वैद्युतकणसंचलन: Difference between revisions
(Created page with "{{short description|Motion of charged particles in electric field}} {{For|specific types and uses of electrophoresis (for example, in various analytical methods and as a proce...") |
(TEXT) |
||
Line 1: | Line 1: | ||
{{short description|Motion of charged particles in electric field}} | {{short description|Motion of charged particles in electric field}} | ||
{{For| | {{For|वैद्युतकणसंचलन के विशिष्ट प्रकार और उपयोग (उदाहरण के लिए, विभिन्न विश्लेषणात्मक विधि में और दवा देने की प्रक्रिया के रूप में, [[योणोगिनेसिस ]])}} | ||
[[File:Motion by electrophoresis of a charged particle.svg|thumb|300px|1. वैद्युतकणसंचलन का चित्रण]] | [[File:Motion by electrophoresis of a charged particle.svg|thumb|300px|1. वैद्युतकणसंचलन का चित्रण]] | ||
{{anchor| Fig2}} [[File:Retardation Force.svg|thumb|300px|2. वैद्युतकणसंचलन मंदता का चित्रण]]वैद्युतकणसंचलन एक स्थानिक | {{anchor| Fig2}} [[File:Retardation Force.svg|thumb|300px|2. वैद्युतकणसंचलन मंदता का चित्रण]]वैद्युतकणसंचलन एक स्थानिक समान [[विद्युत क्षेत्र]] के प्रभाव में द्रव के सापेक्ष बिखरे हुए कणों की गति है।<ref>{{cite book |first=J. |last=Lyklema |title= इंटरफेस और कोलाइड साइंस के फंडामेंटल|volume= 2 |page=3.208 |year=1995}}</ref><ref>{{cite book |first=R.J. |last=Hunter |title=कोलाइड विज्ञान की नींव|publisher=Oxford University Press |year=1989}}</ref><ref>{{cite book |first1=S.S. |last1=Dukhin |first2=B.V. |last2=Derjaguin |title=इलेक्ट्रोकाइनेटिक घटना|publisher=J. Wiley and Sons |year=1974}}</ref><ref>{{cite book |first1=W.B. |last1=Russel |first2=D.A. |last2=Saville |first3=W.R. |last3=Schowalter |title=कोलाइडल फैलाव|url=https://archive.org/details/colloidaldispers0000russ |url-access=registration |publisher=Cambridge University Press |year=1989|isbn=9780521341882 }}</ref><ref>{{cite book |first=H.R. |last=Kruyt |title=कोलाइड विज्ञान|publisher=Elsevier |volume=1, Irreversible systems |year=1952}}</ref><ref name="Dukhin">{{cite book | last1=Dukhin | first1=A.S. | last2=Goetz | first2=P.J. <!-- | url= https://dispersion.com/books/ --> |title=अल्ट्रासाउंड का उपयोग करते हुए तरल पदार्थ, नैनो- और सूक्ष्म कण और झरझरा शरीर की विशेषता| publisher= Elsevier | year=2017 | ||
|url= https://www.elsevier.com/books/characterization-of-liquids-dispersions-emulsions-and-porous-materials-using-ultrasound/dukhin/978-0-444-63908-0 |isbn= 978-0-444-63908-0}}</ref><ref>{{Cite journal |last=Anderson |first=J L|date=January 1989 |title=अंतरापृष्ठीय बलों द्वारा कोलाइड परिवहन|journal=Annual Review of Fluid Mechanics |language=en |volume=21 |issue=1 |pages=61–99 |doi= 10.1146/annurev.fl.21.010189.000425 |issn=0066-4189 |bibcode=1989AnRFM..21...61A}}</ref> सकारात्मक रूप से आवेशित कणों (धनायन) के वैद्युतकणसंचलन को कभी-कभी कैटफोरेसिस