स्केल पैरामीटर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 56: Line 56:
* स्केल पैरामीटर के साथ रैखिक रूप से स्केल करें, और
* स्केल पैरामीटर के साथ रैखिक रूप से स्केल करें, और
* नमूना आकार बढ़ने पर अभिसरण होता है।
* नमूना आकार बढ़ने पर अभिसरण होता है।
सांख्यिकीय प्रसार के विभिन्न उपाय इन्हें संतुष्ट करते हैं। पैमाने पैरामीटर के लिए आंकड़े को एक सुसंगत अनुमानक बनाने के लिए, सामान्य रूप से स्थिर पैमाने के कारक से आंकड़े को गुणा करना चाहिए। इस स्केल फैक्टर को आवश्यक स्केल पैरामीटर को स्टेटिस्टिक के एसिम्प्टोटिक वैल्यू से विभाजित करके प्राप्त मूल्य के सैद्धांतिक मूल्य के रूप में परिभाषित किया गया है। ध्यान दें कि स्केल कारक प्रश्न में वितरण पर निर्भर करता है।


उदाहरण के लिए, सामान्य वितरण के [[मानक विचलन]] का अनुमान लगाने के लिए [[औसत पूर्ण विचलन]] (एमएडी) का उपयोग करने के लिए, इसे कारक से गुणा करना होगा
 
उदाहरण के लिए, सामान्य वितरण के [[मानक विचलन]] का अनुमान लगाने के लिए औसत पूर्ण विचलन (एमएडी) का उपयोग करने के लिए, इसे कारक से गुणा करना होगा
:<math>1/\Phi^{-1}(3/4) \approx 1.4826,</math>
:<math>1/\Phi^{-1}(3/4) \approx 1.4826,</math>
जहां Φ<sup>−1</sup> मानक सामान्य बंटन के लिए मात्रात्मक फलन (संचयी बंटन फलन का व्युत्क्रम) है। (विवरण के लिए माध्यिका निरपेक्ष विचलन#रिलेशन टू स्टैंडर्ड डेविएशन देखें।)
जहां Φ<sup>−1</sup> मानक सामान्य बंटन के लिए मात्रात्मक फलन (संचयी बंटन फलन का व्युत्क्रम) है। (विवरण के लिए माध्यिका निरपेक्ष विचलन#रिलेशन टू स्टैंडर्ड डेविएशन देखें।)

Revision as of 23:31, 1 April 2023

संभाव्यता सिद्धांत और सांख्यिकी में, स्केल पैरामीटर संभाव्यता वितरण के प्राचलिक (पैरामीट्रिक) समूह का एक विशेष प्रकार का संख्यात्मक पैरामीटर (मापदण्ड) है। स्केल पैरामीटर जितना बड़ा होगा, वितरण उतना ही अधिक विस्तार होगा।

परिभाषा

यदि संभाव्यता वितरण का एक समूह ऐसा है कि एक पैरामीटर s (और अन्य पैरामीटर θ) है जिसके लिए संचयी वितरण फलन संतुष्ट करता है

तब s को 'स्केल पैरामीटर' कहा जाता है, क्योंकि इसका मान प्रायिकता वितरण के पैमाने (अनुपात) या सांख्यिकीय परिक्षेपण को निर्धारित करता है। यदि s बड़ा है, तो वितरण अधिक फैला हुआ होगा; यदि s छोटा है तो यह अधिक केंद्रित होगा।

धनात्मक वास्तविक रेखा पर समर्थित संभाव्यता वितरण पर स्केल पैरामीटर के प्रभावों को दर्शाने वाला एनिमेशन।
दो सामान्य प्रायिकता वितरणों के मिश्रण पर स्केल पैरामीटर का प्रभाव

यदि संभाव्यता घनत्व फलन पूर्ण पैरामीटर सेट के सभी मानों के लिए मौजूद है, तो घनत्व (केवल स्केल पैरामीटर के फलन के रूप में) संतुष्ट करता है

जहाँ f घनत्व के मानकीकृत संस्करण का घनत्व है, अर्थात .

