कोण: Difference between revisions

From Vigyanwiki
 
(39 intermediate revisions by 9 users not shown)
Line 1: Line 1:
[[File:Two rays and one vertex.png|thumb|right|एक शीर्ष से निकलने वाली दो किरणों द्वारा निर्मित कोण।]]
[[File:Two rays and one vertex.png|thumb|right|एक शीर्ष से निकलने वाली दो किरणों द्वारा निर्मित कोण.]]
[[ यूक्लिडियन ज्यामिति |यूक्लिडियन ज्यामिति]] में, एक कोण दो किरणों द्वारा बनाई गई आकृति है, जिसे कोण के ''पक्ष (भुजा)'' कहा जाता है, जो एक ही बिंदु पर मिलती है, जिसे कोण का शीर्ष कहा जाता है।<ref>{{harvnb|Sidorov|2001|ignore-err=yes}}</ref> दोनों किरणें तथा इनसे बनने वाले कोण एक ही तल में होते हैं। कोण भी दो तलों के प्रतिच्छेदन से बनते हैं, जिन्हे द्वितल (डायहेड्रल) कोण कहा जाता है। दो प्रतिच्छेदी वक्र भी एक कोण को निर्माण सकते हैं, जो कि उनके प्रतिच्छेदन बिंदु पर संबंधित वक्रों की स्पर्शरेखा वाली किरणों का कोण होता है।
[https://en.wikipedia.org/wiki/Euclidean_geometry|'''यूक्लिडियन ज्यामिति'''] में, एक कोण दो रेखाओं द्वारा बनाई गई आकृति है, जो एक ही बिंदु पर मिलती है, जिसे कोण का [[शीर्ष (ज्यामिति)|शीर्ष (वर्टेक्स ज्योमेट्)]]  कहा जाता है।<ref>{{harvnb|Sidorov|2001|ignore-err=yes}}</ref> दोनों रेखाएं तथा इनसे बनने वाले कोण एक ही तल में होते हैं। दो तलों के प्रतिच्छेदन से तथा दो वक्रो के प्रतिच्छेदन से भी एक कोण बनता हैं, जिन्हे द्वितल (डायहेड्रल) तथा वक्रीय कोण कहा जाता है। जो कि उनके प्रतिच्छेदन बिंदु पर संबंधित वक्रों की [[स्पर्शरेखा]] वाली रेखाओं का कोण होता है।


कोण का उपयोग कोण या घूर्णन के माप को निर्दिष्ट करने के लिए भी किया जाता है। यह माप एक वृत्ताकार चाप की लंबाई और उसकी त्रिज्या का अनुपात है। एक ज्यामितीय कोण के मामले में, चाप शीर्ष पर केंद्रित होता है और पक्षों द्वारा सीमांकित होता है। घूर्णन के मामले में, चाप घूर्णन के केंद्र में केंद्रित होता है और किसी अन्य बिंदु से और घूर्णन द्वारा इसकी छवि को सीमित करता है।
कोण का उपयोग कोण या [[घूर्णन]] के माप को देखने के लिए भी किया जाता है। यह माप एक [https://en.wikipedia.org/wiki/Curve#Differentiable_arc|'''वृत्ताकार चाप'''] की लंबाई और उसकी त्रिज्या का अनुपात है। एक ज्यामितीय कोण के मामले में, चाप शीर्ष पर केंद्रित होता है और रेखाओं द्वारा सीमांकित होता है। घूर्णन कि स्थिति में, चाप घूर्णन के केंद्र में केंद्रित होता है तथा किसी अन्य बिंदु से तथा घूर्णन द्वारा इसकी छवि को सीमित करता है।


==इतिहास और व्युत्पत्ति ==
==इतिहास और व्युत्पत्ति ==
कोण शब्द लैटिन शब्द एंगुलस से आया है, जिसका अर्थ है "कोना"; सजातीय शब्द ग्रीक हैं (ankylοs), जिसका अर्थ है "कुटिल, घुमावदार," और अंग्रेजी शब्द "ankle"। दोनों प्रोटो-इंडो-यूरोपियन मूल *ank-, जिसका अर्थ है "मुड़ना" या "झुकना"।<ref>{{harvnb|Slocum|2007}}</ref>
कोण शब्द लैटिन शब्द एंगुलस से आया है, जिसका अर्थ "कोना" है।<ref>{{harvnb|Slocum|2007}}</ref>


यूक्लिड एक समतल कोण को एक दूसरे के झुकाव के रूप में परिभाषित करता है, एक समतल में, दो रेखाएँ जो एक दूसरे से मिलती हैं, और एक दूसरे के सापेक्ष सीधी नहीं होती हैं। 'प्रोक्लस' के अनुसार, कोण या तो गुणवत्ता या मात्रा, या संबंध होना चाहिए। पहली अवधारणा का उपयोग 'यूडेमस' द्वारा किया गया था, जो एक कोण को एक सीधी रेखा से विचलन के रूप में मानते थे; दूसरा अन्ताकिया के कार्पस द्वारा, जिसने इसे प्रतिच्छेदन रेखाओं के बीच का अंतराल या स्थान माना; यूक्लिड ने तीसरी अवधारणा को अपनाया।<ref>{{harvnb|Chisholm|1911}}; {{harvnb|Heiberg|1908|pp=177–178}}</ref>
यूक्लिड एक समतल कोण को, उस तल में, जहां दो तिरछी रेखाएँ, एक दूसरे से मिलती हैं, एक दूसरे के झुकाव के रूप में इसको परिभाषित किया जाता है। '<nowiki/>'''प्रोक्लस'''<nowiki/>' के अनुसार, कोण या तो गुणवत्ता या मात्रा, या संबंध होना चाहिए। पहली अवधारणा का उपयोग ''''यूडेमस'''<nowiki/>' द्वारा किया गया था, जो एक कोण को एक [[:en:Line_(geometry)|'''सीधी रेखा''']] से विचलन के रूप में मानते थे, दूसरी ''''अन्ताकिया के कार्पस'''<nowiki/>' द्वारा, जिसने इसे प्रतिच्छेदन रेखाओं के बीच का अंतराल या स्थान माना था तथा यूक्लिड ने तीसरी अवधारणा को अपनाया।<ref>{{harvnb|Chisholm|1911}}; {{harvnb|Heiberg|1908|pp=177–178}}</ref>
== कोणों की पहचान ==
== कोणों की पहचान ==
गणितीय अभिव्यक्तियों (अभिव्यंजना) में, ग्रीक अक्षरों (<var>α</var>, <var>β</var>, <var>γ</var>, <var>θ</var>, <var >φ</var>, . . . ) का उपयोग, किसी कोण के आकार को दर्शाने वाले चर के रूप में (इसके अन्य अर्थ के साथ भ्रम से बचने के लिए, प्रतीक {{math|[[Pi|π]]}} आमतौर पर इस उद्देश्य के लिए उपयोग नहीं किया जाता है) करना आम है। छोटे रोमन अक्षरों (a, b, c, . . . ) का भी उपयोग किया जाता है। ऐसे संदर्भों में जहां यह अस्पष्ट नहीं है, एक कोण को बड़े रोमन अक्षर द्वारा दर्शाया जा सकता है जो इसके शीर्ष को दर्शाता है। उदाहरण के लिए इस आलेख में आंकड़े देखें।
गणितीय व्यंजको में, ग्रीक अक्षरों (<var>α</var>, <var>β</var>, <var>γ</var>, <var>θ</var>, <var >φ</var>, . . . ) किसी कोण के आकार को दर्शाने वाले चर के रूप (इसके अन्य अर्थ के साथ अस्पष्टता से बचने के लिए, प्रतीक {{math|[[Pi|π]]}} प्रायः पर इस उद्देश्य के लिए उपयोग नहीं किया जाता है) मे उपयोग करना सामान्य है। छोटे रोमन अक्षरों (a, b, c, . . . ) का भी उपयोग किया जाता है। ऐसे परिस्थिति में जहां यह अस्पष्ट नहीं है, एक कोण को बड़े रोमन अक्षर द्वारा दर्शाया जा सकता है, जो इसके शीर्ष को दर्शाता है। उदाहरण के लिए इस आलेख में आंकड़े देखें।


