ट्रेस क्लास: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
गणित में, विशेष रूप से [[कार्यात्मक विश्लेषण]], एक ट्रेस-क्लास ऑपरेटर एक रैखिक ऑपरेटर होता है जिसके लिए एक [[ट्रेस (रैखिक बीजगणित)]] परिभाषित किया जा सकता है, जैसे ट्रेस एक परिमित संख्या है जो ट्रेस की गणना करने के लिए उपयोग किए जाने वाले आधार की पसंद से स्वतंत्र है। ट्रेस-क्लास ऑपरेटरों का यह निशान रेखीय बीजगणित में अध्ययन किए गए मेट्रिसेस के ट्रेस को सामान्य करता है। सभी ट्रेस-क्लास ऑपरेटर [[कॉम्पैक्ट ऑपरेटर]] हैं।
गणित में, विशेष रूप से [[कार्यात्मक विश्लेषण]], एक ट्रेसी क्लास ऑपरेटर रैखिक ऑपरेटर होता है, जिसके लिए [[ट्रेस (रैखिक बीजगणित)]] परिभाषित किया जा सकता है, इस प्रकार ट्रेस आधार के चयन से स्वतंत्र एक परिमित संख्या है जिसका प्रयोग ट्रेस के गणना हेतु होता है। ट्रेस-क्लास ऑपरेटरों का यह निशान रेखीय बीजगणित में अध्ययन किए गए मेट्रिसेस के ट्रेस को सामान्य करता है, सभी ट्रेस-क्लास ऑपरेटर [[कॉम्पैक्ट ऑपरेटर]] हैं।


क्वांटम यांत्रिकी में, [[मिश्रित अवस्था (भौतिकी)]] का वर्णन [[घनत्व मैट्रिक्स]] द्वारा किया जाता है, जो निश्चित ट्रेस क्लास ऑपरेटर हैं।
क्वांटम यांत्रिकी में, [[मिश्रित अवस्था (भौतिकी)]] को [[घनत्व मैट्रिक्स]] द्वारा वर्णित किया जाता है, जो निश्चित ट्रेस क्लास ऑपरेटर हैं।


ट्रेस-क्लास ऑपरेटर अनिवार्य रूप से [[परमाणु ऑपरेटर|परमाणु]] [[ऑपरेटरों]] के समान हैं, चूंकि कई लेखक हिल्बर्ट रिक्त स्थान पर परमाणु ऑपरेटरों के विशेष स्थितिे के लिए ट्रेस-क्लास ऑपरेटर शब्द आरक्षित करते हैं और परमाणु ऑपरेटर शब्द का उपयोग अधिक सामान्य [[टोपोलॉजिकल वेक्टर स्पेस]] स्थान (जैसे बानाच रिक्त स्थान) में करते हैं।
ट्रेस-क्लास ऑपरेटर अनिवार्य रूप से [[परमाणु ऑपरेटर|परमाणु]] [[ऑपरेटरों]] के समान हैं, चूंकि कई लेखक हिल्बर्ट स्पेस पर परमाणु ऑपरेटरों के विशेष स्थितिे के लिए ट्रेस-क्लास ऑपरेटर शब्द आरक्षित करते हैं और परमाणु ऑपरेटर शब्द का उपयोग अधिक सामान्य [[टोपोलॉजिकल वेक्टर स्पेस]] (जैसे बानाच रिक्त स्थान) में किया जाता है।


ध्यान दें कि आंशिक अंतर समीकरणों में अध्ययन किया गया [[ट्रेस ऑपरेटर]] एक असंबंधित अवधारणा है।
ध्यान दें कि आंशिक अंतर समीकरणों में अध्ययन किया गया [[ट्रेस ऑपरेटर]] एक असंबंधित अवधारणा है।
Line 9: Line 9:
== परिभाषा ==
== परिभाषा ==


मान लीजिए <math>H</math> एक हिल्बर्ट स्पेस है और <math>A : H \to H</math>, <math>H</math> पर एक [[परिबद्ध रैखिक संचालिका]] है जो नॉन-नेगेटिव ( अर्थात, सेमी-पॉजिटिव-डेफिनिट) और सेल्फ-एडजॉइंट है। <math>\operatorname{Tr} A,</math> द्वारा निरूपित <math>A</math> का ट्रेस श्रृंखला का योग है{{sfn|Conway|1990|p=267}}<math display="block">\operatorname{Tr} A = \sum_k \left\langle A e_k, e_k \right\rangle,</math>जहाँ <math>\left(e_k\right)_{k}</math> <math>H</math> का एक अलौकिक आधार है। ट्रेस गैर-नकारात्मक वास्तविक पर एक योग है और इसलिए एक गैर-नकारात्मक वास्तविक या अनंत है। यह दिखाया जा सकता है कि ट्रेस ऑर्थोनॉर्मल आधार की पसंद पर निर्भर नहीं करता है। एक मनमाने ढंग से परिबद्ध रैखिक ऑपरेटर के लिए <math>T : H \to H</math> पर <math>H,</math> हम इसके पूर्ण मूल्य को परिभाषित करते हैं, जिसे निरूपित किया जाता है <math>|T|,</math> मैट्रिक्स का धनात्मक वर्गमूल होना के धनात्मक संकारकों का वर्गमूल <math>T^* T,</math> वह है, <math>|T| := \sqrt{T^* T}</math> यूनीक बाउंडेड [[सकारात्मक ऑपरेटर]] ऑन है <math>H</math> ऐसा है कि <math>|T| \circ |T| = T^* \circ T.</math> परिचालक <math>T : H \to H</math> कहा जाता है <math>\operatorname{Tr} (|T|) < \infty</math> कि यदि ट्रेस क्लास में है, हम सभी ट्रेस क्लास रैखिक ऑपरेटरों के स्थान को {{mvar|H}} द्वारा <math>B_1(H)</math> निरूपित करते हैं, (कोई दिखा सकता है कि यह वास्तव में एक सदिश स्थान है।)  
मान लीजिए <math>H</math> एक हिल्बर्ट स्पेस है और <math>A : H \to H</math>, <math>H</math> पर एक [[परिबद्ध रैखिक संचालिका]] है जो गैर-नकारात्मक ( अर्थात, अर्ध सकारात्मक-डेफिनिट) और सेल्फ-एडजॉइंट है। <math>\operatorname{Tr} A,</math> द्वारा निरूपित <math>A</math> ट्रेस श्रृंखला का योग होता है{{sfn|Conway|1990|p=267}}<math display="block">\operatorname{Tr} A = \sum_k \left\langle A e_k, e_k \right\rangle,</math>जहाँ <math>\left(e_k\right)_{k}</math> का एक ऑर्थोनॉर्मल आधार <math>H</math> है, यह दिखाया जा सकता है कि यह जटिल संख्याओं की एक [[पूर्ण अभिसरण]] श्रृंखला है जिसका योग ऑर्थोनॉर्मल आधार की पसंद पर निर्भर नहीं करता है। <math>H,</math> पर मनमाने ढंग से परिबद्ध रैखिक ऑपरेटर <math>T : H \to H</math> के लिए, हम <math>|T|</math> द्वारा निरूपित <math>T^* T,</math> का सकारात्मक वर्गमूल होने के लिए इसके पूर्ण मान को परिभाषित करते हैं। यानी, <math>|T| := \sqrt{T^* T}</math> ,<math>H</math> पर यूनीक बाउंडेड [[सकारात्मक ऑपरेटर]] है जैसे कि <math>|T| \circ |T| = T^* \circ T</math> ऑपरेटर <math>T : H \to H</math> को ट्रेस क्लास में कहा जाता है यदि <math>\operatorname{Tr} (|T|) < \infty</math> है तो हम {{mvar|H}} पर सभी ट्रेस क्लास रैखिक ऑपरेटरों के स्थान को <math>B_1(H)</math> द्वारा निरूपित करते हैं। (कोई दिखा सकता है कि यह वास्तव में एक सदिश स्थान है।)