कहा जाता है, जबकि नकारात्मक रूप से आवेशित कणों (आयनों) के वैद्युतकणसंचलन को कभी-कभी एनाफोरेसिस कहा जाता है। | |url= https://www.elsevier.com/books/characterization-of-liquids-dispersions-emulsions-and-porous-materials-using-ultrasound/dukhin/978-0-444-63908-0 |isbn= 978-0-444-63908-0}}</ref><ref>{{Cite journal |last=Anderson |first=J L|date=January 1989 |title=अंतरापृष्ठीय बलों द्वारा कोलाइड परिवहन|journal=Annual Review of Fluid Mechanics |language=en |volume=21 |issue=1 |pages=61–99 |doi= 10.1146/annurev.fl.21.010189.000425 |issn=0066-4189 |bibcode=1989AnRFM..21...61A}}</ref> सकारात्मक रूप से आवेशित कणों (धनायन) के वैद्युतकणसंचलन को कभी-कभी कैटफोरेसिस कहा जाता है, जबकि नकारात्मक रूप से आवेशित कणों (आयनों) के वैद्युतकणसंचलन को कभी-कभी एनाफोरेसिस कहा जाता है। | ||
वैद्युतकणसंचलन की [[इलेक्ट्रोकाइनेटिक घटनाएं]] पहली बार 1807 में [[मास्को विश्वविद्यालय]] में रूसी | वैद्युतकणसंचलन की [[इलेक्ट्रोकाइनेटिक घटनाएं|विद्युतगतिक घटनाएं]] पहली बार 1807 में [[मास्को विश्वविद्यालय]] में रूसी आचार्य पीटर इवानोविच स्ट्रैखोव और फर्डिनेंड फ्रेडरिक रीस द्वारा देखी गई थी,<ref>{{cite journal |first = F.F.|last = Reuss|journal = Mémoires de la Société Impériale des Naturalistes de Moscou |volume = 2 |pages = 327–37 |year = 1809 |title = Sur un nouvel effet de l'électricité galvanique}}</ref> जिन्होंने देखा कि एक स्थिर विद्युत क्षेत्र के प्रयोग से पानी में बिखरी हुई मिट्टी के कण पलायन कर जाते हैं। यह अंततः कण की सतह और आसपास के तरल पदार्थ के मध्य आवेशित किए गए अंतराफलक की उपस्थिति के कारण होता है। यह आकार, आवेश या बाध्यकारी बंधुता द्वारा अणुओं को अलग करने के लिए रसायन विज्ञान में प्रयुक्त विश्लेषणात्मक तकनीकों का आधार है। | ||
आकार के आधार पर [[ मैक्रो मोलेक्यूल ]] | आकार के आधार पर[[ मैक्रो मोलेक्यूल | वृहदणु]] को अलग करने के लिए वैद्युतकणसंचलन का उपयोग प्रयोगशालाओं में किया जाता है। तकनीक एक ऋणात्मक आवेश उपयोजित करती है इसलिए [[प्रोटीन]] एक धनात्मक आवेश की ओर बढ़ता है। [[डीएनए]], आरएनए और प्रोटीन विश्लेषण में वैद्युतकणसंचलन का व्यापक रूप से उपयोग किया जाता है। | ||
== इतिहास == | == इतिहास == | ||
{{Main| | {{Main|वैद्युतकणसंचलन का इतिहास}} | ||
== सिद्धांत == | == सिद्धांत == | ||
निलंबित कणों में एक विद्युत सतह आवेश होता है, जो सतह पर | निलंबित कणों में एक विद्युत सतह आवेश होता है, जो सतह पर अधिशोषित प्रजातियों द्वारा दृढ़ता से प्रभावित होता है,<ref> | ||
{{cite journal | {{cite journal | ||
| last1=Hanaor | | last1=Hanaor | ||
Line 32: | Line 32: | ||
| doi= 10.1016/j.jeurceramsoc.2011.08.015| arxiv=1303.2754 | | doi= 10.1016/j.jeurceramsoc.2011.08.015| arxiv=1303.2754 | ||
| s2cid=98812224 | | s2cid=98812224 | ||