ज्यामितीय आकृतियों में, कोणों को उन तीन बिंदुओं से भी पहचाना जा सकता है, जो उन्हें परिभाषित करते हैं। उदाहरण के लिए, एबी और एसी किरणों (अर्थात बिंदु ए से बिंदु बी और सी तक की रेखाएं) द्वारा गठित शीर्ष ए वाले कोण को {{math|∠BAC}} या <math>\widehat{\rm BAC}</math> दर्शाया गया है। जहां अस्पष्टता का कोई संकट नहीं है, कोण को कभी-कभी केवल इसके शीर्ष (इस स्थिति में "कोण ए") द्वारा संदर्भित किया जा सकता है।
ज्यामितीय आकृतियों में, कोणों को उन तीन बिंदुओं से भी पहचाना जा सकता है, जो उन्हें परिभाषित करते हैं। उदाहरण के लिए, एबी (AB) तथा एसी (AC) रेखाओं (अर्थात बिंदु ए (A) से बिंदु बी (b) तथा सी (C) तक की रेखाओं) द्वारा गठित शीर्ष ए (A) वाले कोण को {{math|∠BAC}} या <math>\widehat{\rm BAC}</math> से दर्शाया गया है। जहां अस्पष्टता का कोई संकट नहीं है, कोण को कभी-कभी केवल इसके शीर्ष द्वारा प्रदर्शित किया जा सकता है।  


संभावित रूप से, ∠BAC के रूप में निरूपित एक कोण, चार कोणों में से किसी को भी संदर्भित कर सकता है: बी से सी तक का दक्षिणावर्त कोण, बी से सी का वामावर्त कोण, सी से बी का दक्षिणावर्त कोण, या सी से बी का वामावर्त कोण, जहां कोण को जिस दिशा में मापा जाता है, वह उसका संकेत निर्धारित करता है (सकारात्मक और नकारात्मक कोण देखें)। हालांकि, कई ज्यामितीय स्थितियों में, संदर्भ से यह स्पष्ट है कि सकारात्मक कोण 180 डिग्री से कम या उसके बराबर है, ऐसी स्थिति में कोई अस्पष्टता नहीं होती है। अन्यथा, एक समझौता अपनाया जा सकता है ताकि {{math|∠BAC}} हमेशा बी से सी तक वामावर्त (सकारात्मक) कोण को संदर्भित करता है, और {{math|∠CAB}} सी (C) से बी (B) तक वामावर्त (सकारात्मक) कोण।
संभावित रूप से, ∠BAC के रूप में निरूपित एक कोण, चार कोणों में से किसी को भी प्रदर्शित कर सकता है, बी (B) से सी (C) तक का दक्षिणावर्त कोण, बी (B) से सी (C) का वामावर्त कोण, सी (C) से बी (B) का दक्षिणावर्त कोण, या सी (C) से बी (B) का वामावर्त कोण, जहां कोण के माप की दिशा उसका संकेत निर्धारित करती है (धनात्मक और ऋणात्मक कोण देखें)। हालांकि, कई ज्यामितीय स्थितियों में, संदर्भ से यह स्पष्ट है कि धनात्मक कोण 180° डिग्री से कम या उसके बराबर है, ऐसी स्थिति में कोई अस्पष्टता नहीं होती है। अन्यथा, एक समझौता अपनाया जा सकता है ताकि {{math|∠BAC}} हमेशा बी (B) से सी (C) तक वामावर्त (धनात्मक) कोण को संदर्भित करता है, तथा {{math|∠CAB}} सी (C) से बी (B) तक वामावर्त (धनात्मक) कोण।


== कोणों के प्रकार ==
== कोणों के प्रकार ==


=== व्यक्तिगत कोण ===
=== व्यक्तिगत कोण ===
कोणों के लिए कुछ सामान्य शब्दावली है, जिसका माप हमेशा ऋणात्मक नहीं होता:<ref>{{Cite web|title=Angles – Acute, Obtuse, Straight and Right|url=https://www.mathsisfun.com/angles.html|access-date=2020-08-17|website=www.mathsisfun.com}}</ref><ref>{{Cite web|last=Weisstein|first=Eric W.|title=Angle|url=https://mathworld.wolfram.com/Angle.html|access-date=2020-08-17|website=mathworld.wolfram.com|language=en}}</ref>
कोणों के लिए कुछ सामान्य शब्दावली है, जिसका माप हमेशा ऋणात्मक नहीं होता।<ref>{{Cite web|title=Angles – Acute, Obtuse, Straight and Right|url=https://www.mathsisfun.com/angles.html|access-date=2020-08-17|website=www.mathsisfun.com}}</ref><ref>{{Cite web|last=Weisstein|first=Eric W.|title=Angle|url=https://mathworld.wolfram.com/Angle.html|access-date=2020-08-17|website=mathworld.wolfram.com|language=en}}</ref>


* 0° के बराबर या मुड़े हुए कोण को शून्य कोण कहा जाता है।
* 0° के बराबर या मुड़े हुए कोण को शून्य कोण कहा जाता है।


