बाद, इस उपकरण ने पारंपरिक सीपीसी सेल डिजाइनों की कमियों को प्रकाशित किया और रोटाक्रोम की अद्वितीय भार क्षमता और मापनीय सेल डिजाइन पर प्रकाश डाला।<ref>{{cite web | url=https://patents.justia.com/patent/20180280830 | title=US Patent Application for Extraction cell for a centrifugal partition chromatograph, a centrifugal partition chromatograph containing such a cell, and a method for producing such an extraction cell Patent Application (Application #20180280830 issued October 4, 2018) - Justia Patents Search }}</ref>
== ऑपरेशन ==
== ऑपरेशन ==
निष्कर्षण सेल में तरल संबंधन के इनलेट्स और आउटलेट्स के साथ खोखले निकाय होते हैं। सेल को पहले स्थिर चरण के लिए चयनित तरल से भर दिया जाता है। घूर्णन के अंतर्गत, मोबाइल चरण की पम्पिंग प्रारंभ हो जाती है, जो इनलेट से सेल में प्रवेश करती है। मोबाइल चरण के प्रवाह में प्रवेश करते समय स्टोक्स के नियम के अनुसार छोटी-छोटी बूंदें बनती हैं, जिसे परमाणुकरण कहा जाता है। ये बूंदें स्थिर चरण के माध्यम से गिरती हैं, एक उच्च अंतरापृष्ठ क्षेत्र बनाती हैं, जिसे निष्कर्षण कहा जाता है। सेल के अंत में ये बूँदें पृष्ठ तनाव के कारण आपस में जुड़ जाती हैं, जिसे निक्षेपण कहते हैं।
निष्कर्षण सेल में तरल संबंधन के इनलेट्स और आउटलेट्स के साथ खोखले निकाय होते हैं। सेल को पहले स्थिर प्रावस्था के लिए चयनित तरल से भर दिया जाता है। घूर्णन के अंतर्गत, गतिशील प्रावस्था की पम्पिंग प्रारंभ हो जाती है, जो इनलेट से सेल में प्रवेश करती है। गतिशील प्रावस्था के प्रवाह में प्रवेश करते समय स्टोक्स के नियम के अनुसार छोटी-छोटी बूंदें बनती हैं, जिसे परमाणुकरण कहा जाता है। ये बूंदें स्थिर प्रावस्था के माध्यम से गिरती हैं, एक उच्च अंतरापृष्ठ क्षेत्र बनाती हैं, जिसे निष्कर्षण कहा जाता है। सेल के अंत में ये बूँदें पृष्ठ तनाव के कारण आपस में जुड़ जाती हैं, जिसे निक्षेपण कहते हैं।


जब एक नमूना मिश्रण को मोबाइल चरण के प्रवाह में एक प्लग के रूप में इंजेक्ट किया जाता है, तो मिश्रण के यौगिकों को उनके विभाजन गुणांक के अनुसार एल्यूट किया जाता है: <math>V_{elution}=V_{dead-volume}+K_{upper/lower}*V_{stationary-phase}</math>
जब एक नमूना मिश्रण को गतिशील प्रावस्था के प्रवाह में एक प्लग के रूप में अंतःक्षिप्त किया जाता है, तो मिश्रण के यौगिकों को उनके विभाजन गुणांक के अनुसार एल्यूट किया जाता है: <math>V_{elution}=V_{dead-volume}+K_{upper/lower}*V_{stationary-phase}</math>


केन्द्रापसारक विभाजन क्रोमैटोग्राफी में विलायक के केवल एक द्विध्रुवीय मिश्रण की आवश्यकता होती है, इसलिए विलायक प्रणाली के संविधान को अलग-अलग करके विभिन्न यौगिकों के विभाजन गुणांक को ट्यून करना संभव है इसलिए उच्च चयनात्मकता द्वारा अलगाव की गारंटी हो।
केन्द्रापसारक विभाजन क्रोमैटोग्राफी में विलायक के केवल एक द्विध्रुवीय मिश्रण की आवश्यकता होती है, इसलिए विलायक प्रणाली के संविधान को अलग-अलग करके विभिन्न यौगिकों के विभाजन गुणांक को ट्यून करना संभव है ताकि उच्च चयनात्मकता द्वारा अलगाव की गारंटी दी जा सके।


