सजातीय स्थान: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Topological space in group theory}} thumb|एक [[ टोरस्र्स । मानक टोरस अपने भिन्न...")
 
No edit summary
Line 1: Line 1:
{{Short description|Topological space in group theory}}
{{Short description|Topological space in group theory}}
[[File:Torus.png|thumb|एक [[ टोरस्र्स ]]। मानक टोरस अपने भिन्नता और [[होमियोमोर्फिज्म]] समूहों के तहत सजातीय है, और [[ सपाट टोरस ]] अपने भिन्नता, होमोमोर्फिज्म और [[आइसोमेट्री समूह]]ों के तहत सजातीय है।]]गणित में, विशेष रूप से [[झूठ समूह]]ों, [[बीजगणितीय समूह]]ों और [[टोपोलॉजिकल समूह]]ों के सिद्धांतों में, एक [[समूह (गणित)]] ''जी'' के लिए एक सजातीय स्थान एक [[खाली सेट]] है। गैर-खाली [[कई गुना]] या सामयिक स्थान ''एक्स'' जिस पर ''जी'' [[समूह क्रिया (गणित)]] समूह क्रिया (गणित) # क्रियाओं के प्रकार। ''जी'' के तत्वों को ''एक्स'' की सममिति कहा जाता है। इसका एक विशेष मामला तब होता है जब विचाराधीन समूह ''जी'' अंतरिक्ष ''एक्स'' का [[ऑटोमोर्फिज्म समूह]] होता है - यहां ऑटोमोर्फिज्म समूह का मतलब आइसोमेट्री समूह, डिफियोमोर्फिज्म समूह, या [[होमोमोर्फिज्म समूह]] हो सकता है। इस मामले में, ''X'' सजातीय है यदि सहज रूप से ''X'' प्रत्येक बिंदु पर स्थानीय रूप से समान दिखता है, या तो आइसोमेट्री (कठोर ज्यामिति), [[डिफोमोर्फिज्म समूह]]डिफरेंशियल ज्योमेट्री), या होमोमोर्फिज्म (टोपोलॉजी) के अर्थ में। कुछ लेखक जोर देकर कहते हैं कि ''जी'' की कार्रवाई [[प्रभावी समूह कार्रवाई]] (गैर-पहचान तत्व गैर-तुच्छ रूप से कार्य करती है), हालांकि वर्तमान लेख ऐसा नहीं करता है। इस प्रकार ''X'' पर ''G'' की एक समूह क्रिया (गणित) है जिसे ''X'' पर कुछ ज्यामितीय संरचना को संरक्षित करने और ''X'' को एक एकल कक्षा में बनाने के बारे में सोचा जा सकता है ( समूह सिद्धांत)|''जी''-ऑर्बिट.
[[File:Torus.png|thumb|एक [[ टोरस्र्स ]]। मानक टोरस अपने भिन्नता और [[होमियोमोर्फिज्म]] समूहों के तहत सजातीय है, और [[ सपाट टोरस ]] अपने भिन्नता, होमोमोर्फिज्म और [[आइसोमेट्री समूह]]ों के तहत सजातीय है।]]गणित में, विशेष रूप से [[झूठ समूह]]ों, [[बीजगणितीय समूह]]ों और [[टोपोलॉजिकल समूह]]ों के सिद्धांतों में, एक [[समूह (गणित)]] ''जी'' के लिए एक सजातीय स्थान एक [[खाली सेट]] है। गैर-खाली [[कई गुना]] या सामयिक स्थान ''एक्स'' जिस पर ''जी'' [[समूह क्रिया (गणित)]] समूह क्रिया (गणित) क्रियाओं के प्रकार। ''जी'' के तत्वों को ''एक्स'' की सममिति कहा जाता है। इसका एक विशेष मामला तब होता है जब विचाराधीन समूह ''जी'' अंतरिक्ष ''एक्स'' का [[ऑटोमोर्फिज्म समूह]] होता है - यहां ऑटोमोर्फिज्म समूह का मतलब आइसोमेट्री समूह, डिफियोमोर्फिज्म समूह, या [[होमोमोर्फिज्म समूह]] हो सकता है। इस मामले में, ''X'' सजातीय है यदि सहज रूप से ''X'' प्रत्येक बिंदु पर स्थानीय रूप से समान दिखता है, या तो आइसोमेट्री (कठोर ज्यामिति), [[डिफोमोर्फिज्म समूह]]डिफरेंशियल ज्योमेट्री), या होमोमोर्फिज्म (टोपोलॉजी) के अर्थ में। कुछ लेखक जोर देकर कहते हैं कि ''जी'' की कार्रवाई [[प्रभावी समूह कार्रवाई]] (गैर-पहचान तत्व गैर-तुच्छ रूप से कार्य करती है), हालांकि वर्तमान लेख ऐसा नहीं करता है। इस प्रकार ''X'' पर ''G'' की एक समूह क्रिया (गणित) है जिसे ''X'' पर कुछ ज्यामितीय संरचना को संरक्षित करने और ''X'' को एक एकल कक्षा में बनाने के बारे में सोचा जा सकता है ( समूह सिद्धांत)|''जी''-ऑर्बिट.