* एक समकोण से छोटे (90° से कम) कोण को न्यून कोण ("तीव्र" अर्थात "तेज") कहा जाता है।
* एक समकोण से छोटे (90° (डिग्री) से कम) कोण को न्यून कोण ("न्यून" अर्थात "स्पष्ट") कहा जाता है।
* {{sfrac|4}} मोड़ के बराबर कोण (90° or {{sfrac|{{math|π}}|2}} रेडियन) को समकोण कहा जाता है। समकोण बनाने वाली दो रेखाएँ अभिलम्बवत, लाम्बिक या लंबवत कहलाती हैं।
* अभिलम्बवत दो रेखाओं द्वारा {{sfrac|4}} मोड़ (टर्न) (90° (डिग्री) या {{sfrac|{{math|π}}|2}} रेडियन) के बराबर के कोण को समकोण कहा जाता है।  
* एक समकोण से बड़ा और एक ऋजु कोण से छोटे (90° और 180° के बीच) कोण को अधिक कोण ("अधिक" अर्थ वाला "कुंद") कहा जाता है।
* एक समकोण से बड़ा और एक ऋजु कोण से छोटे (90° (डिग्री) और 180° (डिग्री) के बीच) कोण को अधिक कोण ("अधिक" अर्थात "कुंद") कहा जाता है।
* 1/2 मोड़ के बराबर कोण (180° या {{math|π}} रेडियन) को एक ऋजु कोण कहा जाता है।
* 1/2 मोड़ (टर्न) के बराबर कोण (180° (डिग्री) या {{math|π}} रेडियन) को एक ऋजु कोण कहा जाता है।
* एक कोण जो एक ऋजु कोण से बड़ा होता है लेकिन 1 मोड़ से कम (180° और 360° के बीच) होता है, प्रतिवर्ती कोण कहलाता है।
* एक कोण जो एक ऋजु कोण से बड़े तथा 1 मोड़ से कम (180° (डिग्री) और 360° (डिग्री) के बीच) का कोण प्रतिवर्ती कोण कहलाता है।
* 1 मोड़ के बराबर कोण (360° या 2{{math|π}} रेडियन) को पूर्ण कोण, सम्पूर्ण कोण, गोलाकार कोण या पेरिगॉन कहा जाता है।
* 1 मोड़ के बराबर कोण (360° (डिग्री) या 2{{math|π}} रेडियन) को पूर्ण कोण, सम्पूर्ण कोण, गोलाकार कोण या पेरिगॉन कहा जाता है।
* ऐसा कोण जो समकोण का गुणज न हो, तिर्यक कोण कहलाता है।
* ऐसा कोण जो समकोण का गुणज न हो, तिर्यक कोण कहलाता है।


नाम, अंतराल और मापने की इकाइयाँ नीचे दी गई तालिका में दिखाई गई हैं:
नाम, अंतराल और मापने की इकाइयाँ नीचे दी गई तालिका में दिखाई गई हैं।


{{Multiple image
{{Multiple image
|align=right
| align             = right
|direction=horizontal
| direction         = horizontal
|image1=Right angle.svg
| image1           = Right angle.svg
|width1=111
| width1           = 80
|caption1=[[Right angle]]
| caption1         = [[समकोण]]
 
| image2           = Angle obtuse acute straight.svg
|image2=Angle obtuse acute straight.svg
| width2           = 160
|width2=200
| caption2         = न्यून  (<var>a</var>), अधिक (<var>b</var>), और सीधा (<var>c</var>) angles. न्यून और अधिक कोणों को तिरछा कोण भी कहा जाता है.
|caption2=Acute (<var>a</var>), obtuse (<var>b</var>), and straight (<var>c</var>) angles. The acute and obtuse angles are also known as oblique angles.
| image3           = Reflex angle.svg
 
| width3           = 60
|image3=Reflex angle.svg
| caption3         = वृहत्तकोण
|width3=81
|caption3=Reflex angle
}}
}}


Line 60: Line 58:
! इकाइयाँ !! colspan="10" | [[Interval (mathematics)|अंतराल]]  
! इकाइयाँ !! colspan="10" | [[Interval (mathematics)|अंतराल]]  
|-
|-
|style = "background:#f2f2f2; text-align:center;" | [[Turn (geometry)|मोड़]]  
|style = "background:#f2f2f2; text-align:center;" | [[Turn (geometry)|मोड़ (टर्न)]]
|style = "width:3em;" | {{nowrap|0 turn}}
|style = "width:3em;" | {{nowrap|0 turn}}
|style = "width:3em;" | {{nowrap|(0, {{sfrac|1|4}}) turn}}
|style = "width:3em;" | {{nowrap|(0, {{sfrac|1|4}}) turn}}
Line 80: Line 78:
|style = "background:#f2f2f2; text-align:center;" | [[Degree (angle)|डिग्री]]
|style = "background:#f2f2f2; text-align:center;" | [[Degree (angle)|डिग्री]]
|style = "width:3em;" | 0°
|style = "width:3em;" | 0°
|style = "width:3em;" | (0,&nbsp;90)°
|style = "width:3em;" | (0, 90)°
|style = "width:3em;" | 90°
|style = "width:3em;" | 90°
|style = "width:3em;" | (90,&nbsp;180)°
|style = "width:3em;" | (90,180)°
|style = "width:3em;" | 180°
|style = "width:3em;" | 180°
|style = "width:3em;" | (180,&nbsp;360)°
|style = "width:3em;" | (180, 360)°
|style = "width:3em;" | 360°
|style = "width:3em;" | 360°
|-
|-
|style = "background:#f2f2f2; text-align:center;" | [[Gradian|गोन]]
|style = "background:#f2f2f2; text-align:center;" | [[Gradian|गोन]]
|style = "width:3em;" | 0<sup>g</sup>
|style = "width:3em;" | 0<sup>g</sup>
|style = "width:3em;" | (0,&nbsp;100)<sup>g</sup>
|style = "width:3em;" | (0,100)<sup>g</sup>
|style = "width:3em;" | 100<sup>g</sup>
|style = "width:3em;" | 100<sup>g</sup>
|style = "width:3em;" | (100,&nbsp;200)<sup>g</sup>
|style = "width:3em;" | (100, 200)<sup>g</sup>
|style = "width:3em;" | 200<sup>g</sup>
|style = "width:3em;" | 200<sup>g</sup>
|style = "width:3em;" | (200,&nbsp;400)<sup>g</sup>
|style = "width:3em;" | (200, 400)<sup>g</sup>
|style = "width:3em;" | 400<sup>g</sup>
|style = "width:3em;" | 400<sup>g</sup>
|-
|-
Line 99: Line 97:


=== तुल्यता कोण जोड़े ===
=== तुल्यता कोण जोड़े ===
* समान माप वाले कोण (अर्थात समान परिमाण) समान या सर्वांगसम कहलाते हैं। एक कोण को उसके माप से परिभाषित किया जाता है और यह कोण की भुजाओं की लंबाई पर निर्भर नहीं होता है (उदाहरण के लिए सभी समकोण माप में बराबर होते हैं)।
* समान माप वाले कोण सर्वांगसम कहलाते हैं। एक कोण को उसके माप से परिभाषित किया जाता है और यह कोण की भुजाओं की लंबाई पर निर्भर नहीं होता है (उदाहरण के लिए सभी समकोण माप में बराबर होते हैं)।
* दो कोण जो अंतिम पक्षों को साझा करते हैं, लेकिन एक मोड़ के पूर्णांक गुणक द्वारा आकार में भिन्न होते हैं, कोटरमिनल कोण कहलाते हैं।
* दो कोण जो अंतिम रेखाओं का साझा करते हैं, लेकिन एक मोड़ (टर्न) के पूर्णांक गुणक द्वारा आकार में भिन्न होते हैं, कोटरमिनल कोण कहलाते हैं।
* एक संदर्भ कोण किसी भी कोण का न्यून संस्करण है, जिसे बार-बार घटाकर या सीधे कोण (1/2 मोड़, 180 डिग्री, या रेडियन) को जोड़कर निर्धारित किया जाता है,आवश्यकतानुसार परिणामों के लिए, जब तक परिणाम का परिमाण एक न्यून कोण न हो, 0 और{{sfrac|4}} मोड़ के बीच का मान, 90°, या {{sfrac|{{math|π}}|2}} रेडियन। उदाहरण के लिए, 30 डिग्री के कोण में 30 डिग्री का संदर्भ कोण होता है, और 150 डिग्री के कोण में 30 डिग्री (180-150) का संदर्भ कोण भी होता है। 750 डिग्री के कोण का संदर्भ कोण 30 डिग्री (750-720) होता है।<ref>{{cite web|url=http://www.mathwords.com/r/reference_angle.htm|title=Mathwords: Reference Angle|website=www.mathwords.com|access-date=26 April 2018|url-status=live|archive-url=https://web.archive.org/web/20171023035017/http://www.mathwords.com/r/reference_angle.htm|archive-date=23 October 2017}}</ref>
* एक संदर्भ कोण किसी भी कोण का न्यून संस्करण है, जिसे बार-बार घटाकर या सीधे कोण (1/2 मोड़ (टर्न), 180° (डिग्री) या रेडियन) को जोड़कर निर्धारित किया जाता है,आवश्यकतानुसार परिणामों के लिए, जब तक परिणाम का परिमाण एक न्यून कोण न हो, 0 और{{sfrac|4}} मोड़ (टर्न) के बीच का मान, 90° (डिग्री), या {{sfrac|{{math|π}}|2}} रेडियन। उदाहरण के लिए, 30° (डिग्री) के कोण में 30° डिग्री का संदर्भ कोण होता है, और 150° (डिग्री) के कोण में 30° (डिग्री) (180-150) का संदर्भ कोण भी होता है। 750° (डिग्री) के कोण का संदर्भ कोण 30° (डिग्री) (750-720) होता है।<ref>{{cite web|url=http://www.mathwords.com/r/reference_angle.htm|title=Mathwords: Reference Angle|website=www.mathwords.com|access-date=26 April 2018|url-status=live|archive-url=https://web.archive.org/web/20171023035017/http://www.mathwords.com/r/reference_angle.htm|archive-date=23 October 2017}}</ref>