यदि <math>T</math> ट्रेस क्लास में है, तो <math>T</math> द्वारा हम ट्रेस को परिभाषित करते हैं <math display="block">\operatorname{Tr} T = \sum_k \left\langle T e_k, e_k \right\rangle,</math>जहाँ <math>\left(e_k\right)_{k}</math> का एक मनमाना ऑर्थोनॉर्मल आधार <math>H</math> है, यह दिखाया जा सकता है कि यह जटिल संख्याओं की एक [[पूर्ण अभिसरण]] श्रृंखला है जिसका योग ऑर्थोनॉर्मल आधार की पसंद पर निर्भर नहीं करता है।
यदि <math>T</math> ट्रेस क्लास में है, तो <math>T</math> द्वारा हम ट्रेस को परिभाषित करते हैं, <math display="block">\operatorname{Tr} T = \sum_k \left\langle T e_k, e_k \right\rangle,</math>जहाँ <math>\left(e_k\right)_{k}</math> का एक मनमाना ऑर्थोनॉर्मल आधार <math>H</math> है, यह दिखाया जा सकता है कि यह जटिल संख्याओं की एक पूरी तरह से अभिसरण श्रृंखला है जिसका योग ऑर्थोनॉर्मल आधार की पसंद पर निर्भर नहीं करता है।


कब {{mvar|H}} परिमित-आयामी है, प्रत्येक ऑपरेटर ट्रेस क्लास है और यह ट्रेस की परिभाषा है {{mvar|T}} [[ट्रेस (मैट्रिक्स)]] की परिभाषा के साथ मेल खाता है।
जब {{mvar|H}} परिमित-आयामी होता है, तो प्रत्येक ऑपरेटर ट्रेस क्लास होता है और {{mvar|T}} के [[ट्रेस (मैट्रिक्स)]] की यह परिभाषा मैट्रिक्स के ट्रेस की परिभाषा के साथ मेल खाती है।


