त्रिगुट संक्रिया: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Mathematical operation that combines three elements to produce another element}} गणित में, एक त्रिगुट संक्रिय...")
 
No edit summary
 
(5 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Mathematical operation that combines three elements to produce another element}}
{{Short description|Mathematical operation that combines three elements to produce another element}}
गणित में, एक त्रिगुट संक्रिया एक ''n''-[[arity]] संक्रिया (गणित) होती है, जिसमें ''n'' = 3 होता है। एक समुच्चय (गणित) ''A'' पर एक त्रिगुट संक्रिया '''' के किसी दिए गए तीन तत्वों को लेती है। ए'' और उन्हें '' का एक तत्व बनाने के लिए जोड़ती है।
गणित में, एक त्रिगुट संक्रिया ''n'' = 3 के साथ एक ''n''-[[arity|आरी]] संक्रिया है। एक समुच्चय ''A'' पर एक त्रिगुट संक्रिया ''A'' के किसी भी तीन तत्वों को लेता है और उन्हें ''A'' के एकल तत्व बनाने के लिए जोड़ता है।  


[[कंप्यूटर विज्ञान]] में, एक टर्नरी ऑपरेटर एक [[ऑपरेटर (कंप्यूटर प्रोग्रामिंग)]] होता है जो इनपुट के रूप में तीन [[पैरामीटर (कंप्यूटर प्रोग्रामिंग)]] लेता है और एक आउटपुट देता है।<ref name = "MDM nmve">{{cite web|last1=MDN|first1=nmve|title=सशर्त (टर्नरी) ऑपरेटर|url=https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator|website=Mozilla Developer Network|publisher=MDN|accessdate=20 February 2017}}</ref>
[[कंप्यूटर विज्ञान]] में, एक त्रिगुट संक्रिया एक [[ऑपरेटर (कंप्यूटर प्रोग्रामिंग)|संक्रिया]] होता है जो निवेश के रूप में तीन तर्क लेता है और एक निर्गत देता है।<ref name = "MDM nmve">{{cite web|last1=MDN|first1=nmve|title=सशर्त (टर्नरी) ऑपरेटर|url=https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator|website=Mozilla Developer Network|publisher=MDN|accessdate=20 February 2017}}</ref>
== उदाहरण ==
[[File:Volledige_vierhoek.PNG|thumb|right|A, B और बिंदु P को देखते हुए, ज्यामितीय निर्माण से V, A और B के संबंध में P का प्रक्षेपी हार्मोनिक संयुग्म उत्पन्न होता है।]][[समारोह (गणित)|फलन]] <math>T(a, b, c) = ab + c</math> [[पूर्णांक|पूर्णांकों]] (या किसी भी संरचना पर जहाँ <math>+</math> और <math>\times</math> दोनों परिभाषित हैं) पर एक त्रिगुट संक्रिया का एक उदाहरण है। इस त्रिगुट संक्रिया के गुणों का उपयोग[[ प्रक्षेपी ज्यामिति ]]की नींव में [[ प्लेनर टर्नरी रिंग |तलीय त्रिगुट रिंग्स]] को परिभाषित करने के लिए किया गया है।


[[यूक्लिडियन विमान|यूक्लिडियन समतल]] में बिंदु ''a'', ''b'', ''c'' के साथ एक मूल को संदर्भित किया जाता है, त्रिगुट संक्रिया <math>[a, b, c] = a - b + c</math> का उपयोग मुक्त सदिशों को परिभाषित करने के लिए किया गया है।<ref>Jeremiah Certaine (1943) [http://www.ams.org/journals/bull/1943-49-12/S0002-9904-1943-08042-1/S0002-9904-1943-08042-1.pdf The ternary operation (abc) = a b<sup>−1</sup>c of a group], [[Bulletin of the American Mathematical Society]] 49: 868–77 {{mr|id=0009953}}</ref> क्योंकि (abc) = d का तात्पर्य a - b = c - d से है, ये निर्देशित खंड [[समतुल्यता (ज्यामिति)|समतुल्यता]] हैं और एक ही मुक्त सदिश से संबद्ध हैं। समतल a, b, c में कोई भी तीन बिंदु इस प्रकार चौथे शीर्ष पर d के साथ एक समांतर [[चतुर्भुज]] निर्धारित करते हैं।