}}</ref> जिस पर एक बाहरी विद्युत क्षेत्र [[इलेक्ट्रोस्टैटिक]] [[कूलम्ब बल]] लगाता है। दोहरी परत | }}</ref> जिस पर एक बाहरी विद्युत क्षेत्र [[इलेक्ट्रोस्टैटिक|स्थिरवैद्युत]] [[कूलम्ब बल]] लगाता है। दोहरी परत सिद्धांत के अनुसार, तरल पदार्थ में सभी सतह आवेश [[आयनों]] की एक विसरित परत द्वारा प्रदर्शित होते हैं, जिसमें समान निरपेक्ष आवेश होता है लेकिन सतह आवेश के संबंध में विपरीत चिह्न होता है। विद्युत क्षेत्र भी विसरित परत में आयनों पर एक बल लगाता है जिसकी दिशा सतह के आवेश पर कार्य करने के विपरीत होती है। यह बाद वाला बल वास्तव में कण पर उपयोजित नहीं होता है, लेकिन कण की सतह से कुछ दूरी पर स्थित विसरित परत में आयनों के लिए होता है, और इसका एक भाग[[श्यान प्रतिबल]] के माध्यम से कण की सतह पर स्थानांतरित हो जाता है। बल के इस भाग को विद्युतकणसंचलन मंदता बल या संक्षेप में ईआरएफ भी कहा जाता है। जब विद्युत क्षेत्र उपयोजित किया जाता है और विश्लेषण किया जाने वाला आवेशित कण विसरित परत के माध्यम से स्थिर गति पर होता है, तो कुल परिणामी बल शून्य होता है: | ||
जब विद्युत क्षेत्र | |||
:<math> F_{tot} = 0 = F_{el} + F_{f} + F_{ret}</math> | :<math> F_{tot} = 0 = F_{el} + F_{f} + F_{ret}</math> | ||
कम [[रेनॉल्ड्स संख्या]] और मध्यम विद्युत क्षेत्र की ताकत | कम [[रेनॉल्ड्स संख्या]] और मध्यम विद्युत क्षेत्र की ताकत ''E'' के प्रकरण में, फैलाने वाले की श्यानता के कारण गतिमान कणों पर ड्रैग को ध्यान में रखते हुए, एक परिक्षिप्त हुए कण v का बहाव वेग केवल उपयोजित क्षेत्र के समानुपाती होता है, जो छोड़ देता है विद्युतकणसंचलन [[विद्युत गतिशीलता|गतिशीलता]] μ<sub>e</sub> को इस प्रकार परिभाषित करता है:<ref>[https://arxiv.org/abs/1303.2742 Anodic Aqueous electrophoretic Deposition of Titanium Dioxide Using Carboxylic Acids as Dispersing Agents] Journal of the European Ceramic Society, 31(6), 1041-1047, 2011</ref> | ||
:<math>\mu_e = {v \over E} | :<math>\mu_e = {v \over E}</math> | ||
वैद्युतकणसंचलन का सबसे प्रसिद्ध और व्यापक रूप से | वैद्युतकणसंचलन का सबसे प्रसिद्ध और व्यापक रूप से उपयोग किया जाने वाला सिद्धांत 1903 में [[मैरियन स्मोलुचोव्स्की|स्मोलुचोव्स्की]] द्वारा विकसित किया गया था:<ref>{{cite journal |first=M. |last=von Smoluchowski |journal=Bull. Int. Acad. Sci. Cracovie |volume=184 |year=1903 |title=Contribution à la théorie de l'endosmose électrique et de quelques phénomènes corrélatifs}}</ref> | ||
:<math>\mu_e = \frac{\varepsilon_r\varepsilon_0\zeta}{\eta}</math>, | :<math>\mu_e = \frac{\varepsilon_r\varepsilon_0\zeta}{\eta}</math>, | ||
जहां | जहां ε<sub>r</sub> परिक्षेपण माध्यम का परावैद्युत हुआ स्थिरांक है, ε<sub>0</sub> मुक्त स्थान की विधतशीलता है (C² N<sup>-1</sup> मि<sup>−2</sup>), η फैलाव माध्यम (Pa s) की गतिशील श्यानता है, और ζ जीटा क्षमता है (यानी, दोहरी परत, यूनिट mV या V में फिसलन स्तर की विद्युतगतिक क्षमता)। | ||
स्मोलुचोव्स्की सिद्धांत बहुत शक्तिशाली है क्योंकि यह किसी भी [[एकाग्रता|सांद्रता]] पर किसी भी [[आकार]] के [[बिखरे हुए कण|बिखरे हुए कणों]] के लिए काम करता है। इसकी वैधता पर सीमाएं हैं। उदाहरण के लिए, इसमें डिबाई लंबाई κ<sup>−1</sup> (इकाइयां मीटर) सम्मिलित नहीं है। हालांकि, चित्र 2,"वैद्युतकणसंचलन मंदता का चित्रण" से तुरंत निम्नानुसार वैद्युतकणसंचलन के लिए डेबाई की लंबाई महत्वपूर्ण होनी चाहिए। दोहरी परत (डीएल) की बढ़ती मोटाई कण सतह से आगे मंदता बल के बिंदु को हटाने की ओर ले जाती है। डीएल जितना मोटा होगा, मंदता बल उतना ही कम होगा। | |||
