अर्ध अभिक्रिया: Difference between revisions
(Created page with "{{Short description|Redox reaction component}} अर्ध-अभिक्रिया (या अर्ध-कोशिका अभिक्रिया) या तो र...") |
No edit summary |
||
| Line 1: | Line 1: | ||
{{Short description|Redox reaction component}} | {{Short description|Redox reaction component}} | ||
अर्ध-अभिक्रिया (या अर्ध- | अर्ध-अभिक्रिया (या अर्ध-सेल अभिक्रिया) या तो रेडॉक्स अभिक्रिया का ऑक्सीकरण या अपचयन अभिक्रिया घटक है। रेडॉक्स अभिक्रिया में सम्मिलित अलग-अलग पदार्थों के ऑक्सीकरण राज्यों में परिवर्तन पर विचार करके आधी अभिक्रिया प्राप्त की जाती है।अक्सर, आधी अभिक्रियाओं की अवधारणा का उपयोग यह वर्णन करने के लिए किया जाता है कि विद्युत रासायनिक सेल में क्या होता है, जैसे कि गैल्वेनिक सेल बैटरी है। ऑक्सीकरण से गुजर रही धातु (एनोड के रूप में जाना जाता है) और कमी से गुजरने वाली धातु (कैथोड के रूप में जाना जाता है) दोनों का वर्णन करने के लिए आधी अभिक्रियाएं लिखी जा सकती हैं। | ||
आधी अभिक्रियाओं का उपयोग प्रायः रेडॉक्स अभिक्रियाओं को संतुलित करने की एक विधि के रूप में किया जाता है। अम्लीय स्थितियों में ऑक्सीकरण-कमी अभिक्रियाओं के लिए, परमाणुओं और ऑक्सीकरण संख्याओं को संतुलित करने के बाद, हाइड्रोजन आयनों को आधी प्रतिक्रिया में संतुलित करने के लिए आयनों को जोड़ने की आवश्यकता होगी। | आधी अभिक्रियाओं का उपयोग प्रायः रेडॉक्स अभिक्रियाओं को संतुलित करने की एक विधि के रूप में किया जाता है। अम्लीय स्थितियों में ऑक्सीकरण-कमी अभिक्रियाओं के लिए, परमाणुओं और ऑक्सीकरण संख्याओं को संतुलित करने के बाद, हाइड्रोजन आयनों को आधी प्रतिक्रिया में संतुलित करने के लिए आयनों को जोड़ने की आवश्यकता होगी। मूलभूत स्थितियों में ऑक्सीकरण-कमी अभिक्रियाओं के लिए, परमाणुओं और ऑक्सीकरण संख्याओं को संतुलित करने के बाद, पहले इसे एक अम्लीय समाधान के रूप में देखें और फिर आधे प्रतिक्रियाओं में H<sup>+</sup> आयनों को संतुलित करने के लिए OH<sup>−</sup> (जो H<sub>2</sub>O देगा )। | ||
==उदाहरण: Zn और Cu गैल्वेनिक सेल== | ==उदाहरण: Zn और Cu गैल्वेनिक सेल== | ||
| Line 35: | Line 35: | ||
:2Mg(s) + O<sub>2</sub>(g) + 4e<sup>−</sup> →2Mg<sup>2+</sup> + 2O<sup>2−</sup> + 4e<sup>−</sup> | :2Mg(s) + O<sub>2</sub>(g) + 4e<sup>−</sup> →2Mg<sup>2+</sup> + 2O<sup>2−</sup> + 4e<sup>−</sup> | ||
123 | |||
:2Mg(s) + O<sub>2</sub>(g) →2Mg<sup>2+</sup> + 2O<sup>2−</sup> | :2Mg(s) + O<sub>2</sub>(g) →2Mg<sup>2+</sup> + 2O<sup>2−</sup> | ||
| Line 46: | Line 46: | ||
:Cl<sub>2</sub> + 2Fe<sup>2+</sup> → 2Cl<sup>−</sup> + 2Fe<sup>3+</sup> | :Cl<sub>2</sub> + 2Fe<sup>2+</sup> → 2Cl<sup>−</sup> + 2Fe<sup>3+</sup> | ||