== उदाहरण ==
प्रक्षेपी ज्यामिति में, एक [[प्रक्षेपी हार्मोनिक संयुग्म]] खोजने की प्रक्रिया तीन बिंदुओं पर एक त्रिगुट संक्रिया है। आरेख में, बिंदु ''A'', ''B'' और ''P'' बिंदु ''V'' निर्धारित करते हैं, ''A'' और ''B'' के संबंध में ''P'' का हार्मोनिक संयुग्म है। बिंदु ''R'' और ''P'' के माध्यम से रेखा को स्वेच्छगृहीत चयन किया जा सकता है, ''C'' और ''D'' का निर्धारण है। ''AC'' और ''BD'' को आरेखित करने से प्रतिच्छेदन ''Q उत्पन्न होता है'', और ''RQ'' से ''V'' प्राप्त होता है।
[[File:Volledige_vierhoek.PNG|thumb|right|A, B और बिंदु P को देखते हुए, ज्यामितीय निर्माण से V, A और B के संबंध में P का प्रक्षेपी हार्मोनिक संयुग्म उत्पन्न होता है।]][[समारोह (गणित)]] <math>T(a, b, c) = ab + c</math> [[पूर्णांक]]ों (या किसी भी संरचना पर जहाँ <math>+</math> और <math>\times</math> दोनों परिभाषित हैं)। इस टर्नरी ऑपरेशन के गुणों का उपयोग [[ प्रक्षेपी ज्यामिति ]] की नींव में [[ प्लेनर टर्नरी रिंग ]]्स को परिभाषित करने के लिए किया गया है।


[[यूक्लिडियन विमान]] में अंक ए, बी, सी के साथ एक मूल, टर्नरी ऑपरेशन को संदर्भित किया जाता है <math>[a, b, c] = a - b + c</math> मुक्त वैक्टर को परिभाषित करने के लिए उपयोग किया गया है।<ref>Jeremiah Certaine (1943) [http://www.ams.org/journals/bull/1943-49-12/S0002-9904-1943-08042-1/S0002-9904-1943-08042-1.pdf The ternary operation (abc) = a b<sup>−1</sup>c of a group], [[Bulletin of the American Mathematical Society]] 49: 868–77 {{mr|id=0009953}}</ref> चूँकि (abc) = d का तात्पर्य a - b = c - d से है, ये निर्देशित खंड [[समतुल्यता (ज्यामिति)]] हैं और एक ही मुक्त वेक्टर से जुड़े हैं। समतल a, b, c में कोई भी तीन बिंदु इस प्रकार चौथे शीर्ष पर d के साथ एक समांतर [[चतुर्भुज]] निर्धारित करते हैं।
मान लीजिए A और B समुच्चय दिए गए हैं और <math>\mathcal{B}(A, B)</math> ''A'' और ''B'' के मध्य [[द्विआधारी संबंध|द्विआधारी संबंधों]] का संग्रह है। ''A'' = ''B होने पर'' [[संबंधों की संरचना]] हमेशा परिभाषित होती है, लेकिन अन्यथा एक त्रिगुट रचना को <math>[p, q, r] = p q^T r</math> द्वारा परिभाषित किया जा सकता है, जहाँ <math>q^T</math>, q का विपरीत संबंध है। इस त्रिगुट संबंध के गुणों का उपयोग हीप के लिए अभिगृहीतों को स्थापित करने के लिए किया गया है।<ref>Christopher Hollings (2014) ''Mathematics across the Iron Curtain: a history of the algebraic theory of semigroups'', page 264, History of Mathematics 41, [[American Mathematical Society]] {{ISBN|978-1-4704-1493-1}}</ref>


प्रक्षेपी ज्यामिति में, एक [[प्रक्षेपी हार्मोनिक संयुग्म]] खोजने की प्रक्रिया तीन बिंदुओं पर एक टर्नरी ऑपरेशन है। आरेख में, अंक ए, बी और पी बिंदु वी निर्धारित करते हैं, ए और बी के संबंध में पी के हार्मोनिक संयुग्म। बिंदु आर और पी के माध्यम से लाइन को मनमाने ढंग से चुना जा सकता है, सी और डी का निर्धारण। एसी और बीडी ड्राइंग चौराहे का उत्पादन करता है क्यू, और आरक्यू फिर वी उत्पन्न करता है।
[[बूलियन बीजगणित]] में, <math>T(A,B,C) = AC+(1-A)B</math> सूत्र <math>(A \lor B) \land (\lnot A \lor C)</math> को परिभाषित करता है।