== समकक्ष फॉर्मूलेशन ==
== समकक्ष फॉर्मूलेशन ==
एक परिबद्ध रैखिक संकारक दिया गया है <math>T : H \to H</math>, निम्नलिखित में से प्रत्येक बयान के बराबर है <math>T</math> ट्रेस क्लास में होना:
एक सीमित रैखिक ऑपरेटर <math>T : H \to H</math> को देखते हुए, निम्न में से प्रत्येक कथन <math>T</math> के ट्रेस क्लास में होने के बराबर है:
* <math>\operatorname{Tr} (|T|) < \infty</math>{{sfn|Conway|1990|p=267}}
* <math>\operatorname{Tr} (|T|) < \infty</math>{{sfn|Conway|1990|p=267}}
* सोम्मे ऑर्थोनॉर्मल बेसिस के लिए <math>\left(e_k\right)_{k}</math> का {{mvar|H}}, धनात्मक पदों का योग <math display="inline">\sum_k \left\langle |T| \, e_k, e_k \right\rangle</math> परिमित है।
*{{mvar|H}} के कुछ ऑर्थोनॉर्मल आधार <math>\left(e_k\right)_{k}</math> के लिए, धनात्मक पदों का योग <math display="inline">\sum_k \left\langle |T| \, e_k, e_k \right\rangle</math> परिमित है।
* हर अलौकिक आधार के लिए <math>\left(e_k\right)_{k}</math> का {{mvar|H}}, धनात्मक पदों का योग <math display="inline">\sum_k \left\langle |T| \, e_k, e_k \right\rangle</math> परिमित है।
*{{mvar|H}} के प्रत्येक ऑर्थोनॉर्मल आधार <math>\left(e_k\right)_{k}</math> के लिए, धनात्मक पदों का योग <math display="inline">\sum_k \left\langle |T| \, e_k, e_k \right\rangle</math> परिमित है।
* {{mvar|T}} एक कॉम्पैक्ट ऑपरेटर है और <math display="inline">\sum_{i=1}^{\infty} s_i < \infty,</math> जहाँ <math>s_1, s_2, \ldots</math> के आइगेनवैल्यू हैं <math>|T|</math> (के [[एकवचन मान]] के रूप में भी जाना जाता है {{mvar|T}}) प्रत्येक आइगेनवैल्यू के साथ जितनी बार इसकी बहुलता दोहराई जाती है।{{sfn|Conway|1990|p=267}}
*{{mvar|T}} एक कॉम्पैक्ट ऑपरेटर है और <math display="inline">\sum_{i=1}^{\infty} s_i < \infty,</math> जहां <math>s_1, s_2, \ldots</math> हैं <math>|T|</math> के आइगेनवैल्यू ({{mvar|T}} के एकवचन मूल्यों के रूप में भी जाना जाता है) प्रत्येक ईगेनवेल्यू को अक्सर इसकी बहुलता के रूप में दोहराया जाता है।{{sfn|Conway|1990|p=267}}
* दो [[ऑर्थोगोनल (गणित)]] क्रम उपलब्ध हैं <math>\left(x_i\right)_{i=1}^{\infty}</math> और <math>\left(y_i\right)_{i=1}^{\infty}</math> में <math>H</math> और एक क्रम <math>\left(\lambda_i\right)_{i=1}^{\infty}</math> एलपी स्पेस में <math>\ell^1</math>ऐसा कि सभी के लिए <math>x \in H,</math> <math display="inline">T(x) = \sum_{i=1}^{\infty} \lambda_i \left\langle x, x_i \right\rangle y_i</math>{{sfn|Trèves|2006|p=494}} यहाँ, अनंत योग का अर्थ है कि आंशिक योग का क्रम <math display="inline">\left(\sum_{i=1}^{N} \lambda_i \left\langle x, x_i \right\rangle y_i\right)_{N=1}^{\infty}</math> में विलीन <math>T(x)</math> में {{mvar|H}} हो जाता है।
* दो [[ऑर्थोगोनल (गणित)]] क्रम उपलब्ध हैं <math>\left(x_i\right)_{i=1}^{\infty}</math> और <math>\left(y_i\right)_{i=1}^{\infty}</math> <math>H</math> में और एक क्रम <math>\left(\lambda_i\right)_{i=1}^{\infty}</math> <math>\ell^1</math> में ऐसा कि सभी के लिए <math>x \in H,</math> <math display="inline">T(x) = \sum_{i=1}^{\infty} \lambda_i \left\langle x, x_i \right\rangle y_i</math>{{sfn|Trèves|2006|p=494}} यहाँ, अनंत योग का अर्थ है कि आंशिक योग का क्रम <math display="inline">\left(\sum_{i=1}^{N} \lambda_i \left\langle x, x_i \right\rangle y_i\right)_{N=1}^{\infty}</math> में विलीन <math>T(x)</math> में {{mvar|H}} हो जाता है।
* {{mvar|T}} बनच स्पेस के बीच एक न्यूक्लियर ऑपरेटर है।
*{{mvar|T}} एक परमाणु ऑपरेटर है।
* {{mvar|T}} दो [[हिल्बर्ट-श्मिट ऑपरेटर|हिल्बर्ट-श्मिट]] ऑपरेटरों की संरचना के बराबर है।{{sfn|Conway|1990|p=267}}
*{{mvar|T}} दो [[हिल्बर्ट-श्मिट]] ऑपरेटरों की संरचना के बराबर है।{{sfn|Conway|1990|p=267}}
* <math display="inline">\sqrt{|T|}</math> एक हिल्बर्ट-श्मिट ऑपरेटर है।{{sfn|Conway|1990|p=267}}
* <math display="inline">\sqrt{|T|}</math> एक हिल्बर्ट-श्मिट ऑपरेटर है।{{sfn|Conway|1990|p=267}}
* {{mvar|T}} एक [[अभिन्न रैखिक ऑपरेटर]] है।{{sfn|Trèves|2006|pp=502-508}}
* {{mvar|T}} एक [[अभिन्न रैखिक ऑपरेटर]] है।{{sfn|Trèves|2006|pp=502-508}}
* कमजोर रूप से बंद और समान (और बनच-अलाग्लु प्रमेय) उपसमुच्चय उपलब्ध हैं <math>A^{\prime}</math> और <math>B^{\prime\prime}</math> का <math>H^{\prime}</math> और <math>H^{\prime\prime},</math> क्रमशः, और कुछ सकारात्मक [[रेडॉन माप]] <math>\mu</math> पर <math>A^{\prime} \times B^{\prime\prime}</math> कुल द्रव्यमान का <math>\leq 1</math> ऐसा कि सभी के लिए <math>x \in H</math> और <math>y^{\prime} \in H^{\prime}</math>: <math display="block">y^{\prime} (T(x)) = \int_{A^{\prime} \times B^{\prime\prime}} x^{\prime}(x) \; y^{\prime\prime}\left(y^{\prime}\right) \, \mathrm{d} \mu \left(x^{\prime}, y^{\prime\prime}\right).</math>
*कमजोर रूप से बंद और समान (और इस प्रकार कमजोर रूप से कॉम्पैक्ट) उपसमुच्चय मौजूद हैं <math>A^{\prime}</math> और <math>B^{\prime\prime}</math> का <math>H^{\prime}</math> और <math>H^{\prime\prime},</math> क्रमशः, और कुछ सकारात्मक [[रेडॉन माप]] <math>\mu</math> पर <math>A^{\prime} \times B^{\prime\prime}</math> कुल द्रव्यमान <math>\leq 1</math> ऐसा कि सभी <math>x \in H</math> और <math>y^{\prime} \in H^{\prime}</math> के लिए:<math display="block">y^{\prime} (T(x)) = \int_{A^{\prime} \times B^{\prime\prime}} x^{\prime}(x) \; y^{\prime\prime}\left(y^{\prime}\right) \, \mathrm{d} \mu \left(x^{\prime}, y^{\prime\prime}\right).</math>
=== ट्रेस-मानक ===
=== ट्रेस-मानक ===


{{mvar|T}} मूल्य होना हम ट्रेस क्लास ऑपरेटर के ट्रेस-नॉर्म को परिभाषित करते हैं,
हम ट्रेस क्लास ऑपरेटर {{mvar|T}} के ट्रेस-मानदंड को मान के रूप में परिभाषित करते हैं
<math display="block">\|T\|_1 := \operatorname{Tr} (|T|).</math>
<math display="block">\|T\|_1 := \operatorname{Tr} (|T|).</math>कोई दिखा सकता है कि ट्रेस-मानदंड सभी ट्रेस क्लास ऑपरेटरों के स्थान पर एक मानदंड है <math>B_1(H)</math> और वह <math>B_1(H)</math>, ट्रेस-मानदंड के साथ, बनच स्थान बन जाता है।
कोई दिखा सकता है कि सभी ट्रेस क्लास ऑपरेटरों के स्थान पर ट्रेस-नॉर्म एक नॉर्म (गणित) है, <math>B_1(H)</math> ओर वो <math>B_1(H)</math>, ट्रेस-नॉर्म के साथ, बनच स्पेस बन जाता है।