==== प्रतिधारा क्रोमैटोग्राफी के साथ तुलना ====
==== प्रतिधारा क्रोमैटोग्राफी के साथ तुलना ====
प्रतिधारा क्रोमैटोग्राफी और केन्द्रापसारक विभाजन क्रोमैटोग्राफी एक ही तरल-तरल क्रोमैटोग्राफिक सिद्धांत के दो अलग-अलग वाद्य बोध हैं। प्रतिधारा क्रोमैटोग्राफी सामान्यतः रोटरी सील के बिना ग्रहीय गियर गति का उपयोग करती है, जबकि केन्द्रापसारक विभाजन क्रोमैटोग्राफी तरल संबंधन के लिए रोटरी सील के साथ वृत्तीय घूर्णन का उपयोग करती है। CCC में कुंडल ट्यूब में अंतर्विनिमय मिश्रण और निःसादन अंचल हैं, इसलिए कणीकरण, निष्कर्ष और निःसादन काल और क्षेत्र अलग हैं। केन्द्रापसारक विभाजन क्रोमैटोग्राफी के अंदर, तीनों चरण एक समय में सेल के अंदर लगातार होते हैं।
प्रतिधारा क्रोमैटोग्राफी और केन्द्रापसारक विभाजन क्रोमैटोग्राफी एक ही तरल-तरल क्रोमैटोग्राफिक सिद्धांत के दो अलग-अलग वाद्य बोध हैं। प्रतिधारा क्रोमैटोग्राफी सामान्यतः रोटरी सील के बिना ग्रहीय गियर गति का उपयोग करते है, जबकि केन्द्रापसारक विभाजन क्रोमैटोग्राफी तरल संबंधन के लिए रोटरी सील के साथ वृत्तीय घूर्णन का उपयोग करती है। सीसीसी में कुंडल ट्यूब में अंतर्विनिमय मिश्रण और निःसादन अंचल हैं, इसलिए कणीकरण, निष्कर्ष और निःसादन काल और क्षेत्र अलग हैं। केन्द्रापसारक विभाजन क्रोमैटोग्राफी के अंदर, तीनों प्रावस्था एक समय में सेल के अंदर लगातार होते हैं।


केन्द्रापसारक विभाजन क्रोमैटोग्राफी के लाभ:
केन्द्रापसारक विभाजन क्रोमैटोग्राफी के लाभ:
Line 16: Line 16:
* उच्च उत्पादकता (उच्च प्रवाह दर और तेज पृथक्करण समय के कारण)
* उच्च उत्पादकता (उच्च प्रवाह दर और तेज पृथक्करण समय के कारण)
* प्रति माह टन तक मापनीय<ref>{{Cite web|last=Laszlo|first=Lorantfy|date=|title=औद्योगिक पैमाने सीपीसी का विकास|url=https://www.researchgate.net/publication/284750552|url-status=live|archive-url=|archive-date=|access-date=2016-03-21|website=ResearchGate|publisher=Laszlo Lorantfy}}</ref>
* प्रति माह टन तक मापनीय<ref>{{Cite web|last=Laszlo|first=Lorantfy|date=|title=औद्योगिक पैमाने सीपीसी का विकास|url=https://www.researchgate.net/publication/284750552|url-status=live|archive-url=|archive-date=|access-date=2016-03-21|website=ResearchGate|publisher=Laszlo Lorantfy}}</ref>
* अधिकांश चरणों के लिए बेहतर स्थिर चरण प्रतिधारण
* अधिकांश प्रावस्था के लिए बेहतर स्थिर प्रावस्था प्रतिधारण