मान लीजिए A और B दिए गए सेट हैं और <math>\mathcal{B}(A, B)</math> ए और बी के बीच [[द्विआधारी संबंध]]ों का संग्रह है। [[संबंधों की संरचना]] हमेशा परिभाषित होती है जब ए = बी, लेकिन अन्यथा एक त्रिगुट रचना द्वारा परिभाषित किया जा सकता है <math>[p, q, r] = p q^T r</math> कहाँ <math>q^T</math> q का विलोम संबंध है। इस त्रैमासिक संबंध के गुणों का उपयोग हीप (गणित) के लिए अभिगृहीतों को स्थापित करने के लिए किया गया है।<ref>Christopher Hollings (2014) ''Mathematics across the Iron Curtain: a history of the algebraic theory of semigroups'', page 264, History of Mathematics 41, [[American Mathematical Society]] {{ISBN|978-1-4704-1493-1}}</ref>
== कंप्यूटर विज्ञान ==
[[बूलियन बीजगणित]] में, <math>T(A,B,C) = AC+(1-A)B</math> सूत्र को परिभाषित करता है <math>(A \lor B) \land (\lnot A \lor C)</math>.


== कंप्यूटर विज्ञान ==
कंप्यूटर विज्ञान में, एक त्रिगुट संक्रिया एक संक्रिया होता है जो तीन तर्क (या संकार्य) लेता है।<ref name = "MDM nmve"/>तर्क और परिणाम विभिन्न प्रकार के हो सकते हैं। कई[[ प्रोग्रामिंग भाषा | क्रमादैश भाषा]] जो [[सी सिंटैक्स|C-जैसे]] सिंटैक्स का उपयोग करती हैं,<ref>{{cite web|last1=Hoffer|first1=Alex|title=टर्नरी ऑपरेटर|url=http://www.cprogramming.com/reference/operators/ternary-operator.html|website=Cprogramming.com|publisher=Cprogramming.com|accessdate=20 February 2017}}</ref> एक त्रिगुट संक्रिया,<code>[[?:]]</code>की सुविधा देती हैं, जो एक प्रतिबंधी व्यंजक को परिभाषित करती है। कुछ भाषाओं में, इस संक्रिया को प्रतिबंधी संकारक कहा जाता है।


कंप्यूटर विज्ञान में, एक टर्नरी ऑपरेटर एक ऑपरेटर (कंप्यूटर प्रोग्रामिंग) होता है जो तीन तर्क (या ऑपरेंड) लेता है।<ref name = "MDM nmve"/>तर्क और परिणाम विभिन्न प्रकार के हो सकते हैं। कई [[ प्रोग्रामिंग भाषा ]] जो [[सी सिंटैक्स]] | C-लाइक सिंटैक्स का उपयोग करती हैं<ref>{{cite web|last1=Hoffer|first1=Alex|title=टर्नरी ऑपरेटर|url=http://www.cprogramming.com/reference/operators/ternary-operator.html|website=Cprogramming.com|publisher=Cprogramming.com|accessdate=20 February 2017}}</ref> एक त्रिगुट ऑपरेटर की सुविधा, <code>[[?:]]</code>, जो एक सशर्त (प्रोग्रामिंग)#If भावों को परिभाषित करता है। कुछ भाषाओं में, इस ऑपरेटर को सशर्त ऑपरेटर कहा जाता है।
पायथन में, त्रिगुट प्रतिबंधी संकारक<code>x को C और y पढ़ता है।</code>पायथन भी त्रिगुट संक्रिया का समर्थन करता है जिसे एरे स्लाइसिंग कहा जाता है, उदा.<code>a[b:c]</code>एक सरणी लौटाता है जहां पहला तत्व<code>a[b] है</code>और अंतिम तत्व<code>a[c-1] है।</code><ref>{{Cite web|title=6. Expressions — Python 3.9.1 documentation|url=https://docs.python.org/3/reference/expressions.html|access-date=2021-01-19|website=docs.python.org}}</ref> [[OCaml]] अभिव्यक्ति रिकॉर्ड, सरणियों और स्ट्रिंग्स के विरुद्ध त्रिगुट संचालन प्रदान करते हैं:<code>a.[b]<-c</code> का अर्थ स्ट्रिंग<code>a होगा</code>जहां सूचकांक<code>b</code>का मान<code>c है।</code><ref>{{Cite web|last=|first=|date=|title=7.7 Expressions|url=https://caml.inria.fr/pub/docs/manual-ocaml/expr.html|url-status=live|archive-url=|archive-date=|access-date=2021-01-19|website=caml.inria.fr}}</ref>