===लंबवत और आसन्न कोण जोड़े ===
===लंबवत और आसन्न कोण जोड़े ===
[[File:Vertical Angles.svg|thumb|150px|right|कोण समानता दिखाने के लिए यहां हैच के निशान का उपयोग किया जाता है।]]
[[File:Vertical Angles.svg|thumb|150px|right|कोण समानता दिखाने के लिए यहां हैच के निशान का उपयोग किया जाता है।]]
जब दो सीधी रेखाएँ एक बिंदु पर प्रतिच्छेद करती हैं, तो चार कोण बनते हैं। जोड़ी में इन कोणों को एक दूसरे के सापेक्ष उनके स्थान के अनुसार नाम दिया गया है।
जब दो सीधी रेखाएँ एक बिंदु पर प्रतिच्छेदन से चार कोण बनते हैं। जोड़ी में इन कोणों को एक दूसरे के सापेक्ष उनके स्थान के अनुसार नाम दिए गए है।
* एक दूसरे के सम्मुख कोणों का एक युग्म, जो दो प्रतिच्छेदी सीधी रेखाओं से बनता है, जो X-समान आकृति बनाते है, उर्ध्वाधर कोण या सम्मुख कोण या लंबवत सम्मुख कोण कहलाते हैं। उन्हें vert के रूप में संक्षिप्त किया गया है। विपक्ष ई.एस.<ref name="tb">{{harvnb|Wong|Wong|2009|pp=161–163}}</ref>  उर्ध्वाधर सम्मुख कोणों की समानता को उर्ध्वाधर कोण प्रमेय कहते हैं। रोड्स के यूडेमस ने थेल्स ऑफ मिलेटस को सबूत के लिए जिम्मेदार ठहराया।<ref>{{cite book|author=Euclid|author-link=Euclid|title=The Elements|title-link=Euclid's Elements}} प्रस्ताव I:13.</ref>{{sfn|Shute| Shirk|Porter|1960|pp=25–27}} प्रस्ताव ने दिखाया कि चूंकि दोनों लंबवत कोणों की एक जोड़ी दोनों आसन्न कोणों के पूरक हैं, लंबवत कोण माप में बराबर हैं। एक ऐतिहासिक नोट के अनुसार,{{sfn|Shute| Shirk|Porter|1960|pp=25–27}} जब थेल्स ने मिस्र का दौरा किया, तो उन्होंने देखा कि जब भी मिस्रवासी दो प्रतिच्छेद करने वाली रेखाएँ खींचते हैं, तो वे यह सुनिश्चित करने के लिए लंबवत (ऊर्ध्वाधर) कोणों को मापते हैं, कि वे समान हैं। थेल्स ने निष्कर्ष निकाला कि कोई यह साबित कर सकता है कि सभी ऊर्ध्वाधर कोण समान हैं, यदि कोई कुछ सामान्य धारणाओं को स्वीकार करता है, जैसे:
* दो प्रतिच्छेदी सीधी रेखाओं से बनी X-समान आकृति मे एक दूसरे विपरीत मुख के बने एक कोण युग्म को उर्ध्वाधर कोण या सम्मुख कोण या लंबवत सम्मुख कोण कहते हैं। उन्हें vert. opp. ∠s के रूप में संक्षिप्त किया गया है। विपक्ष ई.एस.<ref name="tb">{{harvnb|Wong|Wong|2009|pp=161–163}}</ref>  उर्ध्वाधर सम्मुख कोणों की समानता को उर्ध्वाधर कोण प्रमेय कहते हैं। रोड्स के ''''यूडेमस'''<nowiki/>' ने थेल्स ऑफ मिलेटस को सबूत के लिए जिम्मेदार ठहराया।<ref>{{cite book|author=Euclid|author-link=Euclid|title=The Elements|title-link=Euclid's Elements}} प्रस्ताव I:13.</ref>{{sfn|Shute| Shirk|Porter|1960|pp=25–27}} प्रस्ताव ने दिखाया कि चूंकि दोनों लंबवत कोणों की एक जोड़ी दोनों आसन्न कोणों के समपूरक हैं, लंबवत कोण माप में बराबर होते हैं। एक ऐतिहासिक टिप्पणी के अनुसार,{{sfn|Shute| Shirk|Porter|1960|pp=25–27}} जब ''''थेल्स'''' ने देखा कि जब मिस्रवासी दो प्रतिच्छेद करने वाली रेखाएँ खींचते हैं, तो वे यह सुनिश्चित करने के लिए लंबवत कोणों को मापते हैं, कि वे समान हैं। ''''थेल्स'''' ने निष्कर्ष निकाला कि कोई यह साबित कर सकता है, कि सभी लंबवत कोण समान होते हैं, यदि कोई कुछ सामान्य धारणाओं को स्वीकार करता है, जैसे
:* सभी समकोण समान होते हैं।
:* सभी समकोण समान होते हैं।
:* बराबर में जोड़े गए बराबर बराबर होते हैं।
:* बराबर में जोड़े गए बराबर बराबर होते हैं।
Line 114: Line 112:


[[File:Adjacentangles.svg|right|thumb|225px|कोण A और B आसन्न हैं।]]
[[File:Adjacentangles.svg|right|thumb|225px|कोण A और B आसन्न हैं।]]
* आसन्न कोण, प्रायः adj के रूप में संक्षिप्त। एस (s), ऐसे कोण हैं जो एक सामान्य शीर्ष और किनारे साझा करते हैं लेकिन कोई आंतरिक बिंदु साझा नहीं करते हैं। दूसरे शब्दों में, वे कोण होते हैं जो अगल-बगल होते हैं, या आसन्न होते हैं, एक भुजा का साझा करते हैं। आसन्न कोण जो एक समकोण, ऋजुकोण या पूर्ण कोण के योग होते हैं, विशेष होते हैं और क्रमशः समपूरक, अनुपूरक और पूरक कोण कहलाते हैं।
* आसन्न कोण, प्रायः adj के रूप में संक्षिप्त। एस (∠s) ऐसे कोण हैं, जो एक सामान्य शीर्ष और रेखा साझा करते हैं लेकिन कोई आंतरिक बिंदु का साझा नहीं करते हैं। दूसरे शब्दों में, आसन्न कोण एक ही भुजा का साझा करते हैं। आसन्न कोण जो एक समकोण, ऋजुकोण या पूर्ण कोण का योग होते हैं, विशेष होते हैं और क्रमशः समपूरक, अनुपूरक और पूरक कोण कहलाते हैं।


एक तिर्यक रेखा एक रेखा है जो (प्रायः समानांतर) रेखाओं की एक जोड़ी को काटती है, और वैकल्पिक आंतरिक कोणों, संगत कोणों, आंतरिक कोणों और बाहरी कोणों से जुड़ी होती है।{{sfn|Jacobs|1974|p=255}}
एक तिर्यक रेखा एक रेखा है जो (प्रायः समानांतर) रेखाओं की एक जोड़ी को काटती है, और वैकल्पिक आंतरिक कोणों, संगत कोणों, आंतरिक कोणों और बाहरी कोणों से जुड़ी होती है।{{sfn|Jacobs|1974|p=255}}
Line 121: Line 119:
तीन विशेष कोण जोड़े में कोणों का योग शामिल होता है:
तीन विशेष कोण जोड़े में कोणों का योग शामिल होता है:
[[File:Complement angle.svg|thumb|150px|पूरक कोण <var>a</var> और <var>b</var> (<var>b</var> <var>a</var> और <var>a</var> का पूरक है। > <var>b</var>) का पूरक है।]]
[[File:Complement angle.svg|thumb|150px|पूरक कोण <var>a</var> और <var>b</var> (<var>b</var> <var>a</var> और <var>a</var> का पूरक है। > <var>b</var>) का पूरक है।]]
* पूरक कोण कोण युग्म होते हैं जिनकी मापों का योग एक समकोण होता है ({{sfrac|4}} मोड़, 90°, या {{sfrac|{{math|π}}|2}} रेडियन)।<ref>{{Cite web|title=Complementary Angles|url=https://www.mathsisfun.com/geometry/complementary-angles.html|access-date=2020-08-17|website=www.mathsisfun.com}}</ref> यदि दो पूरक कोण आसन्न हैं, तो उनकी साझा न करने वाली भुजाएँ एक समकोण बनाती हैं। यूक्लिडियन ज्यामिति में, एक समकोण त्रिभुज में दो न्यून कोण पूरक होते हैं, क्योंकि त्रिभुज के आंतरिक कोणों का योग 180 डिग्री होता है, और समकोण स्वयं 90 डिग्री का होता है।
* पूरक कोण कोण युग्म होते हैं, जिनकी मापों का योग एक समकोण ({{sfrac|4}} मोड़, 90° (डिग्री), या {{sfrac|{{math|π}}|2}} रेडियन) होता है ।<ref>{{Cite web|title=Complementary Angles|url=https://www.mathsisfun.com/geometry/complementary-angles.html|access-date=2020-08-17|website=www.mathsisfun.com}}</ref> यदि दो पूरक कोण आसन्न हैं, तो उनकी वह भुजाएँ जो उभयनिष्ठ नहीं होती, एक समकोण बनाती हैं। यूक्लिडियन ज्यामिति में, एक समकोण त्रिभुज में दो न्यून कोण पूरक होते हैं, क्योंकि त्रिभुज के आंतरिक कोणों का योग 180° (डिग्री) होता है, और समकोण स्वयं 90° (डिग्री) का होता है।
:विशेषण समपूरक लैटिन समपूरक से है, जो क्रिया के साथ जुड़ा है, "भरने के लिए"। एक समकोण बनाने के लिए इसके पूरक द्वारा एक न्यून कोण "भरा" जाता है।
:विशेषण समपूरक लैटिन समपूरक से है, जो क्रिया के साथ जुड़ा है, "भरने के लिए"। एक समकोण बनाने के लिए इसके पूरक द्वारा एक न्यून कोण "भरा" जाता है।
: कोण और समकोण के बीच के अंतर को कोण का पूरक कहा जाता है।<ref name="Chisholm 1911">{{harvnb|Chisholm|1911}}</ref> यदि कोण ए (A) और बी (B) पूरक हैं, तो निम्नलिखित संबंध रखते है:
: कोण और समकोण के बीच के अंतर को कोण का पूरक कहा जाता है।<ref name="Chisholm 1911">{{harvnb|Chisholm|1911}}</ref> यदि कोण ए (A) और बी (B) पूरक हैं, तो निम्नलिखित संबंध रखते है।
:: <math>
:: <math>
\begin{align}
\begin{align}
Line 132: Line 130:
:(एक कोण की स्पर्श रेखा उसके पूरक के सह-स्पर्शरेखा के बराबर होती है और उसका छेदक उसके पूरक के सह-छेदक के बराबर होती है।)
:(एक कोण की स्पर्श रेखा उसके पूरक के सह-स्पर्शरेखा के बराबर होती है और उसका छेदक उसके पूरक के सह-छेदक के बराबर होती है।)
:कुछ त्रिकोणमितीय अनुपातों के नामों में उपसर्ग "सह" समपूरक शब्द को संदर्भित करता है।
:कुछ त्रिकोणमितीय अनुपातों के नामों में उपसर्ग "सह" समपूरक शब्द को संदर्भित करता है।
[[File:Angle obtuse acute straight.svg|thumb|right|300px|कोण <var>a</var> और <var>b</var> संपूरक कोण हैं।]]
 