केन्द्रापसारक विभाजन क्रोमैटोग्राफी की हानि:
केन्द्रापसारक विभाजन क्रोमैटोग्राफी की हानि:
Line 23: Line 23:


== प्रयोगशाला पैमाना ==
== प्रयोगशाला पैमाना ==
केन्द्रापसारक विभाजन क्रोमैटोग्राफी का 40 वर्षों से प्राकृतिक उत्पादों के अलगाव और शुद्धिकरण के लिए बड़े पैमाने पर उपयोग किया जाता है।<ref>{{Cite journal|last=Guido|first=F. Pauli|date=2008|title=प्राकृतिक उत्पादों का प्रतिधारा पृथक्करण|journal=Journal of Natural Products|doi=10.1021/np800144q|pmid=18666799|volume=71|issue=8|pages=1489–508}}</ref> बहुत उच्च चयनात्मकता प्राप्त करने की क्षमता, और कण पदार्थ वाले नमूनों को सहन करने की क्षमता के कारण, पारंपरिक तरल क्रोमैटोग्राफी के विपरीत, बायोमास के सीधे अर्क के साथ काम करना संभव है, जहां अशुद्धियां ठोस स्थिर चरण को नीचा दिखाती हैं ताकि अलगाव असंभव हो जाए।
केन्द्रापसारक विभाजन क्रोमैटोग्राफी का 40 वर्षों से प्राकृतिक उत्पादों के अलगाव और शुद्धिकरण के लिए बड़े पैमाने पर उपयोग किया जाता है।<ref>{{Cite journal|last=Guido|first=F. Pauli|date=2008|title=प्राकृतिक उत्पादों का प्रतिधारा पृथक्करण|journal=Journal of Natural Products|doi=10.1021/np800144q|pmid=18666799|volume=71|issue=8|pages=1489–508}}</ref> बहुत उच्च चयनात्मकता प्राप्त करने की क्षमता, और कण पदार्थ वाले नमूनों को सहन करने की क्षमता के कारण, पारंपरिक तरल क्रोमैटोग्राफी के विपरीत, बायोमास के सीधे अर्क के साथ काम करना संभव है, जहां अशुद्धियां ठोस स्थिर प्रावस्था को नीचा दिखाती हैं ताकि अलगाव असंभव हो जाए।


दुनिया भर में कई प्रयोगशाला पैमाने पर केन्द्रापसारक विभाजन क्रोमैटोग्राफी निर्माता हैं, जैसे गिलसन (आर्मेन इंस्ट्रूमेंट), क्रोमेटन (रूसेलेट रोबटेल), और एईसीएस-क्विकप्रेप। ये उपकरण 40-80% के स्थिर चरण प्रतिधारण के साथ 1–500 mL/min की कम दरों पर काम करते हैं।
दुनिया भर में कई प्रयोगशाला पैमाने पर केन्द्रापसारक विभाजन क्रोमैटोग्राफी निर्माता हैं, जैसे गिलसन (आर्मेन इंस्ट्रूमेंट), क्रोमेटन (रूसेलेट रोबटेल), और एईसीएस-क्विकप्रेप है। ये उपकरण 40-80% के स्थिर प्रावस्था प्रतिधारण के साथ 1–500 mL/min की कम दरों पर काम करते हैं।