पायथन (प्रोग्रामिंग लैंग्वेज) में, टर्नरी कंडीशनल ऑपरेटर पढ़ता है <code>x if C else y</code>. पायथन भी टर्नरी ऑपरेशंस का समर्थन करता है जिसे एरे स्लाइसिंग कहा जाता है, उदा। <code>a[b:c]</code> एक सरणी लौटाएं जहां पहला तत्व है <code>a[b]</code> और अंतिम तत्व है <code>a[c-1]</code>.<ref>{{Cite web|title=6. Expressions — Python 3.9.1 documentation|url=https://docs.python.org/3/reference/expressions.html|access-date=2021-01-19|website=docs.python.org}}</ref> [[OCaml]] एक्सप्रेशन रिकॉर्ड, सरणियों और स्ट्रिंग्स के विरुद्ध त्रिगुट संचालन प्रदान करते हैं: <code>a.[b]<-c</code> मतलब होगा स्ट्रिंग <code>a</code> जहां सूचकांक <code>b</code> मूल्य है <code>c</code>.<ref>{{Cite web|last=|first=|date=|title=7.7 Expressions|url=https://caml.inria.fr/pub/docs/manual-ocaml/expr.html|url-status=live|archive-url=|archive-date=|access-date=2021-01-19|website=caml.inria.fr}}</ref>
गुणा-संचय संक्रिया एक अन्य त्रिगुट संक्रिया है।
गुणा-संचय ऑपरेशन एक और टर्नरी ऑपरेटर है।


एक त्रिगुट संचालिका का एक और उदाहरण है, जैसा कि [[SQL]] में प्रयोग किया जाता है।
एक त्रिगुट संचालिका का एक और उदाहरण है, जैसा कि [[SQL]] में प्रयोग किया जाता है।


Icon_(programming_language) में एक टू-बाय टर्नरी ऑपरेटर है: एक्सप्रेशन <code>1 to 10 by 2</code> 1 से 9 तक समानता (गणित) पूर्णांक उत्पन्न करता है।
प्रतीक क्रमादैश भाषा में "टू-बाय" त्रिगुट संक्रिया है: अभिव्यक्ति1 से 10 बटा 2 1 से 9 तक विषम पूर्णांक उत्पन्न करता है।


एक्सेल फॉर्मूले में, फॉर्म है =if(C, x, y).
एक्सेल सूत्र में, रूप है = if(C, x, y) है।


== यह भी देखें ==
== यह भी देखें ==
* [[औसत बीजगणित]]
* [[औसत बीजगणित|मध्यम बीजगणित]]
* ?: कंप्यूटर प्रोग्रामिंग भाषाओं में टर्नरी ऑपरेटरों की सूची के लिए
* ?: कंप्यूटर क्रमादैश भाषा में त्रिगुट संक्रियाों की सूची के लिए


==संदर्भ==
==संदर्भ==
Line 38: Line 38:
==बाहरी संबंध==
==बाहरी संबंध==
*{{Commons category-inline|Ternary operations}}
*{{Commons category-inline|Ternary operations}}
[[Category: टर्नरी ऑपरेशंस | टर्नरी ऑपरेशंस ]]


[[Category: Machine Translated Page]]
[[Category:CS1 maint]]
[[Category:Created On 17/03/2023]]
[[Category:Created On 17/03/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:टर्नरी ऑपरेशंस| टर्नरी ऑपरेशंस ]]

Latest revision as of 10:15, 28 March 2023

गणित में, एक त्रिगुट संक्रिया n = 3 के साथ एक n-आरी संक्रिया है। एक समुच्चय A पर एक त्रिगुट संक्रिया A के किसी भी तीन तत्वों को लेता है और उन्हें A के एकल तत्व बनाने के लिए जोड़ता है।

कंप्यूटर विज्ञान में, एक त्रिगुट संक्रिया एक संक्रिया होता है जो निवेश के रूप में तीन तर्क लेता है और एक निर्गत देता है।[1]

उदाहरण

A, B और बिंदु P को देखते हुए, ज्यामितीय निर्माण से V, A और B के संबंध में P का प्रक्षेपी हार्मोनिक संयुग्म उत्पन्न होता है।

फलन पूर्णांकों (या किसी भी संरचना पर जहाँ और दोनों परिभाषित हैं) पर एक त्रिगुट संक्रिया का एक उदाहरण है। इस त्रिगुट संक्रिया के गुणों का उपयोगप्रक्षेपी ज्यामिति की नींव में तलीय त्रिगुट रिंग्स को परिभाषित करने के लिए किया गया है।

यूक्लिडियन समतल में बिंदु a, b, c के साथ एक मूल को संदर्भित किया जाता है, त्रिगुट संक्रिया का उपयोग मुक्त सदिशों को परिभाषित करने के लिए किया गया है।[2] क्योंकि (abc) = d का तात्पर्य a - b = c - d से है, ये निर्देशित खंड समतुल्यता हैं और एक ही मुक्त सदिश से संबद्ध हैं। समतल a, b, c में कोई भी तीन बिंदु इस प्रकार चौथे शीर्ष पर d के साथ एक समांतर चतुर्भुज निर्धारित करते हैं।