दोहरी परत (डीएल) की बढ़ती मोटाई कण सतह से आगे मंदता बल के बिंदु को हटाने की ओर ले जाती है। डीएल जितना मोटा होगा, मंदता बल उतना ही कम होगा। | |||
विस्तृत सैद्धांतिक विश्लेषण ने | विस्तृत सैद्धांतिक विश्लेषण ने प्रमाणित किया कि स्मोलुचोव्स्की सिद्धांत केवल पर्याप्त पतले डीएल के लिए मान्य है, जब कण त्रिज्या डेबी लंबाई से बहुत अधिक है: | ||
:<math> a \kappa \gg 1</math>. | :<math> a \kappa \gg 1</math>. | ||
पतली दोहरी परत का यह मॉडल न केवल वैद्युतकणसंचलन सिद्धांत के लिए बल्कि कई अन्य | "पतली दोहरी परत" का यह मॉडल न केवल वैद्युतकणसंचलन सिद्धांत के लिए बल्कि कई अन्य विद्युतगतिक सिद्धांतों के लिए जबरदस्त सरलीकरण प्रदान करता है। यह मॉडल अधिकांश [[जलीय]] प्रणालियों के लिए मान्य है, जहां डेबी की लंबाई सामान्यतः केवल कुछ [[नैनोमीटर]] होती है। यह केवल पानी के करीब आयनिक शक्ति वाले विलयन में नैनो-कोलोइड्स के लिए टूटता है। | ||
स्मोलुचोव्स्की सिद्धांत भी [[सतह चालकता]] से योगदान की उपेक्षा करता है। यह आधुनिक सिद्धांत में छोटी दुखिन संख्या की स्थिति के रूप में व्यक्त किया गया है: | |||
:<math> Du \ll 1 </math> | :<math> Du \ll 1 </math> | ||
वैद्युतकणसंचलन सिद्धांतों की वैधता की सीमा का विस्तार करने के प्रयास में, विपरीत स्पर्शोन्मुख | वैद्युतकणसंचलन सिद्धांतों की वैधता की सीमा का विस्तार करने के प्रयास में, विपरीत स्पर्शोन्मुख प्रकरण पर विचार किया गया था, जब डेबी की लंबाई कण त्रिज्या से बड़ी होती है: | ||
:<math> a \kappa < \!\, 1</math>. | :<math> a \kappa < \!\, 1</math>. | ||
एक मोटी दोहरी परत की इस स्थिति के | एक "मोटी दोहरी परत" की इस स्थिति के अंतर्गत, हुकेल<ref>{{cite journal |first=E. |last=Hückel |journal=Phys. Z. |volume=25 |page=204|title=कैटफोरस डेर कुगेल मरो|year=1924}}</ref> ने विद्युतकणसंचलन गतिशीलता के लिए निम्नलिखित संबंध की भविष्यवाणी की: | ||
:<math>\mu_e = \frac{2\varepsilon_r\varepsilon_0\zeta}{3\eta}</math>. | :<math>\mu_e = \frac{2\varepsilon_r\varepsilon_0\zeta}{3\eta}</math>. | ||
यह मॉडल कुछ नैनोकणों और गैर-ध्रुवीय तरल पदार्थों के लिए उपयोगी हो सकता है, जहां डेबी की लंबाई सामान्य | यह मॉडल कुछ नैनोकणों और गैर-ध्रुवीय तरल पदार्थों के लिए उपयोगी हो सकता है, जहां डेबी की लंबाई सामान्य प्रकरणो की तुलना में बहुत बड़ी होती है। | ||
ऐसे कई विश्लेषणात्मक सिद्धांत हैं जो सतह की चालकता को | ऐसे कई विश्लेषणात्मक सिद्धांत हैं जो सतह की चालकता को सम्मिलित करते हैं और ओवरबीक और बूथ द्वारा अग्रणी, एक छोटी दुखिन संख्या के प्रतिबंध को समाप्त करते हैं।