सम्मिलित दो तत्व, लोहा और क्लोरीन, प्रत्येक ऑक्सीकरण अवस्था बदलते हैं; लोहा +2 से +3 तक, क्लोरीन 0 से -1 तक। तब प्रभावी रूप से दो आधी अभिक्रियाएं होती हैं। प्रत्येक अर्ध अभिक्रिया में उपयुक्त इलेक्ट्रॉनों को सम्मिलित करके इन परिवर्तनों को सूत्रों में दर्शाया जा सकता है: | |||
:Fe<sup>2+</sup> → Fe<sup>3+</sup> + e<sup>−</sup> | :Fe<sup>2+</sup> → Fe<sup>3+</sup> + e<sup>−</sup> | ||
| Line 60: | Line 60: | ||
* और अंत में Cl<sub>2</sub> + 2Fe<sup>2+</sup> → 2Cl<sup>−</sup> + 2Fe<sup>3+</sup> बन जाता है | * और अंत में Cl<sub>2</sub> + 2Fe<sup>2+</sup> → 2Cl<sup>−</sup> + 2Fe<sup>3+</sup> बन जाता है | ||
यह भी संभव है और कभी-कभी | यह भी संभव है और कभी-कभी मूलभूत या अम्लीय स्थितियों में आधी अभिक्रिया पर विचार करना आवश्यक होता है, क्योंकि रेडॉक्स अभिक्रिया में एक अम्लीय या मूल इलेक्ट्रोलाइट हो सकता है। इस इलेक्ट्रोलाइट के कारण परमाणुओं और आवेशों दोनों के संतुलन को संतुष्ट करना अधिक कठिन हो सकता है। यह H<sub>2</sub>O, OH<sup>−</sup>, e<sup>−</sup>, और या H<sup>+</sup> अभिक्रिया के दोनों ओर जब तक परमाणु और आवेश दोनों संतुलित नहीं हो जाते। | ||
नीचे दी गई आधी अभिक्रिया पर विचार करें: | नीचे दी गई आधी अभिक्रिया पर विचार करें: | ||
| Line 80: | Line 80: | ||
ध्यान दें कि दोनों पक्ष आवेश संतुलित और परमाणु संतुलित दोनों हैं। | ध्यान दें कि दोनों पक्ष आवेश संतुलित और परमाणु संतुलित दोनों हैं। | ||
अक्सर अम्लीय और | अक्सर अम्लीय और मूलभूत स्थितियों में H + और OH - दोनों मौजूद होंगे लेकिन दो आयनों की परिणामी प्रतिक्रिया से H<sub>2</sub>O पानी निकलेगा (नीचे दिखाया गया है): | ||
: H<sup>+</sup> + OH<sup>−</sup><sup></sup> → H<sub>2</sub>O | : H<sup>+</sup> + OH<sup>−</sup><sup></sup> → H<sub>2</sub>O | ||
Revision as of 23:46, 1 April 2023
अर्ध-अभिक्रिया (या अर्ध-सेल अभिक्रिया) या तो रेडॉक्स अभिक्रिया का ऑक्सीकरण या अपचयन अभिक्रिया घटक है। रेडॉक्स अभिक्रिया में सम्मिलित अलग-अलग पदार्थों के ऑक्सीकरण राज्यों में परिवर्तन पर विचार करके आधी अभिक्रिया प्राप्त की जाती है।अक्सर, आधी अभिक्रियाओं की अवधारणा का उपयोग यह वर्णन करने के लिए किया जाता है कि विद्युत रासायनिक सेल में क्या होता है, जैसे कि गैल्वेनिक सेल बैटरी है। ऑक्सीकरण से गुजर रही धातु (एनोड के रूप में जाना जाता है) और कमी से गुजरने वाली धातु (कैथोड के रूप में जाना जाता है) दोनों का वर्णन करने के लिए आधी अभिक्रियाएं लिखी जा सकती हैं।