प्रक्षेपी ज्यामिति में, एक प्रक्षेपी हार्मोनिक संयुग्म खोजने की प्रक्रिया तीन बिंदुओं पर एक त्रिगुट संक्रिया है। आरेख में, बिंदु A, B और P बिंदु V निर्धारित करते हैं, A और B के संबंध में P का हार्मोनिक संयुग्म है। बिंदु R और P के माध्यम से रेखा को स्वेच्छगृहीत चयन किया जा सकता है, C और D का निर्धारण है। AC और BD को आरेखित करने से प्रतिच्छेदन Q उत्पन्न होता है, और RQ से V प्राप्त होता है।

मान लीजिए A और B समुच्चय दिए गए हैं और A और B के मध्य द्विआधारी संबंधों का संग्रह है। A = B होने पर संबंधों की संरचना हमेशा परिभाषित होती है, लेकिन अन्यथा एक त्रिगुट रचना को द्वारा परिभाषित किया जा सकता है, जहाँ , q का विपरीत संबंध है। इस त्रिगुट संबंध के गुणों का उपयोग हीप के लिए अभिगृहीतों को स्थापित करने के लिए किया गया है।[3]

बूलियन बीजगणित में, सूत्र को परिभाषित करता है।

कंप्यूटर विज्ञान

कंप्यूटर विज्ञान में, एक त्रिगुट संक्रिया एक संक्रिया होता है जो तीन तर्क (या संकार्य) लेता है।[1]तर्क और परिणाम विभिन्न प्रकार के हो सकते हैं। कई क्रमादैश भाषा जो C-जैसे सिंटैक्स का उपयोग करती हैं,[4] एक त्रिगुट संक्रिया,?:की सुविधा देती हैं, जो एक प्रतिबंधी व्यंजक को परिभाषित करती है। कुछ भाषाओं में, इस संक्रिया को प्रतिबंधी संकारक कहा जाता है।

पायथन में, त्रिगुट प्रतिबंधी संकारकx को C और y पढ़ता है।पायथन भी त्रिगुट संक्रिया का समर्थन करता है जिसे एरे स्लाइसिंग कहा जाता है, उदा.a[b:c]एक सरणी लौटाता है जहां पहला तत्वa[b] हैऔर अंतिम तत्वa[c-1] है।[5] OCaml अभिव्यक्ति रिकॉर्ड, सरणियों और स्ट्रिंग्स के विरुद्ध त्रिगुट संचालन प्रदान करते हैं:a.[b]<-c का अर्थ स्ट्रिंगa होगाजहां सूचकांकbका मानc है।[6]

गुणा-संचय संक्रिया एक अन्य त्रिगुट संक्रिया है।

एक त्रिगुट संचालिका का एक और उदाहरण है, जैसा कि SQL में प्रयोग किया जाता है।

प्रतीक क्रमादैश भाषा में "टू-बाय" त्रिगुट संक्रिया है: अभिव्यक्ति1 से 10 बटा 2 1 से 9 तक विषम पूर्णांक उत्पन्न करता है।

एक्सेल सूत्र में, रूप है = if(C, x, y) है।

यह भी देखें

  • मध्यम बीजगणित
  • ?: कंप्यूटर क्रमादैश भाषा में त्रिगुट संक्रियाों की सूची के लिए

संदर्भ

  1. 1.0 1.1 MDN, nmve. "सशर्त (टर्नरी) ऑपरेटर". Mozilla Developer Network. MDN. Retrieved 20 February 2017.
  2. Jeremiah Certaine (1943) The ternary operation (abc) = a b−1c of a group, Bulletin of the American Mathematical Society 49: 868–77 MR0009953
  3. Christopher Hollings (2014) Mathematics across the Iron Curtain: a history of the algebraic theory of semigroups, page 264, History of Mathematics 41, American Mathematical Society ISBN 978-1-4704-1493-1
  4. Hoffer, Alex. "टर्नरी ऑपरेटर". Cprogramming.com. Cprogramming.com. Retrieved 20 February 2017.
  5. "6. Expressions — Python 3.9.1 documentation". docs.python.org. Retrieved 2021-01-19.
  6. "7.7 Expressions". caml.inria.fr. Retrieved 2021-01-19.{{cite web}}: CS1 maint: url-status (link)


बाहरी संबंध