अल्ट्रा समानांतर प्रमेय: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (9 revisions imported from alpha:अल्ट्रा_समानांतर_प्रमेय) |
(No difference)
|
Revision as of 07:53, 6 April 2023
अतिपरवलयिक ज्यामिति में, दो रेखाओं को अतिपरांतर कहा जाता है यदि वे प्रतिच्छेद नहीं करते हैं और समानांतर को सीमित नहीं कर रहे हैं।
अति समानांतर प्रमेय में कहा गया है कि (अलग) अति समानांतर रेखा की प्रत्येक जोड़ी में अद्वितीय सामान्य लंब (एक अतिपरवलिक रेखा जो दोनों रेखाओं के लंबवत होती है) होती है।
हिल्बर्ट का निर्माण
मान लीजिए r और s दो अतिसमांतर रेखाएँ हैं।
किन्हीं दो अलग-अलग बिंदुओं A और C से s पर AB और CB' को r पर लंब खींचिए और R पर B और B' को खींचिए।
यदि ऐसा होता है कि AB = CB', तो वांछित उभयनिष्ठ लम्ब AC और BB' के मध्यबिंदुओं को मिलाता है (सैकेरी चतुर्भुज ACB'B की सममिति द्वारा)।
यदि नहीं, तो हम व्यापकता की हानि के बिना AB <CB' मान सकते हैं। मान लीजिए कि C से A की विपरीत दिशा में रेखा s पर E एक बिंदु है। CB' पर A' लीजिए ताकि A'B' = AB हो। A' के माध्यम से E के करीब एक रेखा s' (A'E') बनाएं, ताकि कोण B'A'E कोण BAE के समान हो। तब s', s से सामान्य बिंदु D' पर मिलता है। किरण AE पर एक बिन्दु D की रचना कीजिए ताकि AD = A'D' हो।
तब D' ≠ D. वे r से समान दूरी पर हैं और दोनों s पर स्थित हैं। अतः D'D (s का खंड) का लम्ब समद्विभाजक भी r पर लम्बवत है।[1]
(यदि r और s अतिसमांतर के बजाय असम्बद्ध रूप से समानांतर थे, तो यह निर्माण विफल हो जाएगा क्योंकि s' s से नहीं मिलेंगे। बल्कि s' s और r दोनों के समानान्तर समानांतर होंगे।)
पोनकारे हाफ-प्लेन मॉडल में प्रमाण
माना
कार्तीय तल के भुज पर चार अलग-अलग बिंदु हैं। माना और व्यास के साथ भुज के ऊपर अर्धवृत्त बनें और क्रमश। फिर पॉइंकेयर हाफ-प्लेन मॉडल एचपी में, और अति समानांतर रेखाओं का प्रतिनिधित्व करते हैं।
निम्नलिखित दो अतिशयोक्तिपूर्ण गतियों की रचना करें:
जब
अब इन दो अतिशयोक्तिपूर्ण गतियों के साथ जारी रखें:
तब पर रहता है , , , (कहना)। मूल में केंद्र के साथ अद्वितीय अर्धवृत्त, पर एक के लिए लंबवत दूसरे की त्रिज्या के लिए त्रिज्या स्पर्शरेखा होनी चाहिए। भुज और लंब त्रिज्या द्वारा निर्मित समकोण त्रिभुज में कर्ण की लंबाई होती है . तब से पर अर्धवृत्त की त्रिज्या है , मांगे गए सामान्य लंब में त्रिज्या-वर्ग है
चार अतिशयोक्तिपूर्ण गतियाँ जो उत्पन्न हुईं उपरोक्त प्रत्येक को उल्टा किया जा सकता है और उल्टे क्रम में मूल और त्रिज्या पर केंद्रित अर्धवृत्त पर प्रयुक्त किया जा सकता है दोनों अल्ट्रापैरलल्स के लिए अद्वितीय हाइपरबोलिक लाइन लंबवत प्राप्त करने के लिए और है।