यदि {{mvar|T}} तब ट्रेस क्लास है{{sfn|Conway|1990|p=268}}
यदि {{mvar|T}} ट्रेस क्लास है तो{{sfn|Conway|1990|p=268}}
<math display="block">\|T\|_1 = \sup \left\{ |\operatorname{Tr} (C T)| : \|C\| \leq 1 \text{ and } C : H \to H \text{ is a compact operator } \right\}.</math>
<math display="block">\|T\|_1 = \sup \left\{ |\operatorname{Tr} (C T)| : \|C\| \leq 1 \text{ and } C : H \to H \text{ is a compact operator } \right\}.</math>
== उदाहरण ==
== उदाहरण ==


परिमित-आयामी सीमा (अर्थात परिमित-रैंक के संचालक) वाले प्रत्येक परिबद्ध रैखिक संचालिका ट्रेस वर्ग है;{{sfn|Conway|1990|p=267}}
परिमित-आयामी रेंज (अर्थात् परिमित-रैंक के संचालक) वाले प्रत्येक परिबद्ध रैखिक संचालिका ट्रेस क्लास है; [1] इसके अलावा, (जब <math>\| \cdot \|_1</math> मानदंड से संपन्न हो) सभी परिमित-रैंक ऑपरेटरों का स्थान <math>B_1(H)</math> का एक सघन उपस्थान है।{{sfn|Conway|1990|p=268}} दो हिल्बर्ट-श्मिट ऑपरेटरों की संरचना एक ट्रेस क्लास ऑपरेटर है।{{sfn|Conway|1990|p=267}}


इसके अतिरिक्त, सभी परिमित-रैंक ऑपरेटरों का स्थान <math>B_1(H)</math> (जब के साथ संपन्न <math>\| \cdot \|_1</math> मानदंड) एक सघन उप-स्थान है।{{sfn|Conway|1990|p=268}}
किसी भी <math>x, y \in H,</math> को <math>(x \otimes y)(z) := \langle z, y \rangle x</math> द्वारा ऑपरेटर <math>
 
x \otimes y : H \to H</math> को परिभाषित किया जाता है। तब <math>x \otimes y</math> रैंक 1 का एक सतत रेखीय संकारक है और इस प्रकार ट्रेस वर्ग है; इसके अलावा, <math>H</math> पर (और <math>H</math> में) किसी भी परिबद्ध रैखिक ऑपरेटर A के लिए, <math>\operatorname{Tr}(A(x \otimes y)) = \langle A x, y \rangle</math> होता है।{{sfn|Conway|1990|p=268}}
दो हिल्बर्ट-श्मिट ऑपरेटरों की संरचना एक ट्रेस क्लास ऑपरेटर है।{{sfn|Conway|1990|p=267}}
 
कोई दिया <math>x, y \in H,</math> ऑपरेटर को परिभाषित करें <math>
x \otimes y : H \to H</math> द्वारा <math>(x \otimes y)(z) := \langle z, y \rangle x.</math> तब <math>x \otimes y</math> रैंक 1 का एक सतत रैखिक ऑपरेटर है और इस प्रकार ट्रेस क्लास है;
 
इसके अतिरिक्त, एच पर (और एच में) किसी भी परिबद्ध रैखिक ऑपरेटर के लिए, <math>\operatorname{Tr}(A(x \otimes y)) = \langle A x, y \rangle.</math>{{sfn|Conway|1990|p=268}}


== गुण ==
== गुण ==
<li>यदि <math>A : H \to H</math> एक गैर-नकारात्मक स्व-आसन्न संकारक है, तब <math>A</math> ट्रेस-क्लास है यदि और मात्र यदि <math>\operatorname{Tr} A < \infty.</math> इसलिए, एक स्व-आसन्न संकारक <math>A</math> ट्रेस-क्लास है [[अगर और केवल अगर|यदि और मात्र यदि]] इसका सकारात्मक भाग है <math>A^{+}</math> और नकारात्मक भाग <math>A^{-}</math> दोनों ट्रेस-क्लास हैं। (स्व-संलग्न संकारक के धनात्मक और ऋणात्मक भाग निरंतर कार्यात्मक कलन द्वारा प्राप्त किए जाते हैं।)</li>
<li>ट्रेस, ट्रेस-क्लास ऑपरेटरों के स्थान पर एक रैखिक कार्यात्मक है, अर्थात, <math display="block">\operatorname{Tr}(aA + bB) = a \operatorname{Tr}(A) + b \operatorname{Tr}(B).</math>द्विरेखीय नक्शा <math display="block">\langle A, B \rangle = \operatorname{Tr}(A^* B)</math> ट्रेस क्लास पर एक आंतरिक उत्पाद है; संबंधित मानदंड को हिल्बर्ट-श्मिट ऑपरेटर हिल्बर्ट-श्मिट मानदंड कहा जाता है। हिल्बर्ट-श्मिट मानदंड में ट्रेस-क्लास ऑपरेटरों को पूरा करने को हिल्बर्ट-श्मिट ऑपरेटर कहा जाता है।</li>
<math>\operatorname{Tr} : B_1(H) \to \Complex</math> एक सकारात्मक रैखिक कार्यात्मक है जैसे कि यदि <math>T</math> एक ट्रेस क्लास ऑपरेटर संतोषजनक है <math>T \geq 0 \text{ and }\operatorname{Tr} T = 0,</math> तब <math>T = 0.</math>{{sfn|Conway|1990|p=267}}
<li>यदि <math>T : H \to H</math> ट्रेस-क्लास है तो ऐसा है <math>T^*</math> और <math>\|T\|_1 = \left\|T^*\right\|_1.</math>{{sfn|Conway|1990|p=267}}</li>
<li>यदि <math>A : H \to H</math> घिरा हुआ है, और <math>T : H \to H</math> ट्रेस-क्लास है, फिर <math>AT</math> और <math>TA</math> ट्रेस-क्लास भी हैं (अर्थात एच पर ट्रेस-क्लास ऑपरेटरों का स्थान एच पर बंधे रैखिक ऑपरेटरों के बीजगणित में एक आदर्श (रिंग थ्योरी) है), और{{sfn|Conway|1990|p=267}} <ref>M. Reed and B. Simon, ''Functional Analysis'', Exercises 27, 28, page 218.</ref>{{sfn|Conway|1990|p=267}}
<math display="block">\|A T\|_1 = \operatorname{Tr}(|A T|) \leq \|A\| \|T\|_1, \quad \|T A\|_1 = \operatorname{Tr}(|T A|) \leq \|A\| \|T\|_1.</math>इसके अतिरिक्त, इसी परिकल्पना के अनुसार,{{sfn|Conway|1990|p=267}} <math display="block">\operatorname{Tr}(A T) = \operatorname{Tr}(T A)</math> और <math>|\operatorname{Tr}(A T)| \leq \|A\| \|T\|.</math> अंतिम अभिकथन भी कमजोर परिकल्पना के अनुसार है कि ए और टी हिल्बर्ट-श्मिट हैं।</li>
<li>यदि <math>\left(e_k\right)_{k}</math> और <math>\left(f_k\right)_{k}</math> एच के दो ऑर्थोनॉर्मल आधार हैं और यदि टी ट्रेस क्लास है तो <math display="inline">\sum_{k} \left| \left\langle T e_k, f_k \right\rangle \right| \leq \|T\|_{1}.</math>{{sfn|Conway|1990|p=268}}</li>
<li>यदि A ट्रेस-क्लास है, तो कोई फ्रेडहोम के निर्धारक को परिभाषित कर सकता है <math>I + A</math>: <math display="block">\det(I + A) := \prod_{n \geq 1}[1 + \lambda_n(A)],</math> जहाँ <math>\{\lambda_n(A)\}_n</math> का स्पेक्ट्रम है <math>A.</math> ट्रेस क्लास की स्थिति चालू है <math>A</math> गारंटी देता है कि अनंत उत्पाद परिमित है: वास्तव में, <math display="block">\det(I + A) \leq e^{\|A\|_1}.</math>इसका तात्पर्य यह भी है <math>\det(I + A) \neq 0</math> यदि और मात्र यदि <math>(I + A)</math> उलटा है।</li>