आधी अभिक्रियाओं का उपयोग प्रायः रेडॉक्स अभिक्रियाओं को संतुलित करने की एक विधि के रूप में किया जाता है। अम्लीय स्थितियों में ऑक्सीकरण-कमी अभिक्रियाओं के लिए, परमाणुओं और ऑक्सीकरण संख्याओं को संतुलित करने के बाद, हाइड्रोजन आयनों को आधी प्रतिक्रिया में संतुलित करने के लिए आयनों को जोड़ने की आवश्यकता होगी। मूलभूत स्थितियों में ऑक्सीकरण-कमी अभिक्रियाओं के लिए, परमाणुओं और ऑक्सीकरण संख्याओं को संतुलित करने के बाद, पहले इसे एक अम्लीय समाधान के रूप में देखें और फिर आधे प्रतिक्रियाओं में H+ आयनों को संतुलित करने के लिए OH− (जो H2O देगा )।
उदाहरण: Zn और Cu गैल्वेनिक सेल
बगल की छवि में दिखाए गए गैल्वेनिक सेल पर विचार करें: इसका निर्माण जिंक सल्फेट (ZnSO4) के घोल में डूबे हुए जिंक (Zn) के टुकड़े के साथ कॉपर (II) सल्फेट (CuSO4) के घोल में डूबा हुआ कॉपर (Cu) का एक टुकड़ा है। समग्र अभिक्रिया है:
- Zn(s) + CuSO4(aq) → ZnSO4(aq) + Cu(s)
Zn एनोड पर ऑक्सीकरण होता है (धातु इलेक्ट्रॉनों को खो देता है)। यह निम्नलिखित ऑक्सीकरण आधा अभिक्रिया में दर्शाया गया है (ध्यान दें कि इलेक्ट्रॉन उत्पाद तरफ हैं):
- Zn(s) → Zn2+ + 2e-
Cu कैथोड पर कमी होती है (इलेक्ट्रॉनों को स्वीकार किया जाता है)। यह निम्नलिखित कमी आधा अभिक्रिया में दर्शाया गया है (ध्यान दें कि इलेक्ट्रॉन अभिकारक पक्ष पर हैं):
- Cu2+ + 2e- → Cu(s)
उदाहरण: मैग्नीशियम का ऑक्सीकरण
मैग्नीशियम रिबन (Mg) के जलने के उदाहरण पर विचार करें। जब मैग्नीशियम जलता है, तो यह निम्नलिखित समीकरण के अनुसार हवा से ऑक्सीजन (O2) के साथ मिलकर मैग्नीशियम ऑक्साइड (MgO) बनाता है:
- 2Mg(s) + O2(g) → 2MgO(s)
मैग्नीशियम ऑक्साइड एक आयनिक यौगिक है जिसमें Mg2+ और O2− आयन होते हैं जबकि Mg(s) और O2(g) बिना किसी शुल्क के तत्व हैं। Mg(s) शून्य आवेश के साथ अभिकारक पक्ष से उत्पाद की ओर जाने पर +2 आवेश प्राप्त करता है, और O2(g) शून्य चार्ज के साथ -2 चार्ज प्राप्त करता है। ऐसा इसलिए है क्योंकि जब Mg(s) Mg2+ बन जाता है, यह 2 इलेक्ट्रॉनों को खो देता है। चूँकि बाईं ओर 2 Mg हैं, निम्नलिखित ऑक्सीकरण अर्ध अभिक्रिया के अनुसार कुल 4 इलेक्ट्रॉन नष्ट हो जाते हैं:
- 2Mg(s) → 2Mg2+ + 4e−
दूसरी ओर, O2 कम हो गया था: इसकी ऑक्सीकरण अवस्था 0 से -2 हो जाती है। इस प्रकार, O2 के लिए अपचयन आधा अभिक्रिया लिखी जा सकती है क्योंकि यह 4 इलेक्ट्रॉन प्राप्त करता है:
- O2(g) + 4e− → 2O2−
समग्र अभिक्रिया दोनों आधी अभिक्रियाओं का योग है:
- 2Mg(s) + O2(g) + 4e− →2Mg2+ + 2O2− + 4e−
123
- 2Mg(s) + O2(g) →2Mg2+ + 2O2−
दो आयन, धनात्मक (Mg2+) और नकारात्मक (O2−) उत्पाद की तरफ पर मौजूद होते हैं और वे अपने विपरीत आवेशों (इलेक्ट्रोस्टैटिक आकर्षण) के कारण तुरंत एक यौगिक मैग्नीशियम ऑक्साइड (MgO) बनाने के लिए संयोजित होते हैं। किसी भी ऑक्सीकरण-अपचयन अभिक्रिया में, दो आधा अभिक्रियाएं होती हैं-ऑक्सीकरण आधा अभिक्रिया और कमी आधा अभिक्रिया। इन दो आधी अभिक्रियाओं का योग ऑक्सीकरण-कमी अभिक्रिया है।