<ref>{{cite journal |first=J.Th.G |last=Overbeek |journal=Koll. Bith. |page=287 |title=Theory of electrophoresis — The relaxation effect|year=1943}}</ref> <ref>{{cite journal |first=F. |last=Booth |journal=Nature |volume=161 |issue=4081 |pages=83–86 |year=1948|bibcode = 1948Natur.161...83B |doi = 10.1038/161083a0 |pmid=18898334|title=इलेक्ट्रोकाइनेटिक प्रभाव का सिद्धांत|s2cid=4115758 |doi-access=free }}</ref> किसी भी ज़ेटा क्षमता के लिए मान्य आधुनिक, कठोर सिद्धांत और प्रायः कोई भी ज्यादातर दुखिन-सेमेनिखिन सिद्धांत से तना है।<ref name="DukhinSemenikhin">Dukhin, S.S. and Semenikhin N.V. "Theory of double layer polarization and its effect on electrophoresis", Koll.Zhur. USSR, volume 32, page 366, 1970.</ref> | ||
पतली दोहरी परत की सीमा में, ये सिद्धांत ओ'ब्रायन और व्हाइट द्वारा प्रदान की गई समस्या के संख्यात्मक समाधान की पुष्टि करते हैं।<ref>{{cite journal |first=R.W. |last=O'Brien |author2=L.R. White |title=एक गोलाकार कोलाइडल कण की इलेक्ट्रोफोरेटिक गतिशीलता|journal=J. Chem. Soc. Faraday Trans. |volume=2 |issue=74 |page=1607 |year=1978|doi=10.1039/F29787401607 }}</ref> | |||
अधिक जटिल परिदृश्यों के अधिक मॉडलिंग के लिए, ये सरलीकरण गलत हो जाते हैं, और विद्युत क्षेत्र को इसके परिमाण और दिशा को ट्रैक करते हुए, स्थानिक रूप से प्रतिरूपित किया जाना चाहिए। प्वासों के समीकरण का उपयोग इस स्थानिक रूप से भिन्न विद्युत क्षेत्र को मॉडल करने के लिए किया जा सकता है। द्रव प्रवाह पर इसके प्रभाव को स्टोक्स समीकरण के साथ प्रतिरूपित किया जा सकता है, जबकि विभिन्न आयनों के परिवहन को नर्नस्ट-प्लैंक समीकरण का उपयोग करके प्रतिरूपित किया जा सकता है। इस संयुक्त दृष्टिकोण को पोइसन-नर्नस्ट-प्लैंक-स्टोक्स समीकरण के रूप में जाना जाता है। इस दृष्टिकोण को कणों के वैद्युतकणसंचलन को मान्य किया गया है।<ref name="MORANPOSNER2011" /> | |||
== यह भी देखें == | == यह भी देखें == | ||
{{cmn|colwidth=30em| | {{cmn|colwidth=30em| | ||
*[[ | *[[आत्मीयता वैद्युतकणसंचलन]] | ||
*[[ | *[[विद्युतकणसंचलन निक्षेपण]] | ||
*[[ | *[[इलेक्ट्रॉनिक कागज]] | ||
*[[ | *[[केशिका वैद्युतकणसंचलन]] | ||
*[[ | *[[डाइइलेक्ट्रोफोरेसिस]] | ||
*[[ | *[[इलेक्ट्रोब्लॉटिंग]] | ||
*[[ | *[[जेल वैद्युतकणसंचलन]] | ||
*[[ | *[[न्यूक्लीक अम्ल के जेल वैद्युतकणसंचलन]] | ||
*[[ | *[[इम्यूनोइलेक्ट्रोफोरेसिस]] | ||
*[[ | *[[समवैद्युत फोकसन]] | ||
*[[ | *[[आइसोटाकोफोरेसिस]] | ||
*[[ | *[[स्पंदित-क्षेत्र जेल वैद्युतकणसंचलन]] | ||
*[[ | *[[अरैखिक फ्रिकियोफोरेसिस]] | ||
*[[ | *[[स्टोक्स प्रवाह]] | ||
}} | }} | ||
Revision as of 21:15, 20 March 2023
वैद्युतकणसंचलन एक स्थानिक समान विद्युत क्षेत्र के प्रभाव में द्रव के सापेक्ष बिखरे हुए कणों की गति है।[1][2][3][4][5][6][7] सकारात्मक रूप से आवेशित कणों (धनायन) के वैद्युतकणसंचलन को कभी-कभी कैटफोरेसिस कहा जाता है, जबकि नकारात्मक रूप से आवेशित कणों (आयनों) के वैद्युतकणसंचलन को कभी-कभी एनाफोरेसिस कहा जाता है।
वैद्युतकणसंचलन की विद्युतगतिक घटनाएं पहली बार 1807 में मास्को विश्वविद्यालय में रूसी आचार्य पीटर इवानोविच स्ट्रैखोव और फर्डिनेंड फ्रेडरिक रीस द्वारा देखी गई थी,[8] जिन्होंने देखा कि एक स्थिर विद्युत क्षेत्र के प्रयोग से पानी में बिखरी हुई मिट्टी के कण पलायन कर जाते हैं। यह अंततः कण की सतह और आसपास के तरल पदार्थ के मध्य आवेशित किए गए अंतराफलक की उपस्थिति के कारण होता है। यह आकार, आवेश या बाध्यकारी बंधुता द्वारा अणुओं को अलग करने के लिए रसायन विज्ञान में प्रयुक्त विश्लेषणात्मक तकनीकों का आधार है।