== उत्पादन पैमाना ==
== उत्पादन पैमाना ==
केन्द्रापसारक विभाजन क्रोमैटोग्राफी किसी ठोस स्थिर चरण का उपयोग नहीं करती है, इसलिए यह उच्चतम औद्योगिक स्तरों के लिए लागत प्रभावी पृथक्करण की गारंटी देती है। प्रतिधारा क्रोमैटोग्राफी के विपरीत, 80% से अधिक के सक्रिय स्थिर चरण अनुपात के साथ बहुत उच्च प्रवाह दर (उदाहरण के लिए 10 लीटर / मिनट) प्राप्त करना संभव है, जो अच्छे पृथक्करण और उच्च उत्पादकता की गारंटी देता है। केन्द्रापसारक विभाजन क्रोमैटोग्राफी के रूप में, सामग्री को विलीन कर दिया जाता है, और द्रव्यमान / आयतन इकाइयों में स्तंभ को भारित किया जाता है, भरण क्षमता मानक ठोस-तरल क्रोमैटोग्राफिक तकनीकों की तुलना में बहुत अधिक हो सकती है, जहां सामग्री को स्थिर चरण के सक्रिय सतह क्षेत्र में भारित किया जाता है, जो 10% से कम कॉलम लेता है।
केन्द्रापसारक विभाजन क्रोमैटोग्राफी किसी ठोस स्थिर प्रावस्था का उपयोग नहीं करती है, इसलिए यह उच्चतम औद्योगिक स्तरों के लिए लागत प्रभावी पृथक्करण की गारंटी देती है। प्रतिधारा क्रोमैटोग्राफी के विपरीत, 80% से अधिक के सक्रिय स्थिर प्रावस्था अनुपात के साथ बहुत उच्च प्रवाह दर (उदाहरण के लिए 10 लीटर/मिनट) प्राप्त करना संभव है, जो अच्छे पृथक्करण और उच्च उत्पादकता की गारंटी देता है। केन्द्रापसारक विभाजन क्रोमैटोग्राफी के रूप में, सामग्री को विलीन कर दिया जाता है, और द्रव्यमान/आयतन इकाइयों में स्तंभ को भारित किया जाता है, भरण क्षमता मानक ठोस-तरल क्रोमैटोग्राफिक तकनीकों की तुलना में बहुत अधिक हो सकती है, जहां सामग्री को स्थिर प्रावस्था के सक्रिय सतह क्षेत्र में भारित किया जाता है, जो 10% से कम कॉलम लेता है।


औद्योगिक उपकरण जैसे गिलसन (आर्मेन इंस्ट्रूमेंट), क्रोमटन (रूसेलेट रोबेटेल) और रोटाक्रोम टेक्नोलॉजीज ([http://www.rotachrom.com रोटाक्रोम]) संतोषजनक स्थिर चरण प्रतिधारण (70-90%) के साथ उपयोजित प्रवाह दर से प्रयोगशाला पैमाने के उपकरणों से भिन्न होते हैं। औद्योगिक उपकरणों में कई लीटर / मिनट की प्रवाह दर होती है, जबकि प्रति माह 10 kg से लेकर टन तक सामग्री को शुद्ध करने में सक्षम होता हैं।
औद्योगिक उपकरण जैसे गिलसन (आर्मेन इंस्ट्रूमेंट), क्रोमटन (रूसेलेट रोबेटेल) और रोटाक्रोम टेक्नोलॉजीज ([http://www.rotachrom.com रोटाक्रोम]) संतोषजनक स्थिर प्रावस्था प्रतिधारण (70-90%) के साथ उपयोजित प्रवाह दर से प्रयोगशाला पैमाने के उपकरणों से भिन्न होते हैं। औद्योगिक उपकरणों में कई लीटर/मिनट की प्रवाह दर होती है, जबकि प्रति माह 10 kg से लेकर टन तक सामग्री को शुद्ध करने में सक्षम होता हैं।


उत्पादन पैमाने के उपकरण को संचालित करने के लिए औद्योगिक मात्रा विलायक तैयारी (मिश्रण/अधिवासी) और विलायक पुनर्प्राप्ति उपकरण की आवश्यकता होती है।
उत्पादन पैमाने के उपकरण को संचालित करने के लिए औद्योगिक मात्रा विलायक तैयारी (मिश्रण/अधिवासी) और विलायक पुनर्प्राप्ति उपकरण की आवश्यकता होती है।