* दो कोण जो एक ऋजु कोण का योग करते हैं ({{sfrac|2}} मोड़, 180°, या {{math|π}} रेडियन) समपूरक कोण कहलाते हैं।<ref>{{Cite web|title=Supplementary Angles|url=https://www.mathsisfun.com/geometry/supplementary-angles.html|access-date=2020-08-17|website=www.mathsisfun.com}}</ref> यदि दो समपूरक कोण आसन्न हैं (अर्थात एक उभयनिष्ठ शीर्ष है और केवल एक भुजा साझा करते हैं), तो उनकी साझा न करने वाली भुजाएँ एक सीधी रेखा बनाती हैं। ऐसे कोणों को कोणों का रैखिक युग्म कहा जाता है।{{sfn|Jacobs|1974|p=97}} हालांकि, समपूरक कोणों का एक ही रेखा पर होना जरूरी नहीं है। उदाहरण के लिए, समांतर चतुर्भुज के आसन्न कोण समपूरक होते हैं, और[[ चक्रीय चतुर्भुज ]]के सम्मुख कोण (जिसके शीर्ष सभी एक ही वृत्त पर पड़ते हैं) पूरक होते हैं।
* दो कोण जो एक ऋजु कोण का योग करते हैं ({{sfrac|2}} मोड़ (टर्न), 180° (डिग्री), या {{math|π}} रेडियन) समपूरक कोण कहलाते हैं।<ref>{{Cite web|title=Supplementary Angles|url=https://www.mathsisfun.com/geometry/supplementary-angles.html|access-date=2020-08-17|website=www.mathsisfun.com}}</ref> यदि दो समपूरक कोण आसन्न हैं (अर्थात एक उभयनिष्ठ शीर्ष है), तो उनकी वह भुजाएँ जो उभयनिष्ठ नहीं होती, एक सीधी रेखा बनाती हैं। ऐसे कोणों को कोणों का रैखिक युग्म कहा जाता है।{{sfn|Jacobs|1974|p=97}} हालांकि, समपूरक कोणों का एक ही रेखा पर होना जरूरी नहीं है। उदाहरण के लिए, समांतर चतुर्भुज के आसन्न कोण तथा [[ चक्रीय चतुर्भुज |चक्रीय चतुर्भुज]] (जिसके शीर्ष सभी एक ही वृत्त पर पड़ते हैं) के सम्मुख कोण समपूरक होते हैं।
:यदि एक बिंदु पी (P) केंद्र ओ (O) वाले वृत्त के बाहर है, और यदि पी (P) से स्पर्श रेखाएँ वृत्त को बिंदु टी (T) और क्यू (Q) पर स्पर्श करती हैं, तो ∠टीपीक्यू (∠TPQ) और ∠टीओक्यू (∠TOQ) पूरक हैं।
:यदि एक बिंदु पी (P) केंद्र ओ (O) वाले वृत्त के बाहर है, और यदि पी (P) से स्पर्श रेखाएँ वृत्त को बिंदु टी (T) और क्यू (Q) पर स्पर्श करती हैं, तो ∠टीपीक्यू (∠TPQ) और ∠टीओक्यू (∠TOQ) पूरक हैं।
:संपूरक कोणों की ज्या बराबर होती है। उनके कोज्या और स्पर्श रेखाएं (जब तक कि अपरिभाषित नहीं) परिमाण में बराबर होते हैं, लेकिन विपरीत चिह्न होते हैं।
:संपूरक कोणों की ज्या बराबर होती है। उनके कोज्या और स्पर्श रेखाएं (जब तक कि परिभाषित है) परिमाण में बराबर होते हैं, लेकिन विपरीत चिह्न होते हैं।
:यूक्लिडियन ज्यामिति में, त्रिभुज के दो कोणों का योग तीसरे का समपूरक होता है, क्योंकि त्रिभुज के आंतरिक कोणों का योग एक ऋजु कोण होता है।
:यूक्लिडियन ज्यामिति में, त्रिभुज के दो कोणों का योग तीसरे का समपूरक होता है, क्योंकि त्रिभुज के आंतरिक कोणों का योग एक ऋजु कोण होता है।


[[File:Reflex angle.svg|thumb|right|150px|दो पूरक कोणों का योग एक पूर्ण कोण होता है।]]
* दो कोण जिनका योग एक पूर्ण कोण (1 मोड़ (टर्न), 360° (डिग्री), या 2{{math|π}} रेडियन) होता है, समपूरक कोण या संयुग्म कोण कहलाते हैं।  एक कोण और एक पूर्ण कोण के बीच के अंतर को कोण का योग या कोण का संयुग्मी कहा जाता है।
* दो कोण जिनका योग एक पूर्ण कोण (1 मोड़, 360°, या 2{{math|π}} रेडियन) होता है, समपूरक कोण या संयुग्म कोण कहलाते हैं।  एक कोण और एक पूर्ण कोण के बीच के अंतर को कोण का योग या कोण का संयुग्मी कहा जाता है।
===बहुभुज-संबंधित कोण===
===बहुभुज-संबंधित कोण===
[[File:ExternalAngles.svg|thumb|300px|right|आंतरिक और बाहरी कोण।]]
 