आकार के आधार पर वृहदणु को अलग करने के लिए वैद्युतकणसंचलन का उपयोग प्रयोगशालाओं में किया जाता है। तकनीक एक ऋणात्मक आवेश उपयोजित करती है इसलिए प्रोटीन एक धनात्मक आवेश की ओर बढ़ता है। डीएनए, आरएनए और प्रोटीन विश्लेषण में वैद्युतकणसंचलन का व्यापक रूप से उपयोग किया जाता है।
इतिहास
सिद्धांत
निलंबित कणों में एक विद्युत सतह आवेश होता है, जो सतह पर अधिशोषित प्रजातियों द्वारा दृढ़ता से प्रभावित होता है,[9] जिस पर एक बाहरी विद्युत क्षेत्र स्थिरवैद्युत कूलम्ब बल लगाता है। दोहरी परत सिद्धांत के अनुसार, तरल पदार्थ में सभी सतह आवेश आयनों की एक विसरित परत द्वारा प्रदर्शित होते हैं, जिसमें समान निरपेक्ष आवेश होता है लेकिन सतह आवेश के संबंध में विपरीत चिह्न होता है। विद्युत क्षेत्र भी विसरित परत में आयनों पर एक बल लगाता है जिसकी दिशा सतह के आवेश पर कार्य करने के विपरीत होती है। यह बाद वाला बल वास्तव में कण पर उपयोजित नहीं होता है, लेकिन कण की सतह से कुछ दूरी पर स्थित विसरित परत में आयनों के लिए होता है, और इसका एक भागश्यान प्रतिबल के माध्यम से कण की सतह पर स्थानांतरित हो जाता है। बल के इस भाग को विद्युतकणसंचलन मंदता बल या संक्षेप में ईआरएफ भी कहा जाता है। जब विद्युत क्षेत्र उपयोजित किया जाता है और विश्लेषण किया जाने वाला आवेशित कण विसरित परत के माध्यम से स्थिर गति पर होता है, तो कुल परिणामी बल शून्य होता है:
कम रेनॉल्ड्स संख्या और मध्यम विद्युत क्षेत्र की ताकत E के प्रकरण में, फैलाने वाले की श्यानता के कारण गतिमान कणों पर ड्रैग को ध्यान में रखते हुए, एक परिक्षिप्त हुए कण v का बहाव वेग केवल उपयोजित क्षेत्र के समानुपाती होता है, जो छोड़ देता है विद्युतकणसंचलन गतिशीलता μe को इस प्रकार परिभाषित करता है:[10]
वैद्युतकणसंचलन का सबसे प्रसिद्ध और व्यापक रूप से उपयोग किया जाने वाला सिद्धांत 1903 में स्मोलुचोव्स्की द्वारा विकसित किया गया था:[11]
- ,
जहां εr परिक्षेपण माध्यम का परावैद्युत हुआ स्थिरांक है, ε0 मुक्त स्थान की विधतशीलता है (C² N-1 मि−2), η फैलाव माध्यम (Pa s) की गतिशील श्यानता है, और ζ जीटा क्षमता है (यानी, दोहरी परत, यूनिट mV या V में फिसलन स्तर की विद्युतगतिक क्षमता)।
स्मोलुचोव्स्की सिद्धांत बहुत शक्तिशाली है क्योंकि यह किसी भी सांद्रता पर किसी भी आकार के बिखरे हुए कणों के लिए काम करता है। इसकी वैधता पर सीमाएं हैं। उदाहरण के लिए, इसमें डिबाई लंबाई κ−1 (इकाइयां मीटर) सम्मिलित नहीं है। हालांकि, चित्र 2,"वैद्युतकणसंचलन मंदता का चित्रण" से तुरंत निम्नानुसार वैद्युतकणसंचलन के लिए डेबाई की लंबाई महत्वपूर्ण होनी चाहिए। दोहरी परत (डीएल) की बढ़ती मोटाई कण सतह से आगे मंदता बल के बिंदु को हटाने की ओर ले जाती है। डीएल जितना मोटा होगा, मंदता बल उतना ही कम होगा।
विस्तृत सैद्धांतिक विश्लेषण ने प्रमाणित किया कि स्मोलुचोव्स्की सिद्धांत केवल पर्याप्त पतले डीएल के लिए मान्य है, जब कण त्रिज्या डेबी लंबाई से बहुत अधिक है:
- .