== औपचारिक परिभाषा ==
== औपचारिक परिभाषा ==

Revision as of 16:28, 24 March 2023

एक टोरस्र्स । मानक टोरस अपने भिन्नता और होमियोमोर्फिज्म समूहों के तहत सजातीय है, और सपाट टोरस अपने भिन्नता, होमोमोर्फिज्म और आइसोमेट्री समूहों के तहत सजातीय है।

गणित में, विशेष रूप से झूठ समूहों, बीजगणितीय समूहों और टोपोलॉजिकल समूहों के सिद्धांतों में, एक समूह (गणित) जी के लिए एक सजातीय स्थान एक खाली सेट है। गैर-खाली कई गुना या सामयिक स्थान एक्स जिस पर जी समूह क्रिया (गणित) समूह क्रिया (गणित) क्रियाओं के प्रकार। जी के तत्वों को एक्स की सममिति कहा जाता है। इसका एक विशेष मामला तब होता है जब विचाराधीन समूह जी अंतरिक्ष एक्स का ऑटोमोर्फिज्म समूह होता है - यहां ऑटोमोर्फिज्म समूह का मतलब आइसोमेट्री समूह, डिफियोमोर्फिज्म समूह, या होमोमोर्फिज्म समूह हो सकता है। इस मामले में, X सजातीय है यदि सहज रूप से X प्रत्येक बिंदु पर स्थानीय रूप से समान दिखता है, या तो आइसोमेट्री (कठोर ज्यामिति), डिफोमोर्फिज्म समूहडिफरेंशियल ज्योमेट्री), या होमोमोर्फिज्म (टोपोलॉजी) के अर्थ में। कुछ लेखक जोर देकर कहते हैं कि जी की कार्रवाई प्रभावी समूह कार्रवाई (गैर-पहचान तत्व गैर-तुच्छ रूप से कार्य करती है), हालांकि वर्तमान लेख ऐसा नहीं करता है। इस प्रकार X पर G की एक समूह क्रिया (गणित) है जिसे X पर कुछ ज्यामितीय संरचना को संरक्षित करने और X को एक एकल कक्षा में बनाने के बारे में सोचा जा सकता है ( समूह सिद्धांत)|जी-ऑर्बिट.

औपचारिक परिभाषा

मान लीजिए कि X एक अरिक्त समुच्चय है और G एक समूह है। तब X को G-स्पेस कहा जाता है यदि यह X पर G की क्रिया से सुसज्जित है।[1] ध्यान दें कि स्वचालित रूप से G सेट पर automorphism (बीजेक्शन) द्वारा कार्य करता है। यदि X अतिरिक्त रूप से किसी श्रेणी (गणित) से संबंधित है, तो G के तत्वों को उसी श्रेणी में ऑटोमोर्फिज़्म के रूप में कार्य करने के लिए माना जाता है। यही है, जी के तत्वों से आने वाले एक्स पर मानचित्र श्रेणी से जुड़े ढांचे को संरक्षित करते हैं (उदाहरण के लिए, यदि एक्स डिफ में एक वस्तु है तो कार्रवाई को अलग-अलग होने की आवश्यकता होती है)। एक सजातीय स्थान एक जी-स्पेस है जिस पर जी सकर्मक रूप से कार्य करता है।

संक्षेप में, यदि X श्रेणी 'सी' का एक वस्तु है, तो जी-स्पेस की संरचना एक समरूपता है:

श्रेणी 'सी' में ऑब्जेक्ट एक्स के ऑटोमोर्फिज्म के समूह में। जोड़ी (एक्स, ρ) एक सजातीय स्थान को परिभाषित करती है बशर्ते ρ(जी) एक्स के अंतर्निहित सेट के समरूपता का एक संक्रामक समूह है।

उदाहरण

उदाहरण के लिए, यदि X एक टोपोलॉजिकल स्पेस है, तो समूह के तत्वों को X पर होमोमोर्फिज़्म के रूप में कार्य करने के लिए माना जाता है। G-स्पेस की संरचना एक समूह होमोमोर्फिज़्म ρ : G → होमियो(X) X के होमियोमॉर्फिज़्म समूह में है।

इसी तरह, यदि एक्स एक अलग-अलग कई गुना है, तो समूह तत्व अलग-अलग हैं। जी-स्पेस की संरचना एक समूह समरूपता ρ : G → Diffeo(X) है जो X के डिफियोमोर्फिज़्म समूह में है।

रिमेंनियन सममित स्थान सजातीय स्थानों का एक महत्वपूर्ण वर्ग है, और इसमें नीचे सूचीबद्ध कई उदाहरण शामिल हैं।

ठोस उदाहरणों में शामिल हैं:

examples of homogeneous spaces
space group stabilizer
spherical space
oriented
projective space
Euclidean space
oriented
hyperbolic space
oriented
anti-de Sitter space
Grassmannian
affine space

आइसोमेट्री समूह

  • सकारात्मक वक्रता:
  1. क्षेत्र (ऑर्थोगोनल समूह): . यह निम्नलिखित प्रेक्षणों के कारण सत्य है: प्रथम, में वैक्टर का सेट है आदर्श के साथ . यदि हम इन सदिशों में से किसी एक सदिश को आधार सदिश मानते हैं, तो किसी अन्य सदिश का निर्माण ओर्थोगोनल परिवर्तन का उपयोग करके किया जा सकता है। यदि हम इस वेक्टर की अवधि को एक आयामी उप-समष्टि के रूप में मानते हैं , तो पूरक एक है -डायमेंशनल वेक्टर स्पेस जो एक ऑर्थोगोनल ट्रांसफॉर्मेशन के तहत अपरिवर्तनीय है . यह हमें दिखाता है कि हम निर्माण क्यों कर सकते हैं एक सजातीय स्थान के रूप में।
  2. उन्मुख क्षेत्र (विशेष ओर्थोगोनल समूह):
  3. प्रोजेक्टिव स्पेस (प्रक्षेपी ओर्थोगोनल समूह):
  • फ्लैट (शून्य वक्रता):
  1. यूक्लिडियन स्पेस (यूक्लिडियन समूह , पॉइंट स्टेबलाइजर ऑर्थोगोनल ग्रुप है): एn ≅ ई(एन)/ओ(एन)
  • नकारात्मक वक्रता:
  1. हाइपरबोलिक स्पेस (ऑर्थोक्रोनस लोरेंत्ज़ समूह, पॉइंट स्टेबलाइज़र ऑर्थोगोनल ग्रुप, हाइपरबोलाइड मॉडल के अनुरूप): 'H'एन</सुप> ≅ ओ+(1, n)/O(n)
  2. ओरिएंटेड हाइपरबोलिक स्पेस: SO+(1, n)/SO(n)
  3. एंटी-डी सिटर स्पेस: AdSn+1 = ओ (2, एन) / ओ (1, एन)
अन्य

ज्यामिति

एर्लांगेन कार्यक्रम के दृष्टिकोण से, कोई यह समझ सकता है कि एक्स की ज्यामिति में सभी बिंदु समान हैं। यह अनिवार्य रूप से उन्नीसवीं शताब्दी के मध्य में रिमेंनियन ज्यामिति से पहले प्रस्तावित सभी ज्यामिति के लिए सही था।

इस प्रकार, उदाहरण के लिए, यूक्लिडियन अंतरिक्ष , एफ़िन स्पेस और प्रक्षेपण स्थान सभी अपने संबंधित समरूपता समूहों के लिए प्राकृतिक तरीके से सजातीय स्थान हैं। अतिशयोक्तिपूर्ण स्थान जैसे निरंतर वक्रता के गैर-यूक्लिडियन ज्यामिति के मॉडल के बारे में भी यही सच है।