<li>यदि <math>A : H \to H</math> किसी भी अलौकिक आधार के लिए ट्रेस क्लास है <math>\left(e_k\right)_{k}</math> का <math>H,</math> सकारात्मक शब्दों का योग <math display="inline">\sum_k \left| \left\langle A \, e_k, e_k \right\rangle \right|</math> परिमित है।{{sfn|Conway|1990|p=267}}</li>
# यदि <math>A : H \to H</math> एक गैर-नकारात्मक स्व-संबद्ध ऑपरेटर है, तो <math>A</math> ट्रेस-क्लास है यदि और मात्र यदि <math>\operatorname{Tr} A < \infty</math>, इसलिए, एक स्व-संलग्न संचालिका <math>A</math> ट्रेस-क्लास है [[अगर और केवल अगर|यदि और मात्र यदि]] इसका सकारात्मक भाग <math>A^{+}</math> और नकारात्मक भाग <math>A^{-}</math> दोनों ट्रेस-क्लास हैं। (स्व-संलग्न संकारक के सकारात्मक और नकारात्मक भाग निरंतर कार्यात्मक कलन द्वारा प्राप्त किए जाते हैं।)
# ट्रेस ट्रेस-क्लास ऑपरेटरों के स्थान पर एक रैखिक कार्यात्मक है, अर्थात, <math display="block">\operatorname{Tr}(aA + bB) = a \operatorname{Tr}(A) + b \operatorname{Tr}(B)</math>द्विरेखीय नक्शा<math display="block">\langle A, B \rangle = \operatorname{Tr}(A^* B)</math>ट्रेस क्लास पर एक आंतरिक उत्पाद है; इसी मानदंड को हिल्बर्ट-श्मिट मानदंड कहा जाता है। हिल्बर्ट-श्मिट मानदंड में ट्रेस-क्लास ऑपरेटरों को पूरा करने को हिल्बर्ट-श्मिट ऑपरेटर कहा जाता है।
# <math>\operatorname{Tr} : B_1(H) \to \Complex</math> एक धनात्मक रेखीय कार्यात्मक है जो संतुष्ट करता है <math>T \geq 0 \text{ औ  र }\operatorname{Tr} T = 0,</math> फिर <math>T = 0</math>, जैसे कि यदि <math>T</math> एक ट्रेस क्लास ऑपरेटर है।
# अगर <math>T : H \to H</math> ट्रेस-क्लास है तो <math>T^*</math> और <math>\|T\|_1 = \left\|T^*\right\|_1</math>.
# अगर <math>A : H \to H</math> बाउंडेड है, और <math>T : H \to H</math> ट्रेस-क्लास है, तो <math>AT</math> और <math>TA</math> भी ट्रेस-क्लास हैं (यानी एच पर ट्रेस-क्लास ऑपरेटरों का स्थान एच पर बंधे हुए रैखिक ऑपरेटरों के बीजगणित में एक आदर्श है), और{{sfn|Conway|1990|p=267}} <ref>M. Reed and B. Simon, ''Functional Analysis'', Exercises 27, 28, page 218.</ref>{{sfn|Conway|1990|p=267}}<math display="block">\|A T\|_1 = \operatorname{Tr}(|A T|) \leq \|A\| \|T\|_1, \quad \|T A\|_1 = \operatorname{Tr}(|T A|) \leq \|A\| \|T\|_1</math>इसके अलावा, इसी परिकल्पना के तहत,{{sfn|Conway|1990|p=267}} <math display="block">\operatorname{Tr}(A T) = \operatorname{Tr}(T A)</math>और <math>|\operatorname{Tr}(A T)| \leq \|A\| \|T\|</math>, अंतिम अभिकथन भी कमजोर परिकल्पना के अनुसार है कि ए और टी हिल्बर्ट-श्मिट हैं।
# अगर <math>\left(e_k\right)_{k}</math> और <math>\left(f_k\right)_{k}</math> <math>H,</math> के दो ऑर्थोनॉर्मल आधार हैं और अगर <math>T</math> ट्रेस क्लास है फिर <math display="inline">\sum_{k} \left| \left\langle T e_k, f_k \right\rangle \right| \leq \|T\|_{1}</math> यह होता है।
# यदि A ट्रेस-क्लास है, तो <math>I + A</math> के फ्रेडहोम निर्धारक को परिभाषित किया जा सकता है:<math display="block">\det(I + A) := \prod_{n \geq 1}[1 + \lambda_n(A)],</math>जहाँ <math>\{\lambda_n(A)\}_n</math>, <math>A</math> का स्पेक्ट्रम है, <math>A</math> पर ट्रेस क्लास की स्थिति गारंटी देती है कि अनंत उत्पाद परिमित है: वास्तव में,<math display="block">\det(I + A) \leq e^{\|A\|_1}</math>इसका तात्पर्य यह भी है कि <math>\det(I + A) \neq 0</math> यदि और केवल यदि <math>(I + A)</math> व्युत्क्रमणीय है।
# अगर <math>A : H \to H</math> ट्रेस क्लास है तो किसी भी ऑर्थोनॉर्मल आधार <math>\left(e_k\right)_{k}</math> के लिए, <math>H</math> सकारात्मक शब्दों का योग <math display="inline">\sum_k \left| \left\langle A \, e_k, e_k \right\rangle \right|</math> परिमित है।{{sfn|Conway|1990|p=267}}
# यदि <math>A = B^* C</math> कुछ हिल्बर्ट-श्मिट ऑपरेटरों <math>B</math> और <math>C</math> फिर किसी सामान्य वेक्टर के लिए <math>e \in H,</math> <math display="inline">|\langle A e, e \rangle| = \frac{1}{2} \left(\|B e\|^2 + \|C e\|^2\right)</math> होल्ड करता है।{{sfn|Conway|1990|p=267}}