"पतली दोहरी परत" का यह मॉडल न केवल वैद्युतकणसंचलन सिद्धांत के लिए बल्कि कई अन्य विद्युतगतिक सिद्धांतों के लिए जबरदस्त सरलीकरण प्रदान करता है। यह मॉडल अधिकांश जलीय प्रणालियों के लिए मान्य है, जहां डेबी की लंबाई सामान्यतः केवल कुछ नैनोमीटर होती है। यह केवल पानी के करीब आयनिक शक्ति वाले विलयन में नैनो-कोलोइड्स के लिए टूटता है।
स्मोलुचोव्स्की सिद्धांत भी सतह चालकता से योगदान की उपेक्षा करता है। यह आधुनिक सिद्धांत में छोटी दुखिन संख्या की स्थिति के रूप में व्यक्त किया गया है:
वैद्युतकणसंचलन सिद्धांतों की वैधता की सीमा का विस्तार करने के प्रयास में, विपरीत स्पर्शोन्मुख प्रकरण पर विचार किया गया था, जब डेबी की लंबाई कण त्रिज्या से बड़ी होती है:
- .
एक "मोटी दोहरी परत" की इस स्थिति के अंतर्गत, हुकेल[12] ने विद्युतकणसंचलन गतिशीलता के लिए निम्नलिखित संबंध की भविष्यवाणी की:
- .
यह मॉडल कुछ नैनोकणों और गैर-ध्रुवीय तरल पदार्थों के लिए उपयोगी हो सकता है, जहां डेबी की लंबाई सामान्य प्रकरणो की तुलना में बहुत बड़ी होती है।
ऐसे कई विश्लेषणात्मक सिद्धांत हैं जो सतह की चालकता को सम्मिलित करते हैं और ओवरबीक और बूथ द्वारा अग्रणी, एक छोटी दुखिन संख्या के प्रतिबंध को समाप्त करते हैं।[13] [14] किसी भी ज़ेटा क्षमता के लिए मान्य आधुनिक, कठोर सिद्धांत और प्रायः कोई भी ज्यादातर दुखिन-सेमेनिखिन सिद्धांत से तना है।[15]
पतली दोहरी परत की सीमा में, ये सिद्धांत ओ'ब्रायन और व्हाइट द्वारा प्रदान की गई समस्या के संख्यात्मक समाधान की पुष्टि करते हैं।[16]
अधिक जटिल परिदृश्यों के अधिक मॉडलिंग के लिए, ये सरलीकरण गलत हो जाते हैं, और विद्युत क्षेत्र को इसके परिमाण और दिशा को ट्रैक करते हुए, स्थानिक रूप से प्रतिरूपित किया जाना चाहिए। प्वासों के समीकरण का उपयोग इस स्थानिक रूप से भिन्न विद्युत क्षेत्र को मॉडल करने के लिए किया जा सकता है। द्रव प्रवाह पर इसके प्रभाव को स्टोक्स समीकरण के साथ प्रतिरूपित किया जा सकता है, जबकि विभिन्न आयनों के परिवहन को नर्नस्ट-प्लैंक समीकरण का उपयोग करके प्रतिरूपित किया जा सकता है। इस संयुक्त दृष्टिकोण को पोइसन-नर्नस्ट-प्लैंक-स्टोक्स समीकरण के रूप में जाना जाता है। इस दृष्टिकोण को कणों के वैद्युतकणसंचलन को मान्य किया गया है।[17]
यह भी देखें
- आत्मीयता वैद्युतकणसंचलन
- विद्युतकणसंचलन निक्षेपण
- इलेक्ट्रॉनिक कागज
- केशिका वैद्युतकणसंचलन
- डाइइलेक्ट्रोफोरेसिस
- इलेक्ट्रोब्लॉटिंग
- जेल वैद्युतकणसंचलन
- न्यूक्लीक अम्ल के जेल वैद्युतकणसंचलन
- इम्यूनोइलेक्ट्रोफोरेसिस
- समवैद्युत फोकसन
- आइसोटाकोफोरेसिस
- स्पंदित-क्षेत्र जेल वैद्युतकणसंचलन
- अरैखिक फ्रिकियोफोरेसिस
- स्टोक्स प्रवाह
संदर्भ
- ↑ Lyklema, J. (1995). इंटरफेस और कोलाइड साइंस के फंडामेंटल. Vol. 2. p. 3.208.