एक और शास्त्रीय उदाहरण तीन आयामों के प्रक्षेप्य स्थान में रेखाओं का स्थान है (समरूप रूप से, चार-आयामी वेक्टर अंतरिक्ष के द्वि-आयामी उप-स्थानों का स्थान)। यह दिखाने के लिए सरल रेखीय बीजगणित है कि GL4 उन पर सकर्मक रूप से कार्य करता है। हम उन्हें रेखा निर्देशांक द्वारा पैरामीटर कर सकते हैं: ये 4×2 मैट्रिक्स के 2×2 लघु (रैखिक बीजगणित) हैं, जिसमें उप-स्थान के लिए कॉलम दो आधार वैक्टर हैं। परिणामी सजातीय स्थान की ज्यामिति जूलियस प्लकर की रेखा ज्यामिति है।

कोसेट रिक्त स्थान के रूप में सजातीय स्थान

सामान्य तौर पर, यदि X, G और H का एक सजातीय स्थान हैo एक्स में कुछ चिह्नित बिंदु ओ का स्टेबलाइज़र (समूह सिद्धांत) है (मूल (गणित) का एक विकल्प), एक्स के अंक बाएं सह समुच्चय जी / एच के अनुरूप हैंo, और चिह्नित बिंदु ओ पहचान के कोसेट से मेल खाता है। इसके विपरीत, एक सहसमुच्चय स्थान G/H दिया गया है, यह एक विशिष्ट बिंदु के साथ G के लिए एक सजातीय स्थान है, अर्थात् पहचान का सहसमुच्चय। इस प्रकार एक सजातीय स्थान को उत्पत्ति के विकल्प के बिना सहसमुच्चय स्थान के रूप में माना जा सकता है।

उदाहरण के लिए, यदि एच पहचान उपसमूह {ई} है, तो एक्स प्रमुख सजातीय स्थान है। भूली हुई पहचान के साथ।

सामान्य तौर पर, उत्पत्ति ओ का एक अलग विकल्प एक अलग उपसमूह एच द्वारा जी के भागफल की ओर ले जाएगाo′जो एच से संबंधित हैoजी के एक आंतरिक ऑटोमोर्फिज्म द्वारा। विशेष रूप से,

 

 

 

 

(1)

जहाँ g, G का कोई अवयव है जिसके लिए go = o′ है। ध्यान दें कि आंतरिक ऑटोमोर्फिज्म (1) इस बात पर निर्भर नहीं करता है कि इस तरह के जी का चयन किया गया है; यह केवल जी मोडुलो एच पर निर्भर करता हैo.

यदि X पर G की क्रिया निरंतर है और X हौसडॉर्फ है, तो H, G का एक बंद उपसमूह है। विशेष रूप से, यदि G एक झूठा समूह है, तो H बंद उपसमूह प्रमेय द्वारा एक झूठा उपसमूह है। कार्टन का प्रमेय। इसलिए G/H एक चिकना कई गुना है और इसलिए X में ग्रुप एक्शन के साथ संगत एक अद्वितीय चिकनी संरचना है।

डबल कोसेट रिक्त स्थान के लिए आगे जा सकते हैं, विशेष रूप से क्लिफोर्ड-क्लेन फॉर्म Γ\G/H, जहां Γ एक असतत उपसमूह (जी का) है जो ठीक से काम कर रहा है।

उदाहरण

उदाहरण के लिए, रेखा ज्यामिति मामले में, हम एच को 16-आयामी सामान्य रैखिक समूह, जीएल (4) के 12-आयामी उपसमूह के रूप में पहचान सकते हैं, जिसे मैट्रिक्स प्रविष्टियों पर शर्तों द्वारा परिभाषित किया गया है।

एच13 = एच14 = एच23 = एच24 = 0,

पहले दो मानक आधार वैक्टर द्वारा फैलाए गए उप-स्थान के स्टेबलाइज़र की तलाश करके। इससे पता चलता है कि X का आयाम 4 है।