<li>यदि <math>A = B^* C</math> कुछ हिल्बर्ट-श्मिट ऑपरेटरों के लिए <math>B</math> और <math>C</math> फिर किसी सामान्य वेक्टर के लिए <math>e \in H,</math> <math display="inline">|\langle A e, e \rangle| = \frac{1}{2} \left(\|B e\|^2 + \|C e\|^2\right)</math> रखती है।{{sfn|Conway|1990|p=267}}</li>
=== लिडस्की की प्रमेय ===
=== लिडस्की की प्रमेय ===



Revision as of 22:29, 25 March 2023

गणित में, विशेष रूप से कार्यात्मक विश्लेषण, एक ट्रेसी क्लास ऑपरेटर रैखिक ऑपरेटर होता है, जिसके लिए ट्रेस (रैखिक बीजगणित) परिभाषित किया जा सकता है, इस प्रकार ट्रेस आधार के चयन से स्वतंत्र एक परिमित संख्या है जिसका प्रयोग ट्रेस के गणना हेतु होता है। ट्रेस-क्लास ऑपरेटरों का यह निशान रेखीय बीजगणित में अध्ययन किए गए मेट्रिसेस के ट्रेस को सामान्य करता है, सभी ट्रेस-क्लास ऑपरेटर कॉम्पैक्ट ऑपरेटर हैं।

क्वांटम यांत्रिकी में, मिश्रित अवस्था (भौतिकी) को घनत्व मैट्रिक्स द्वारा वर्णित किया जाता है, जो निश्चित ट्रेस क्लास ऑपरेटर हैं।

ट्रेस-क्लास ऑपरेटर अनिवार्य रूप से परमाणु ऑपरेटरों के समान हैं, चूंकि कई लेखक हिल्बर्ट स्पेस पर परमाणु ऑपरेटरों के विशेष स्थितिे के लिए ट्रेस-क्लास ऑपरेटर शब्द आरक्षित करते हैं और परमाणु ऑपरेटर शब्द का उपयोग अधिक सामान्य टोपोलॉजिकल वेक्टर स्पेस (जैसे बानाच रिक्त स्थान) में किया जाता है।

ध्यान दें कि आंशिक अंतर समीकरणों में अध्ययन किया गया ट्रेस ऑपरेटर एक असंबंधित अवधारणा है।

परिभाषा

मान लीजिए एक हिल्बर्ट स्पेस है और , पर एक परिबद्ध रैखिक संचालिका है जो गैर-नकारात्मक ( अर्थात, अर्ध सकारात्मक-डेफिनिट) और सेल्फ-एडजॉइंट है। द्वारा निरूपित ट्रेस श्रृंखला का योग होता है[1]

जहाँ का एक ऑर्थोनॉर्मल आधार है, यह दिखाया जा सकता है कि यह जटिल संख्याओं की एक पूर्ण अभिसरण श्रृंखला है जिसका योग ऑर्थोनॉर्मल आधार की पसंद पर निर्भर नहीं करता है। पर मनमाने ढंग से परिबद्ध रैखिक ऑपरेटर के लिए, हम द्वारा निरूपित का सकारात्मक वर्गमूल होने के लिए इसके पूर्ण मान को परिभाषित करते हैं। यानी, , पर यूनीक बाउंडेड सकारात्मक ऑपरेटर है जैसे कि ऑपरेटर को ट्रेस क्लास में कहा जाता है यदि है तो हम H पर सभी ट्रेस क्लास रैखिक ऑपरेटरों के स्थान को द्वारा निरूपित करते हैं। (कोई दिखा सकता है कि यह वास्तव में एक सदिश स्थान है।)

यदि ट्रेस क्लास में है, तो द्वारा हम ट्रेस को परिभाषित करते हैं,

जहाँ का एक मनमाना ऑर्थोनॉर्मल आधार है, यह दिखाया जा सकता है कि यह जटिल संख्याओं की एक पूरी तरह से अभिसरण श्रृंखला है जिसका योग ऑर्थोनॉर्मल आधार की पसंद पर निर्भर नहीं करता है।

जब H परिमित-आयामी होता है, तो प्रत्येक ऑपरेटर ट्रेस क्लास होता है और T के ट्रेस (मैट्रिक्स) की यह परिभाषा मैट्रिक्स के ट्रेस की परिभाषा के साथ मेल खाती है।

समकक्ष फॉर्मूलेशन

एक सीमित रैखिक ऑपरेटर को देखते हुए, निम्न में से प्रत्येक कथन के ट्रेस क्लास में होने के बराबर है:

  • [1]
  • H के कुछ ऑर्थोनॉर्मल आधार के लिए, धनात्मक पदों का योग परिमित है।
  • H के प्रत्येक ऑर्थोनॉर्मल आधार के लिए, धनात्मक पदों का योग परिमित है।
  • T एक कॉम्पैक्ट ऑपरेटर है और जहां हैं के आइगेनवैल्यू (T के एकवचन मूल्यों के रूप में भी जाना जाता है) प्रत्येक ईगेनवेल्यू को अक्सर इसकी बहुलता के रूप में दोहराया जाता है।[1]
  • दो ऑर्थोगोनल (गणित) क्रम उपलब्ध हैं और में और एक क्रम में ऐसा कि सभी के लिए [2] यहाँ, अनंत योग का अर्थ है कि आंशिक योग का क्रम में विलीन में H हो जाता है।
  • T एक परमाणु ऑपरेटर है।
  • T दो हिल्बर्ट-श्मिट ऑपरेटरों की संरचना के बराबर है।[1]
  • एक हिल्बर्ट-श्मिट ऑपरेटर है।[1]
  • T एक अभिन्न रैखिक ऑपरेटर है।[3]
  • कमजोर रूप से बंद और समान (और इस प्रकार कमजोर रूप से कॉम्पैक्ट) उपसमुच्चय मौजूद हैं और का और क्रमशः, और कुछ सकारात्मक रेडॉन माप पर कुल द्रव्यमान ऐसा कि सभी और के लिए:

ट्रेस-मानक

हम ट्रेस क्लास ऑपरेटर T के ट्रेस-मानदंड को मान के रूप में परिभाषित करते हैं

कोई दिखा सकता है कि ट्रेस-मानदंड सभी ट्रेस क्लास ऑपरेटरों के स्थान पर एक मानदंड है और वह , ट्रेस-मानदंड के साथ, बनच स्थान बन जाता है।

यदि T ट्रेस क्लास है तो[4]

उदाहरण

परिमित-आयामी रेंज (अर्थात् परिमित-रैंक के संचालक) वाले प्रत्येक परिबद्ध रैखिक संचालिका ट्रेस क्लास है; [1] इसके अलावा, (जब मानदंड से संपन्न हो) सभी परिमित-रैंक ऑपरेटरों का स्थान का एक सघन उपस्थान है।[4] दो हिल्बर्ट-श्मिट ऑपरेटरों की संरचना एक ट्रेस क्लास ऑपरेटर है।[1]

किसी भी को द्वारा ऑपरेटर को परिभाषित किया जाता है। तब रैंक 1 का एक सतत रेखीय संकारक है और इस प्रकार ट्रेस वर्ग है; इसके अलावा, पर (और में) किसी भी परिबद्ध रैखिक ऑपरेटर A के लिए, होता है।[4]

गुण

  1. यदि एक गैर-नकारात्मक स्व-संबद्ध ऑपरेटर है, तो ट्रेस-क्लास है यदि और मात्र यदि , इसलिए, एक स्व-संलग्न संचालिका ट्रेस-क्लास है यदि और मात्र यदि इसका सकारात्मक भाग और नकारात्मक भाग दोनों ट्रेस-क्लास हैं। (स्व-संलग्न संकारक के सकारात्मक और नकारात्मक भाग निरंतर कार्यात्मक कलन द्वारा प्राप्त किए जाते हैं।)
  2. ट्रेस ट्रेस-क्लास ऑपरेटरों के स्थान पर एक रैखिक कार्यात्मक है, अर्थात,
    द्विरेखीय नक्शा
    ट्रेस क्लास पर एक आंतरिक उत्पाद है; इसी मानदंड को हिल्बर्ट-श्मिट मानदंड कहा जाता है। हिल्बर्ट-श्मिट मानदंड में ट्रेस-क्लास ऑपरेटरों को पूरा करने को हिल्बर्ट-श्मिट ऑपरेटर कहा जाता है।
  3. एक धनात्मक रेखीय कार्यात्मक है जो संतुष्ट करता है फिर , जैसे कि यदि एक ट्रेस क्लास ऑपरेटर है।
  4. अगर ट्रेस-क्लास है तो और .
  5. अगर बाउंडेड है, और ट्रेस-क्लास है, तो और भी ट्रेस-क्लास हैं (यानी एच पर ट्रेस-क्लास ऑपरेटरों का स्थान एच पर बंधे हुए रैखिक ऑपरेटरों के बीजगणित में एक आदर्श है), और[1] [5][1]
    इसके अलावा, इसी परिकल्पना के तहत,[1]
    और , अंतिम अभिकथन भी कमजोर परिकल्पना के अनुसार है कि ए और टी हिल्बर्ट-श्मिट हैं।
  6. अगर और के दो ऑर्थोनॉर्मल आधार हैं और अगर ट्रेस क्लास है फिर यह होता है।
  7. यदि A ट्रेस-क्लास है, तो के फ्रेडहोम निर्धारक को परिभाषित किया जा सकता है:
    जहाँ , का स्पेक्ट्रम है, पर ट्रेस क्लास की स्थिति गारंटी देती है कि अनंत उत्पाद परिमित है: वास्तव में,
    इसका तात्पर्य यह भी है कि यदि और केवल यदि व्युत्क्रमणीय है।
  8. अगर ट्रेस क्लास है तो किसी भी ऑर्थोनॉर्मल आधार के लिए, सकारात्मक शब्दों का योग परिमित है।[1]
  9. यदि कुछ हिल्बर्ट-श्मिट ऑपरेटरों और फिर किसी सामान्य वेक्टर के लिए होल्ड करता है।[1]

लिडस्की की प्रमेय

मान लीजिये भिन्न किए जा सकने वाले हिल्बर्ट स्पेस में ट्रेस-क्लास ऑपरेटर बनें और जाने के आइगेनवैल्यू ​​​​ हो चलिए मान लेते हैं बीजगणितीय गुणकों को ध्यान में रखते हुए गणना की जाती है (अर्थात, यदि बीजगणितीय बहुलता है तब दोहराया जाता है सूची में बार ). लिडस्की के प्रमेय वोटोर बोरिसोविच लिडस्की के नाम पर) में कहा गया है,

ध्यान दें कि दाईं ओर की श्रृंखला पूरी प्रकार से वेइल की असमानता के कारण अभिसरण करती है,
आइगेनवैल्यू के बीच और विलक्षण मूल्य कॉम्पैक्ट ऑपरेटर की होता है।[6]