* एक कोण जो एक[[ साधारण बहुभुज ]] का भाग होता है, एक आंतरिक कोण कहलाता है यदि वह उस साधारण बहुभुज के अंदर स्थित हो। एक साधारण [[ अवतल बहुभुज ]]में कम से कम एक आंतरिक कोण होता है जो एक प्रतिवर्त कोण होता है।
* एक [[ साधारण बहुभुज |साधारण बहुभुज]] के अंदर का कोण एक आंतरिक कोण कहलाता है। एक साधारण [[ अवतल बहुभुज |अवतल बहुभुज]] में कम से कम एक आंतरिक कोण होता है जो एक प्रतिवर्त कोण होता है।
*: यूक्लिडियन ज्यामिति में, त्रिभुज के आंतरिक कोणों के मापों का योग होता है {{math|π}} रेडियन, 180° या {{sfrac|2}} मोड़ तक जोड़ते हैं; एक साधारण उत्तल चतुर्भुज के आंतरिक कोणों के माप 2{{math|π}} रेडियन, 360° या 1 मोड़ तक जोड़ते हैं। सामान्यतः, n भुजाओं वाले एक साधारण [[ उत्तल बहुभुज ]] के आंतरिक कोणों के मापों का योग (n − 2) {{math|π}} रेडियन, (n − 2)180 डिग्री, (n − 2)2 समकोण, या (n − 2){{sfrac|1|2}} मोड़ होता है।।
*: यूक्लिडियन ज्यामिति में, त्रिभुज के आंतरिक कोणों के मापों का योग {{math|π}} रेडियन, 180° (डिग्री) या {{sfrac|2}} मोड़ (टर्न) तक होता है। एक साधारण उत्तल चतुर्भुज के आंतरिक कोणों के मापों योग 2{{math|π}} रेडियन, 360° (डिग्री) या 1 मोड़ (टर्न) तक होता हैं। सामान्यतः, n भुजाओं वाले एक साधारण [[ उत्तल बहुभुज |उत्तल बहुभुज]] के आंतरिक कोणों के मापों का योग (n − 2) {{math|π}} रेडियन, (n − 2)180° (डिग्री), (n − 2)2 समकोण, या (n − 2){{sfrac|1|2}} मोड़ (टर्न) होता है।
* एक आंतरिक कोण के पूरक को एक बाह्य कोण कहा जाता है, अर्थात एक आंतरिक कोण और एक बाह्य कोण, कोणों का एक रैखिक युग्म बनाते हैं। बहुभुज के प्रत्येक शीर्ष पर दो बाहरी कोण होते हैं, प्रत्येक को शीर्ष पर मिलने वाले बहुभुज के दो पक्षों (किनारो) में से एक को विस्तारित करके प्राप्त करते है, ये दो कोण लंबवत हैं और इसलिए बराबर हैं। एक बाह्य कोण बहुभुज का पता लगाने के लिए एक शीर्ष पर घूर्णन की मात्रा को मापता है।{{sfn|Henderson|Taimina|2005|p=104}} यदि संगत आंतरिक कोण एक प्रतिवर्त कोण है, तो बाह्य कोण को ऋणात्मक माना जाना चाहिए। यहां तक ​​कि एक आसाधारण बहुभुज में भी बाह्य कोण को परिभाषित करना संभव हो सकता है, लेकिन बाह्य कोण माप के चिन्ह को तय करने के लिए किसी को समतल (या सतह) का एक अभिविन्यास चुनना होगा।
* एक आंतरिक कोण के पूरक को एक बाह्य कोण कहा जाता है, अर्थात एक आंतरिक कोण और एक बाह्य कोण, कोणों का एक रैखिक युग्म बनाते हैं। बहुभुज के प्रत्येक शीर्ष पर दो बाहरी कोण होते हैं, प्रत्येक को शीर्ष पर मिलने वाली दो रेखाओ में से एक को विस्तारित करके प्राप्त करते है, ये दो कोण लंबवत तथा बराबर हैं। एक बाह्य कोण बहुभुज का पता लगाने के लिए एक शीर्ष पर घूर्णन की मात्रा को मापता है।{{sfn|Henderson|Taimina|2005|p=104}} यदि संगत आंतरिक कोण एक प्रतिवर्त कोण है, तो बाह्य कोण को ऋणात्मक माना जाना चाहिए। यहां तक ​​कि एक आसाधारण बहुभुज में भी बाह्य कोण को परिभाषित करना संभव हो सकता है, लेकिन बाह्य कोण माप के चिन्ह को तय करने के लिए किसी को समतल (या सतह) का एक अभिविन्यास चुनना होगा।
*: यूक्लिडियन ज्यामिति में, एक साधारण उत्तल बहुभुज के बाह्य कोणों का योग, यदि प्रत्येक शीर्ष पर दो बाह्य कोणों में से केवल एक माना जाता है, तो एक पूर्ण मोड़ (360°) होगा। यहाँ बाह्य कोण को पूरक बाह्य कोण कहा जा सकता है। नियमित बहुभुज बनाते समय बाह्य कोणों का उपयोग प्रायः लोगो टर्टल कार्यक्रमों में किया जाता है।
*: यूक्लिडियन ज्यामिति में, एक साधारण उत्तल बहुभुज के बाह्य कोणों का योग, यदि प्रत्येक शीर्ष पर दो बाह्य कोणों में से केवल एक माना जाए तो एक पूर्ण मोड़ (टर्न) 360°(डिग्री) होगा। यहाँ बाह्य कोण को पूरक बाह्य कोण कहा जा सकता है। नियमित बहुभुज बनाते समय बाह्य कोणों का उपयोग प्रायः लोगो टर्टल कार्यक्रमों में किया जाता है।
* एक त्रिभुज में, दो बाह्य कोणों के समद्विभाजक और दूसरे आंतरिक कोण के समद्विभाजक समवर्ती होते हैं (एक बिंदु पर मिलते हैं)।<ref name=Johnson>जॉनसन, रोजर ए. एडवांस्ड यूक्लिडियन ज्योमेट्री, डोवर पब्लिकेशन्स, 2007.</ref>
* एक त्रिभुज में, दो बाह्य कोणों के समद्विभाजक और दूसरे आंतरिक कोण के समद्विभाजक समवर्ती होते हैं (एक बिंदु पर मिलते हैं)।<ref name=Johnson>जॉनसन, रोजर ए. एडवांस्ड यूक्लिडियन ज्योमेट्री, डोवर पब्लिकेशन्स, 2007.</ref>
* एक त्रिभुज में, तीन प्रतिच्छेदन बिंदु, प्रत्येक बाह्य कोण का समद्विभाजक, जिसकी विपरीत विस्तारित भुजा होती है, संरेख होते हैं।<ref name=Johnson/>
* एक त्रिभुज में, तीन प्रतिच्छेदन बिंदु, प्रत्येक बाह्य कोण का समद्विभाजक, जिसकी विपरीत विस्तारित भुजा होती है, संरेख होते हैं।<ref name=Johnson/>
* एक त्रिभुज में, तीन प्रतिच्छेदन बिंदु, उनमें से दो एक आंतरिक कोण समद्विभाजक और विपरीत भुजा के बीच, और तीसरा बाह्य कोण समद्विभाजक और विपरीत विस्तारित भुजा के बीच, संरेख हैं।<ref name=Johnson/>
* एक त्रिभुज में, तीन प्रतिच्छेदन बिंदु, उनमें से दो एक आंतरिक कोण समद्विभाजक और विपरीत विस्तारित भुजा, और तीसरा बाह्य कोण समद्विभाजक और विपरीत विस्तारित भुजा के बीच, संरेख हैं।<ref name=Johnson/>
* कुछ लेखक साधारण बहुभुज के बाह्य कोण के नाम का उपयोग केवल आंतरिक कोण के बाह्य कोण (पूरक नहीं!) लागू करने के लिए करते हैं।<ref>{{citation|editor=D. Zwillinger|title=CRC Standard Mathematical Tables and Formulae|place=Boca Raton, FL|publisher=CRC Press|year=1995|page= 270}} जैसा कि में उद्धृत किया गया है {{MathWorld |urlname=ExteriorAngle |title=Exterior Angle}}</ref> यह उपरोक्त उपयोग के साथ विरोध करता है।
* कुछ लेखक साधारण बहुभुज के बाह्य कोण के नाम का उपयोग केवल आंतरिक कोण के बाह्य कोण (पूरक नहीं!) लागू करने के लिए करते हैं।<ref>{{citation|editor=D. Zwillinger|title=CRC Standard Mathematical Tables and Formulae|place=Boca Raton, FL|publisher=CRC Press|year=1995|page= 270}} जैसा कि में उद्धृत किया गया है {{MathWorld |urlname=ExteriorAngle |title=Exterior Angle}}</ref> यह उपरोक्त उपयोग के साथ विरोध करता है।


Line 154: Line 151:


* दो तलों के बीच के कोण (जैसे एक बहुफलक के दो आसन्न फलक) को द्विफलकीय कोण कहा जाता है।<ref name="Chisholm 1911" /> यह समतल से लम्बवत दो रेखाओं के बीच न्यून कोण के रूप में परिभाषित किया जा सकता है।
* दो तलों के बीच के कोण (जैसे एक बहुफलक के दो आसन्न फलक) को द्विफलकीय कोण कहा जाता है।<ref name="Chisholm 1911" /> यह समतल से लम्बवत दो रेखाओं के बीच न्यून कोण के रूप में परिभाषित किया जा सकता है।
* एक समतल और एक प्रतिच्छेदी सीधी रेखा के बीच का कोण प्रतिच्छेदन रेखा और प्रतिच्छेदन बिंदु से जाने वाली रेखा के बीच के कोण को घटाकर नब्बे (90) डिग्री के बराबर होता है और समतल के अभिलंबवत होता है।
* एक समतल और एक प्रतिच्छेदी सीधी रेखा के बीच का कोण प्रतिच्छेदन रेखा और प्रतिच्छेदन बिंदु से जाने वाली रेखा के बीच के कोण को घटाकर नब्बे डिग्री (90°) के बराबर होता है तथा समतल के अभिलंबवत होता है।
 
 


'''<big>मापने के कोण</big>'''
'''<big>मापने के कोण</big>'''