Revision as of 00:20, 21 March 2023

केन्द्रापसारक विभाजन क्रोमैटोग्राफी एक विशेष क्रोमैटोग्राफी तकनीक है जहां स्थिर और गतिशील प्रावस्था दोनों तरल होते हैं, और स्थिर प्रावस्था एक मजबूत केन्द्रापसारक बल द्वारा स्थिर होती है। केन्द्रापसारक विभाजन क्रोमैटोग्राफी में निष्कर्षण सेल की एक श्रृंखला-संबंधन नेटवर्क होता है, जो मौलिक निष्कर्षक के रूप में कार्य करता है, और दक्षता की गारंटित सोपानी (कैस्केड) द्वारा दी जाती है।[1]

इतिहास

1940 के दशक में क्रेग ने प्रतिधारा विभाजन करने के लिए पहले उपकरण का आविष्कार किया; उन्होंने इस प्रतिधारा वितरण क्रेग उपकरण को ग्लास ट्यूबों की एक श्रृंखला कहा है जो डिज़ाइन और व्यवस्थित हैं कि हल्के तरल प्रावस्था एक ट्यूब से दूसरे में स्थानांतरित किया जाता है। अगला प्रमुख मील का पत्थर बिंदुक प्रतिधारा क्रोमैटोग्राफी (DCCC) था। यह गतिशील प्रावस्था को स्थिर प्रावस्था के माध्यम से स्थानांतरित करने के लिए केवल गुरुत्वाकर्षण का उपयोग करता है जो श्रृंखला में जुड़े लंबे ऊर्ध्वाधर ट्यूबों में आयोजित होता है। सीसीसी का आधुनिक युग इटो द्वारा ग्रहों के अपकेंद्रित्र के विकास के साथ प्रारंभ हुआ, जिसे पहली बार 1966 में एक बंद पेचदार ट्यूब के रूप में प्रस्तावित किया गया था, जिसे "ग्रह" अक्ष पर घुमाया गया था, जैसा कि "सूर्य" अक्ष पर मुड़ा हुआ है। केन्द्रापसारक विभाजन क्रोमैटोग्राफी को 1982 में जापान में प्रस्तावित किया गया था; पहला उपकरण सैंकी इंजी. लि. में बनाया गया था। पहले उपकरण में अपकेंद्रित्र के रोटर के चारों ओर व्यवस्थित बारह कारतूस सम्मिलित थे; 50 चैनलों के लिए प्रत्येक कारतूस की आंतरिक मात्रा लगभग 15 mL थी। 1999 में रेडियल सेल के साथ पहले एफसीसीसी का क्रोमैटन विकसित किया गया था। सेल के विकास के अंतर्गत, Z सेल 2005 में और ट्विन सेल 2009 में पूरा हुआ। 2017 में रोटाक्रोम ने संगणित द्रव गतिशील अनुकरण सॉफ़्टवेयर के माध्यम से अपने शीर्ष प्रदर्शन करने वाले सीपीसी सेल डिज़ाइन किए। हजारों अनुकरण के बाद, इस उपकरण ने पारंपरिक सीपीसी सेल डिजाइनों की कमियों को प्रकाशित किया और रोटाक्रोम की अद्वितीय भार क्षमता और मापनीय सेल डिजाइन पर प्रकाश डाला।[2]

ऑपरेशन

निष्कर्षण सेल में तरल संबंधन के इनलेट्स और आउटलेट्स के साथ खोखले निकाय होते हैं। सेल को पहले स्थिर प्रावस्था के लिए चयनित तरल से भर दिया जाता है। घूर्णन के अंतर्गत, गतिशील प्रावस्था की पम्पिंग प्रारंभ हो जाती है, जो इनलेट से सेल में प्रवेश करती है। गतिशील प्रावस्था के प्रवाह में प्रवेश करते समय स्टोक्स के नियम के अनुसार छोटी-छोटी बूंदें बनती हैं, जिसे परमाणुकरण कहा जाता है। ये बूंदें स्थिर प्रावस्था के माध्यम से गिरती हैं, एक उच्च अंतरापृष्ठ क्षेत्र बनाती हैं, जिसे निष्कर्षण कहा जाता है। सेल के अंत में ये बूँदें पृष्ठ तनाव के कारण आपस में जुड़ जाती हैं, जिसे निक्षेपण कहते हैं।