ऑपरेटरों के सामान्य वर्गों के बीच संबंध

क्लासिकल अनुक्रम स्थान के नॉनकम्यूटेटिव एनालॉग के रूप में बाउंडेड ऑपरेटर्स के कुछ वर्गों को देख सकते हैं, ट्रेस-क्लास ऑपरेटर्स को सीक्वेंस स्पेस के नॉनकम्यूटेटिव एनालॉग के रूप में देख सकते हैं। वास्तव में, वर्णक्रमीय प्रमेय को यह दिखाने के लिए लागू करना संभव है कि भिन्न-भिन्न हिल्बर्ट स्पेस पर प्रत्येक सामान्य ट्रेस-क्लास ऑपरेटर को एक निश्चित विधि से एक के रूप में अनुभव किया जा सकता है। हिल्बर्ट ठिकानों की एक जोड़ी के कुछ विकल्प के संबंध में अनुक्रम उसी नस में, बाउंडेड ऑपरेटर्स के गैर-अनुवर्ती संस्करण हैं हिल्बर्ट स्पेस पर कॉम्पैक्ट ऑपरेटर की (अनुक्रम 0 पर अभिसरण), हिल्बर्ट-श्मिट ऑपरेटर इसके अनुरूप हैं और परिमित-रैंक ऑपरेटरों के लिए (ऐसे अनुक्रम जिनमें मात्र बहुत से गैर-शून्य पद हैं)। कुछ सीमा तक, ऑपरेटरों के इन वर्गों के बीच संबंध उनके क्रमविनिमेय समकक्षों के बीच संबंधों के समान हैं।

याद रखें कि प्रत्येक कॉम्पैक्ट ऑपरेटर एक हिल्बर्ट स्पेस पर निम्नलिखित विहित रूप लेता है: वहाँ अलंकारिक आधार उपलब्ध हैं और और एक क्रम गैर-ऋणात्मक संख्याओं के साथ ऐसा है कि

उपरोक्त अनुमानी टिप्पणियों को और अधिक त्रुटिहीन बनाते हुए, हमारे पास वह है ट्रेस-क्लास iff श्रृंखला है अभिसारी है, हिल्बर्ट-श्मिट iff है अभिसरण है, और यदि अनुक्रम परिमित-रैंक है मात्र बहुत से अशून्य पद हैं। यह ऑपरेटरों के इन वर्गों को संबंधित करने की अनुमति देता है। निम्नलिखित समावेशन लागू होते हैं और जब सभी उचित होते हैं अनंत आयामी है:
ट्रेस-क्लास ऑपरेटरों को ट्रेस मानदंड दिया जाता है हिल्बर्ट-श्मिट आंतरिक उत्पाद के अनुरूप मानक है

अनुक्रमों के संबंध में मौलिक असमानताओं द्वारा साथ ही, सामान्य ऑपरेटर मानदंड है,

उपयुक्त के लिए यह भी स्पष्ट है कि परिमित-रैंक ऑपरेटर ट्रेस-क्लास और हिल्बर्ट-श्मिट दोनों में उनके संबंधित मानदंडों में सघन हैं।

कॉम्पैक्ट ऑपरेटरों के दोहरे के रूप में ट्रेस क्लास

दोहरा स्थान है इसी प्रकार, हमारे पास कॉम्पैक्ट ऑपरेटरों के दोहरे हैं, जिन्हें इसके द्वारा दर्शाया गया है ट्रेस-क्लास ऑपरेटर है, जिसे द्वारा निरूपित किया जाता है तर्क, जिसे अब हम स्केच करते हैं, उसी अनुक्रम रिक्त स्थान के लिए याद दिलाता है। होने देना हम पहचानते हैं ऑपरेटर के साथ द्वारा परिभाषित

जहाँ द्वारा दिया गया रैंक-वन ऑपरेटर है
यह पहचान काम करती है क्योंकि परिमित-रैंक ऑपरेटर मानक-सघन होते हैं ऐसा होने पर कि किसी भी अलौकिक आधार के लिए एक सकारात्मक संकारक है किसी के पास
जहाँ पहचान ऑपरेटर है:
जहां सकारात्मक नहीं होना चाहिए लेकिन इसका मतलब यह है ट्रेस-क्लास है। ध्रुवीय अपघटन की अपील इसे सामान्य स्थितिे में विस्तारित करती है,

परिमित-रैंक ऑपरेटरों का उपयोग करते हुए एक सीमित तर्क यह दर्शाता है इस प्रकार आइसोमेट्रिक रूप से आइसोमॉर्फिक है।

बंधे हुए ऑपरेटरों के पूर्ववर्ती के रूप में

याद रखें कि द्वैत है वर्तमान संदर्भ में, ट्रेस-क्लास ऑपरेटरों के दोहरे परिबद्ध संचालिका है अधिक त्रुटिहीन, समूह में दो तरफा आदर्श (रिंग थ्योरी) है तो किसी भी ऑपरेटर को दिया हम एक सतत कार्य (टोपोलॉजी) रैखिक कार्यात्मक परिभाषित कर सकते हैं पर द्वारा बंधे रैखिक ऑपरेटरों और तत्वों के बीच यह पत्राचार के दोहरे स्थान का एक आइसोमेट्रिक समाकृतिकता है। यह इस प्रकार है कि is की दोहरी जगह इसका उपयोग कमजोर सितारा ऑपरेटर टोपोलॉजी को परिभाषित करने के लिए कमजोर- * टोपोलॉजी ऑन किया जा सकता है।


यह भी देखें

संदर्भ

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 Conway 1990, p. 267.
  2. Trèves 2006, p. 494.
  3. Trèves 2006, pp. 502–508.
  4. 4.0 4.1 4.2 Conway 1990, p. 268.
  5. M. Reed and B. Simon, Functional Analysis, Exercises 27, 28, page 218.
  6. Simon, B. (2005) Trace ideals and their applications, Second Edition, American Mathematical Society.


ग्रन्थसूची

  • Conway, John (1990). A course in functional analysis. New York: Springer-Verlag. ISBN 978-0-387-97245-9. OCLC 21195908.
  • Dixmier, J. (1969). Les Algebres d'Operateurs dans l'Espace Hilbertien. Gauthier-Villars.
  • Schaefer, Helmut H. (1999). Topological Vector Spaces. GTM. Vol. 3. New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
  • Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.