- ↑ Hunter, R.J. (1989). कोलाइड विज्ञान की नींव. Oxford University Press.
- ↑ Dukhin, S.S.; Derjaguin, B.V. (1974). इलेक्ट्रोकाइनेटिक घटना. J. Wiley and Sons.
- ↑ Russel, W.B.; Saville, D.A.; Schowalter, W.R. (1989). कोलाइडल फैलाव. Cambridge University Press. ISBN 9780521341882.
- ↑ Kruyt, H.R. (1952). कोलाइड विज्ञान. Vol. 1, Irreversible systems. Elsevier.
- ↑ Dukhin, A.S.; Goetz, P.J. (2017). अल्ट्रासाउंड का उपयोग करते हुए तरल पदार्थ, नैनो- और सूक्ष्म कण और झरझरा शरीर की विशेषता. Elsevier. ISBN 978-0-444-63908-0.
- ↑ Anderson, J L (January 1989). "अंतरापृष्ठीय बलों द्वारा कोलाइड परिवहन". Annual Review of Fluid Mechanics (in English). 21 (1): 61–99. Bibcode:1989AnRFM..21...61A. doi:10.1146/annurev.fl.21.010189.000425. ISSN 0066-4189.
- ↑ Reuss, F.F. (1809). "Sur un nouvel effet de l'électricité galvanique". Mémoires de la Société Impériale des Naturalistes de Moscou. 2: 327–37.
- ↑ Hanaor, D.A.H.; Michelazzi, M.; Leonelli, C.; Sorrell, C.C. (2012). "The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2". Journal of the European Ceramic Society. 32 (1): 235–244. arXiv:1303.2754. doi:10.1016/j.jeurceramsoc.2011.08.015. S2CID 98812224.
- ↑ Anodic Aqueous electrophoretic Deposition of Titanium Dioxide Using Carboxylic Acids as Dispersing Agents Journal of the European Ceramic Society, 31(6), 1041-1047, 2011
- ↑ von Smoluchowski, M. (1903). "Contribution à la théorie de l'endosmose électrique et de quelques phénomènes corrélatifs". Bull. Int. Acad. Sci. Cracovie. 184.
- ↑ Hückel, E. (1924). "कैटफोरस डेर कुगेल मरो". Phys. Z. 25: 204.
- ↑ Overbeek, J.Th.G (1943). "Theory of electrophoresis — The relaxation effect". Koll. Bith.: 287.
- ↑ Booth, F. (1948). "इलेक्ट्रोकाइनेटिक प्रभाव का सिद्धांत". Nature. 161 (4081): 83–86. Bibcode:1948Natur.161...83B. doi:10.1038/161083a0. PMID 18898334. S2CID 4115758.
- ↑ Dukhin, S.S. and Semenikhin N.V. "Theory of double layer polarization and its effect on electrophoresis", Koll.Zhur. USSR, volume 32, page 366, 1970.
- ↑ O'Brien, R.W.; L.R. White (1978). "एक गोलाकार कोलाइडल कण की इलेक्ट्रोफोरेटिक गतिशीलता". J. Chem. Soc. Faraday Trans. 2 (74): 1607. doi:10.1039/F29787401607.
- ↑ Cite error: Invalid
<ref>
tag; no text was provided for refs namedMORANPOSNER2011
अग्रिम पठन
- Voet and Voet (1990). Biochemistry. John Wiley & Sons.
- Jahn, G.C.; D.W. Hall; S.G. Zam (1986). "A comparison of the life cycles of two Amblyospora (Microspora: Amblyosporidae) in the mosquitoes Culex salinarius and Culex tarsalis Coquillett". J. Florida Anti-Mosquito Assoc. 57: 24–27.
- Khattak, M.N.; R.C. Matthews (1993). "Genetic relatedness of Bordetella species as determined by macrorestriction digests resolved by pulsed-field gel electrophoresis". Int. J. Syst. Bacteriol. 43 (4): 659–64. doi:10.1099/00207713-43-4-659. PMID 8240949.
- Barz, D.P.J.; P. Ehrhard (2005). "Model and verification of electrokinetic flow and transport in a micro-electrophoresis device". Lab Chip. 5 (9): 949–958. doi:10.1039/b503696h. PMID 16100579.
- Shim, J.; P. Dutta; C.F. Ivory (2007). "Modeling and simulation of IEF in 2-D microgeometries". Electrophoresis. 28 (4): 527–586. doi:10.1002/elps.200600402. PMID 17253629. S2CID 23274096.