बेल्ट्रामी-क्लेन मॉडल में प्रमाण
अतिशयोक्तिपूर्ण ज्यामिति के बेल्ट्रामी-क्लेन मॉडल में:
- दो अतिसमांतर रेखाएँ दो अप्रतिच्छेदी जीवा (ज्यामिति) के अनुरूप होती हैं।
- इन दो रेखाओं के ध्रुव और ध्रुव जीवाओं के अंत बिंदुओं पर सीमा वृत्त की स्पर्श रेखाओं के संबंधित प्रतिच्छेदन हैं।
- रेखा l के लम्बवत् रेखाएँ उन जीवाओं द्वारा प्रतिरूपित की जाती हैं जिनका विस्तार l के ध्रुव से होकर गुजरता है।
- इसलिए हम दो दी गई रेखाओं के ध्रुवों के मध्य अद्वितीय रेखा खींचते हैं, और इसे सीमा वृत्त के साथ काटते हैं; प्रतिच्छेदन की जीवा अतिसमांतर रेखाओं का वांछित उभयनिष्ठ लम्ब होगा।
यदि कोई तार व्यास होता है, तो हमारे पास ध्रुव नहीं होता है, किंतु इस स्तिथि में व्यास के लंबवत कोई तार बेल्ट्रामी-क्लेन मॉडल में भी लंबवत होता है, और इसलिए हम ध्रुव के माध्यम से एक रेखा खींचते हैं उभयनिष्ठ लंब प्राप्त करने के लिए व्यास को समकोण पर प्रतिच्छेद करने वाली दूसरी रेखा।
यह निर्माण हमेशा संभव है दिखाकर प्रमाण पूरा हो गया है:
- यदि दोनों जीवाएं व्यास हैं, तो वे प्रतिच्छेद करती हैं। (सीमा वृत्त के केंद्र में)
- यदि जीवाओं में से केवल एक ही व्यास है, तो दूसरी जीवा लम्बवत रूप से उसके आंतरिक भाग में निहित पहली जीवा के एक खंड तक नीचे जाती है, और ध्रुव लंबकोणीय से व्यास तक एक रेखा व्यास और जीवा दोनों को काटती है।
- यदि दोनों रेखाएँ व्यास नहीं हैं, तो हम प्रत्येक खंभे से खींची गई स्पर्शरेखाओं को बढ़ा सकते हैं ताकि इसके अंदर अंकित इकाई वृत्त के साथ चतुर्भुज बनाया जा सके।[how?] खंभे इस चतुर्भुज के विपरीत शीर्ष हैं, और जीवाएं शीर्ष के आसन्न पक्षों के मध्य, विपरीत कोनों के मध्य खींची गई रेखाएं हैं। चूंकि चतुर्भुज उत्तल है,[why?] ध्रुवों के मध्य की रेखा कोनों पर खींची गई दोनों जीवाओं को काटती है, और जीवाओं के मध्य की रेखा का खंड दो अन्य जीवाओं के लिए आवश्यक जीवा को परिभाषित करता है।
वैकल्पिक रूप से, हम अति समानांतर रेखा के सामान्य लंब का निर्माण इस प्रकार कर सकते हैं: बेल्ट्रामी-क्लेन मॉडल में अति समानांतर लाइनें दो गैर-प्रतिच्छेदन जीवा हैं। किंतु वे वास्तव में घेरे के बाहर प्रतिच्छेद करते हैं। प्रतिच्छेद बिंदु का ध्रुवीय वांछित सामान्य लंब है।[2]
संदर्भ
- ↑ H. S. M. Coxeter (17 September 1998). गैर-यूक्लिडियन ज्यामिति. pp. 190–192. ISBN 978-0-88385-522-5.
- ↑ W. Thurston, Three-Dimensional Geometry and Topology, page 72
- Karol Borsuk & Wanda Szmielew (1960) Foundations of Geometry, page 291.