जब एक नमूना मिश्रण को गतिशील प्रावस्था के प्रवाह में एक प्लग के रूप में अंतःक्षिप्त किया जाता है, तो मिश्रण के यौगिकों को उनके विभाजन गुणांक के अनुसार एल्यूट किया जाता है:

केन्द्रापसारक विभाजन क्रोमैटोग्राफी में विलायक के केवल एक द्विध्रुवीय मिश्रण की आवश्यकता होती है, इसलिए विलायक प्रणाली के संविधान को अलग-अलग करके विभिन्न यौगिकों के विभाजन गुणांक को ट्यून करना संभव है ताकि उच्च चयनात्मकता द्वारा अलगाव की गारंटी दी जा सके।

प्रतिधारा क्रोमैटोग्राफी के साथ तुलना

प्रतिधारा क्रोमैटोग्राफी और केन्द्रापसारक विभाजन क्रोमैटोग्राफी एक ही तरल-तरल क्रोमैटोग्राफिक सिद्धांत के दो अलग-अलग वाद्य बोध हैं। प्रतिधारा क्रोमैटोग्राफी सामान्यतः रोटरी सील के बिना ग्रहीय गियर गति का उपयोग करते है, जबकि केन्द्रापसारक विभाजन क्रोमैटोग्राफी तरल संबंधन के लिए रोटरी सील के साथ वृत्तीय घूर्णन का उपयोग करती है। सीसीसी में कुंडल ट्यूब में अंतर्विनिमय मिश्रण और निःसादन अंचल हैं, इसलिए कणीकरण, निष्कर्ष और निःसादन काल और क्षेत्र अलग हैं। केन्द्रापसारक विभाजन क्रोमैटोग्राफी के अंदर, तीनों प्रावस्था एक समय में सेल के अंदर लगातार होते हैं।

केन्द्रापसारक विभाजन क्रोमैटोग्राफी के लाभ:

  • समान मात्रा आकार प्रयोगशाला पैमाने के उदाहरण के लिए उच्च प्रवाह दर: 250 mL केन्द्रापसारक विभाजन क्रोमैटोग्राफी में 5–15 mL/min की इष्टतम प्रवाह दर है, 250 mL प्रतिधारा क्रोमैटोग्राफी में 1-3 mL/min की इष्टतम प्रवाह दर है। प्रक्रिया पैमाने का उदाहरण: 25 L प्रतिधारा क्रोमैटोग्राफी में 100-300 ml/min की इष्टतम प्रवाह दर है, 25 L केन्द्रापसारक विभाजन क्रोमैटोग्राफी में 1000-3000 ml/min की इष्टतम प्रवाह दर है।
  • उच्च उत्पादकता (उच्च प्रवाह दर और तेज पृथक्करण समय के कारण)
  • प्रति माह टन तक मापनीय[3]
  • अधिकांश प्रावस्था के लिए बेहतर स्थिर प्रावस्था प्रतिधारण

केन्द्रापसारक विभाजन क्रोमैटोग्राफी की हानि:

  • सीसीसी की तुलना में उच्च दबाव (40-160 बार बनाम 5–25 बार के विशिष्ट संचालन दबाव)
  • समय के साथ रोटरी सील पहनना

प्रयोगशाला पैमाना

केन्द्रापसारक विभाजन क्रोमैटोग्राफी का 40 वर्षों से प्राकृतिक उत्पादों के अलगाव और शुद्धिकरण के लिए बड़े पैमाने पर उपयोग किया जाता है।[4] बहुत उच्च चयनात्मकता प्राप्त करने की क्षमता, और कण पदार्थ वाले नमूनों को सहन करने की क्षमता के कारण, पारंपरिक तरल क्रोमैटोग्राफी के विपरीत, बायोमास के सीधे अर्क के साथ काम करना संभव है, जहां अशुद्धियां ठोस स्थिर प्रावस्था को नीचा दिखाती हैं ताकि अलगाव असंभव हो जाए।