अर्ध-अभिक्रिया संतुलन विधि
नीचे दी गई अभिक्रिया पर विचार करें:
- Cl2 + 2Fe2+ → 2Cl− + 2Fe3+
सम्मिलित दो तत्व, लोहा और क्लोरीन, प्रत्येक ऑक्सीकरण अवस्था बदलते हैं; लोहा +2 से +3 तक, क्लोरीन 0 से -1 तक। तब प्रभावी रूप से दो आधी अभिक्रियाएं होती हैं। प्रत्येक अर्ध अभिक्रिया में उपयुक्त इलेक्ट्रॉनों को सम्मिलित करके इन परिवर्तनों को सूत्रों में दर्शाया जा सकता है:
- Fe2+ → Fe3+ + e−
- Cl2 + 2e− → 2Cl−
दो आधी अभिक्रियाओं को देखते हुए, उपयुक्त इलेक्ट्रोड क्षमता के ज्ञान के साथ, पूर्ण (मूल) अभिक्रिया पर उसी तरह पहुंचना संभव है। एक अभिक्रिया का आधा अभिक्रियाओं में अपघटन विभिन्न रासायनिक प्रक्रियाओं को समझने की कुंजी है। उदाहरण के लिए, उपरोक्त अभिक्रिया में, यह दिखाया जा सकता है कि यह एक रेडॉक्स अभिक्रिया है जिसमें Fe का ऑक्सीकरण होता है, और Cl का अपचयन होता है। Fe से Cl में इलेक्ट्रॉनों के स्थानांतरण पर ध्यान दें। अपघटन भी एक रासायनिक समीकरण के संतुलन को सरल बनाने का एक तरीका है। एक रसायनज्ञ एक समय में एक समीकरण के एक टुकड़े को संतुलित और आवेशित कर सकता है।
उदाहरण के लिए:
- Fe2+ → Fe3+ + e− becomes 2Fe2+ → 2Fe3+ + 2e−
- Cl2 + 2e− →2Cl− में जोड़ा जाता है
- और अंत में Cl2 + 2Fe2+ → 2Cl− + 2Fe3+ बन जाता है
यह भी संभव है और कभी-कभी मूलभूत या अम्लीय स्थितियों में आधी अभिक्रिया पर विचार करना आवश्यक होता है, क्योंकि रेडॉक्स अभिक्रिया में एक अम्लीय या मूल इलेक्ट्रोलाइट हो सकता है। इस इलेक्ट्रोलाइट के कारण परमाणुओं और आवेशों दोनों के संतुलन को संतुष्ट करना अधिक कठिन हो सकता है। यह H2O, OH−, e−, और या H+ अभिक्रिया के दोनों ओर जब तक परमाणु और आवेश दोनों संतुलित नहीं हो जाते।
नीचे दी गई आधी अभिक्रिया पर विचार करें:
- PbO2 → PbO
OH−, H2O, और e− का उपयोग मूल स्थितियों में आवेशों और परमाणुओं को संतुलित करने के लिए किया जा सकता है, जब तक यह माना जाता है कि अभिक्रिया पानी में है।
- 2e− + H2O + PbO2 → PbO + 2OH−
फिर से नीचे दी गई आधी अभिक्रिया पर विचार करें:
- PbO2 → PbO
H+, H2O, और e− का उपयोग अम्लीय परिस्थितियों में आवेशों और परमाणुओं को संतुलित करने के लिए किया जा सकता है, जब तक यह माना जाता है कि अभिक्रिया पानी में है।
- 2e− + 2H+ + PbO2 → PbO + H2O
ध्यान दें कि दोनों पक्ष आवेश संतुलित और परमाणु संतुलित दोनों हैं।
अक्सर अम्लीय और मूलभूत स्थितियों में H + और OH - दोनों मौजूद होंगे लेकिन दो आयनों की परिणामी प्रतिक्रिया से H2O पानी निकलेगा (नीचे दिखाया गया है):
- H+ + OH− → H2O
यह भी देखें
- इलेक्ट्रोड क्षमता
- मानक इलेक्ट्रोड क्षमता (डेटा पृष्ठ)