स्केल पैरामीटर के एक अनुमानक को स्केल का अनुमानक कहा जाता है।

अवस्थिति पैरामीटर वाले समूह

ऐसे मामले में जहां एक पैरामीट्रिज्ड समूह का अवस्थिति पैरामीटर होता है, थोड़ी अलग परिभाषा अक्सर निम्नानुसार उपयोग की जाती है। यदि हम अवस्थिति पैरामीटर को निरूपित करते हैं , और स्केल पैरामीटर द्वारा , तो हमें उसकी आवश्यकता है जहाँ पैरामीट्रिज्ड समूह के लिए cmd है।[1] एक गैर-केंद्रीय गॉसियन के मानक विचलन के लिए एक स्केल पैरामीटर होने के लिए यह संशोधन आवश्यक है, अन्यथा जब हम पुनर्विक्रय करते हैं तो माध्य बदल जाएगा . हालाँकि, इस वैकल्पिक परिभाषा का लगातार उपयोग नहीं किया जाता है।[2]


सरल जोड़तोड़

हम लिख सकते हैं के अनुसार , निम्नलिखित नुसार:

चूँकि f प्रायिकता घनत्व फलन है, यह समानता से एकीकृत होता है:

इंटीग्रल कैलकुलस के प्रतिस्थापन नियम से, हमारे पास तब है

इसलिए भी ठीक से सामान्यीकृत है।

दर पैरामीटर

वितरण के कुछ समूह दर पैरामीटर (या व्युत्क्रम स्केल पैरामीटर) का उपयोग करते हैं, जो कि 'स्केल पैरामीटर' का पारस्परिक है। तो उदाहरण के लिए पैमाने पैरामीटर β और संभाव्यता घनत्व के साथ घातीय वितरण

समान रूप से दर पैरामीटर λ के रूप में लिखा जा सकता है


उदाहरण

  • समान वितरण (निरंतर) के अवस्थिति पैरामीटर के साथ पैरामीटरकृत किया जा सकता है और एक स्केल पैरामीटर .
  • सामान्य वितरण के दो पैरामीटर होते हैं: एक अवस्थिति पैरामीटर और एक स्केल पैरामीटर . व्यवहार में सामान्य वितरण को अक्सर स्क्वेर्ड स्केल के रूप में परिचालित किया जाता है , जो वितरण के विचरण के अनुरूप है।
  • गामा वितरण साधारणतया स्केल पैरामीटर के संदर्भ में पैरामीटरकृत होता है या इसका उलटा है।
  • वितरण के विशेष मामले जहां पैमाने का पैरामीटर समानता के बराबर होता है, उसे कुछ शर्तों के तहत मानक कहा जा सकता है। उदाहरण के लिए, यदि अवस्थिति पैरामीटर शून्य के बराबर है और स्केल पैरामीटर एक के बराबर है, तो सामान्य वितरण को मानक सामान्य वितरण के रूप में जाना जाता है, और कॉची वितरण को मानक कॉची वितरण के रूप में जाना जाता है।

अनुमान

एक पैमाने पैरामीटर का अनुमान लगाने के लिए एक आंकड़े का उपयोग तब तक किया जा सकता है जब तक:

  • अवस्थिति-परिवर्तनशील है,
  • स्केल पैरामीटर के साथ रैखिक रूप से स्केल करें, और
  • नमूना आकार बढ़ने पर अभिसरण होता है।


उदाहरण के लिए, सामान्य वितरण के मानक विचलन का अनुमान लगाने के लिए औसत पूर्ण विचलन (एमएडी) का उपयोग करने के लिए, इसे कारक से गुणा करना होगा

जहां Φ−1 मानक सामान्य बंटन के लिए मात्रात्मक फलन (संचयी बंटन फलन का व्युत्क्रम) है। (विवरण के लिए माध्यिका निरपेक्ष विचलन#रिलेशन टू स्टैंडर्ड डेविएशन देखें।) अर्थात्, MAD एक सामान्य वितरण के मानक विचलन के लिए एक सुसंगत अनुमानक नहीं है, लेकिन 1.4826... MAD एक सुसंगत अनुमानक है। इसी तरह, मानक विचलन के लिए एक सुसंगत अनुमानक होने के लिए औसत निरपेक्ष विचलन को लगभग 1.2533 से गुणा करने की आवश्यकता है। यदि जनसंख्या सामान्य वितरण का पालन नहीं करती है तो मानक विचलन का अनुमान लगाने के लिए विभिन्न कारकों की आवश्यकता होगी।

यह भी देखें

संदर्भ

  1. Prokhorov, A.V. (7 February 2011). "Scale parameter". Encyclopedia of Mathematics. Springer. Retrieved 7 February 2019.
  2. Koski, Timo. "Scale parameter". KTH Royal Institute of Technology. Retrieved 7 February 2019.


अग्रिम पठन

  • Mood, A. M.; Graybill, F. A.; Boes, D. C. (1974). "VII.6.2 Scale invariance". Introduction to the theory of statistics (3rd ed.). New York: McGraw-Hill.