चूंकि नाबालिगों द्वारा दिए गए समरूप निर्देशांक 6 संख्या में हैं, इसका मतलब यह है कि बाद वाले एक दूसरे से स्वतंत्र नहीं हैं। वास्तव में, एक एकल द्विघात संबंध छह अवयस्कों के बीच होता है, जैसा कि उन्नीसवीं शताब्दी के ज्यामिति के लिए जाना जाता था।

यह उदाहरण प्रक्षेपी स्थान के अलावा, ग्रासमैनियन का पहला ज्ञात उदाहरण था। गणित में सामान्य उपयोग में शास्त्रीय रैखिक समूहों के कई और सजातीय स्थान हैं।

प्रीहोमोजेनस वेक्टर स्पेस

मिकियो सातो द्वारा एक सजातीय वेक्टर अंतरिक्ष का विचार पेश किया गया था।

यह बीजगणितीय समूह G की समूह क्रिया (गणित) के साथ एक परिमित-आयामी सदिश स्थान V है, जैसे कि G की एक कक्षा है जो जरिस्की टोपोलॉजी (और इसलिए, सघन) के लिए खुली है। एक उदाहरण जीएल (1) एक आयामी स्थान पर अभिनय कर रहा है।

यह परिभाषा शुरू में दिखाई देने की तुलना में अधिक प्रतिबंधात्मक है: इस तरह के रिक्त स्थान में उल्लेखनीय गुण होते हैं, और इरेड्यूसिबल प्रीहोमोजेनस वेक्टर रिक्त स्थान का वर्गीकरण होता है, जिसे कास्टलिंग के रूप में जाना जाता है।

भौतिकी में सजातीय स्थान

सापेक्षता के सामान्य सिद्धांत का उपयोग करते हुए भौतिक ब्रह्माण्ड विज्ञान बियांची वर्गीकरण प्रणाली का उपयोग करता है। सापेक्षता में सजातीय स्थान कुछ भौतिक ब्रह्माण्ड विज्ञान के लिए पृष्ठभूमि मीट्रिक (गणित) के स्थान (भौतिकी) का प्रतिनिधित्व करते हैं; उदाहरण के लिए, फ्रीडमैन-लेमैट्रे-रॉबर्टसन-वॉकर मीट्रिक के तीन मामलों को बियांची I (फ्लैट), वी (खुला), VII (फ्लैट या खुला) और IX (बंद) प्रकारों के सबसेट द्वारा दर्शाया जा सकता है, जबकि मिक्समास्टर ब्रम्हांड बियांची IX ब्रह्माण्ड विज्ञान के एक आइसोट्रॉपी उदाहरण का प्रतिनिधित्व करता है।[2] एन आयामों का एक सजातीय स्थान एक सेट को स्वीकार करता है हत्या करने वाले वैक्टर[3] तीन आयामों के लिए, यह कुल छह रैखिक रूप से स्वतंत्र किलिंग वेक्टर फ़ील्ड देता है; सजातीय 3-रिक्त स्थान में वह संपत्ति होती है, जिसमें कोई भी इन तीनों के रैखिक संयोजनों का उपयोग करके तीन हर जगह गैर-लुप्त होने वाले किलिंग वेक्टर क्षेत्रों को खोज सकता है। ,

जहां वस्तु , संरचना स्थिरांक, एक स्थिर (गणित) टेन्सर बनाते हैं। इसके निचले दो सूचकांकों में ऑर्डर-थ्री टेंसर एंटीसिमेट्रिक टेंसर (बाएं हाथ की ओर, कोष्ठक एंटीसिमेट्रिसेशन को दर्शाता है और ; सहसंयोजक व्युत्पन्न का प्रतिनिधित्व करता है)। लैम्डा-सीडीएम के मामले में, एक संभावना है (प्रकार I), लेकिन एक बंद FLRW ब्रह्मांड के मामले में, कहाँ लेवी-Civita प्रतीक है।

यह भी देखें

टिप्पणियाँ

  1. We assume that the action is on the left. The distinction is only important in the description of X as a coset space.
  2. Lev Landau and Evgeny Lifshitz (1980), Course of Theoretical Physics vol. 2: The Classical Theory of Fields, Butterworth-Heinemann, ISBN 978-0-7506-2768-9
  3. Steven Weinberg (1972), Gravitation and Cosmology, John Wiley and Sons


संदर्भ