दुनिया भर में कई प्रयोगशाला पैमाने पर केन्द्रापसारक विभाजन क्रोमैटोग्राफी निर्माता हैं, जैसे गिलसन (आर्मेन इंस्ट्रूमेंट), क्रोमेटन (रूसेलेट रोबटेल), और एईसीएस-क्विकप्रेप है। ये उपकरण 40-80% के स्थिर प्रावस्था प्रतिधारण के साथ 1–500 mL/min की कम दरों पर काम करते हैं।

उत्पादन पैमाना

केन्द्रापसारक विभाजन क्रोमैटोग्राफी किसी ठोस स्थिर प्रावस्था का उपयोग नहीं करती है, इसलिए यह उच्चतम औद्योगिक स्तरों के लिए लागत प्रभावी पृथक्करण की गारंटी देती है। प्रतिधारा क्रोमैटोग्राफी के विपरीत, 80% से अधिक के सक्रिय स्थिर प्रावस्था अनुपात के साथ बहुत उच्च प्रवाह दर (उदाहरण के लिए 10 लीटर/मिनट) प्राप्त करना संभव है, जो अच्छे पृथक्करण और उच्च उत्पादकता की गारंटी देता है। केन्द्रापसारक विभाजन क्रोमैटोग्राफी के रूप में, सामग्री को विलीन कर दिया जाता है, और द्रव्यमान/आयतन इकाइयों में स्तंभ को भारित किया जाता है, भरण क्षमता मानक ठोस-तरल क्रोमैटोग्राफिक तकनीकों की तुलना में बहुत अधिक हो सकती है, जहां सामग्री को स्थिर प्रावस्था के सक्रिय सतह क्षेत्र में भारित किया जाता है, जो 10% से कम कॉलम लेता है।

औद्योगिक उपकरण जैसे गिलसन (आर्मेन इंस्ट्रूमेंट), क्रोमटन (रूसेलेट रोबेटेल) और रोटाक्रोम टेक्नोलॉजीज (रोटाक्रोम) संतोषजनक स्थिर प्रावस्था प्रतिधारण (70-90%) के साथ उपयोजित प्रवाह दर से प्रयोगशाला पैमाने के उपकरणों से भिन्न होते हैं। औद्योगिक उपकरणों में कई लीटर/मिनट की प्रवाह दर होती है, जबकि प्रति माह 10 kg से लेकर टन तक सामग्री को शुद्ध करने में सक्षम होता हैं।

उत्पादन पैमाने के उपकरण को संचालित करने के लिए औद्योगिक मात्रा विलायक तैयारी (मिश्रण/अधिवासी) और विलायक पुनर्प्राप्ति उपकरण की आवश्यकता होती है।

यह भी देखें

संदर्भ

  1. P, Foucault, Alain (1995). केन्द्रापसारक विभाजन क्रोमैटोग्राफी. New York: Marcel Dekker, Inc. ISBN 0-8247-9257-2.
  2. "US Patent Application for Extraction cell for a centrifugal partition chromatograph, a centrifugal partition chromatograph containing such a cell, and a method for producing such an extraction cell Patent Application (Application #20180280830 issued October 4, 2018) - Justia Patents Search".
  3. Laszlo, Lorantfy. "औद्योगिक पैमाने सीपीसी का विकास". ResearchGate. Laszlo Lorantfy. Retrieved 2016-03-21.{{cite web}}: CS1 maint: url-status (link)
  4. Guido, F. Pauli (2008). "प्राकृतिक उत्पादों का प्रतिधारा पृथक्करण". Journal of Natural Products. 71 (8): 1489–508. doi:10.1021/np800144q. PMID 18666799.
  • Centrifugal partition Chromatography - Chromatographic Science Series - Volume 68, Editor: Alain P. Foucault, Marcel Dekker Inc