एक ज्यामितीय कोण का आकार सामान्यतः सबसे छोटे घूर्णन के परिमाण की विशेषता होती है, जो एक किरण को दूसरे में मैप करता है। समान आकार वाले कोणों को समान या सर्वांगसम या माप में बराबर कहा जाता है।
एक ज्यामितीय कोण का आकार सामान्यतः सबसे छोटे घूर्णन के परिमाण की विशेषता होती है, जो एक रेखा को दूसरे में मैप करता है। समान आकार वाले कोणों को समान या सर्वांगसम कहा जाता है।
 
कुछ संदर्भों में, जैसे किसी वृत्त पर एक बिंदु की पहचान करना या किसी संदर्भ अभिविन्यास (किसी वस्तु की स्थिति या कोण की दिशा) के सापेक्ष दो विमाओ में किसी वस्तु के अभिविन्यास (किसी वस्तु की स्थिति या कोण की दिशा) का वर्णन करना, पूर्ण मोड़ के निश्चित गुणक से भिन्न कोण, प्रभावी रूप से समतुल्य होते हैं। अन्य संदर्भों में, जैसे कि एक कुंडलित वक्र पर एक बिंदु की पहचान करना या किसी संदर्भ अभिविन्यास (किसी वस्तु की स्थिति या कोण की दिशा) के सापेक्ष दो विमाओ में किसी वस्तु के संचयी घूर्णन का वर्णन करना, एक पूर्ण मोड़ के अशून्य गुणक से भिन्न कोण, समतुल्य नहीं होते हैं।
 
[[File:Angle measure.svg|right|thumb|आर}} रेडियन}}।]]


कुछ संदर्भों में, जैसे किसी वृत्त पर एक बिंदु की पहचान करना या किसी संदर्भ अभिविन्यास (किसी वस्तु की स्थिति या कोण की दिशा) के सापेक्ष दो विमाओ में किसी वस्तु के अभिविन्यास (किसी वस्तु की स्थिति या कोण की दिशा) का वर्णन करना, पूर्ण मोड़ (टर्न) के निश्चित गुणक से भिन्न कोण प्रभावी रूप से समतुल्य होते हैं। अन्य संदर्भों में, जैसे कि एक कुंडलित वक्र पर एक बिंदु की पहचान करना या किसी संदर्भ अभिविन्यास (किसी वस्तु की स्थिति या कोण की दिशा) के सापेक्ष दो विमाओ में किसी वस्तु के संचयी घूर्णन का वर्णन करना, एक पूर्ण मोड़ (टर्न) के अशून्य गुणक से भिन्न कोण समतुल्य नहीं होते हैं।


[[File:Angle measure.svg|right|thumb|<nowiki>आर}} रेडियन}}।</nowiki>]]


कोण <var>θ</var> को मापने के लिए, कोण के शीर्ष को केंद्र मानकर एक वृत्ताकार चाप खींचा जाता है, उदाहरण के लिए परकार (कंपास) के एक जोड़े के साथ। चाप की लंबाई एस (<var>s)</var> का वृत्त की त्रिज्या आर (<var>r)</var> से अनुपात, कोण में रेडियन की संख्या है। परंपरागत रूप से, गणित और एसआई (SI) में, रेडियन को विमाहीन मान 1 के बराबर माना जाता है।
कोण <var>θ</var> को मापने के लिए, कोण के शीर्ष को केंद्र मानकर एक वृत्ताकार चाप खींचा जाता है, उदाहरण के लिए परकार (कंपास) के एक जोड़े के साथ। चाप की लंबाई एस (<var>s)</var> का वृत्त की त्रिज्या आर (<var>r)</var> से अनुपात, कोण में रेडियन की संख्या है। परंपरागत रूप से, गणित और एसआई (SI) में, रेडियन को विमाहीन मान 1 के बराबर माना जाता है।


कोण को एक और कोणीय इकाई से व्यक्त किया गया अतः कोण को {{sfrac|''k''|2{{math|π}}}} के रूप के उपयुक्त रूपांतरण स्थिरांक से गुणा करके प्राप्त किया जा सकता है, जहाँ k चुनी हुई इकाई में व्यक्त एक पूर्ण मोड़ का माप है (उदाहरण के लिए, {{nowrap|1= ''k'' = 360°}} के लिए डिग्री या 400 ग्रेड के लिए ग्रेडियन):
कोण को एक और कोणीय इकाई से व्यक्त किया गया है, अतः कोण को {{sfrac|''k''|2{{math|π}}}} के रूप के उपयुक्त रूपांतरण स्थिरांक से गुणा करके प्राप्त किया जा सकता है, जहाँ k चुनी हुई इकाई में व्यक्त एक पूर्ण मोड़ (टर्न) का माप है (उदाहरण के लिए, {{nowrap|1= ''k'' = 360°}} के लिए डिग्री या 400 ग्रेड के लिए ग्रेडियन)


:<math> \theta = \frac{k}{2\pi} \cdot \frac{s}{r}. </math>
:<math> \theta = \frac{k}{2\pi} \cdot \frac{s}{r}. </math>
Line 179: Line 172:


:<math> m\angle \mathrm{AOC} = m\angle \mathrm{AOB} + m\angle \mathrm{BOC} </math>
:<math> m\angle \mathrm{AOC} = m\angle \mathrm{AOB} + m\angle \mathrm{BOC} </math>
कोण एओसी (∠AOC) कि माप कोण AOB के माप और कोण एओबी (∠BOC) के माप का योग होता है।
कोण एओसी (∠AOC) कि माप कोण एओबी (∠AOB) के माप और कोण बीओसी (∠BOC) के माप का योग होता है।


=== इकाइयां ===
=== इकाइयां ===
[[Image:Angle radian.svg|right|thumb|1 रेडियन की परिभाषा]]
[[Image:Angle radian.svg|right|thumb|1 रेडियन की परिभाषा]]
पूरे इतिहास में, कोणों को विभिन्न इकाइयों में मापा गया है। इन्हें '''कोणीय इकाइयों''' के रूप में जाना जाता है, जिनमें सबसे आधुनिक इकाइयाँ डिग्री (°), रेडियन (रेड), और ग्रेडियन (ग्रेड) हैं, इत्यादि का उपयोग इतिहास में किया गया है।<ref>{{Cite web|title=angular unit|url=https://www.thefreedictionary.com/angular+unit|access-date=2020-08-31|website=TheFreeDictionary.com}}</ref>
पूरे इतिहास में, कोणों को विभिन्न इकाइयों में मापा गया है। इन्हें '''कोणीय इकाइयों''' के रूप में जाना जाता है, जिनमें सबसे आधुनिक इकाइयाँ डिग्री (°), रेडियन (रेड), और ग्रेडियन (ग्रेड) इत्यादि हैं।<ref>{{Cite web|title=angular unit|url=https://www.thefreedictionary.com/angular+unit|access-date=2020-08-31|website=TheFreeDictionary.com}}</ref>


मात्राओं की अंतर्राष्ट्रीय प्रणाली में, कोण को एक विमाहीन राशि के रूप में परिभाषित है। यह प्रभावित करता है कि विमीय विश्लेषण में कोण कैसा व्यवहार करता है।।
मात्राओं की अंतर्राष्ट्रीय प्रणाली में, कोण एक विमाहीन राशि के रूप में परिभाषित है। यह प्रभावित करता है कि विमीय विश्लेषण में कोण कैसा व्यवहार करता है।


कोणीय माप की अधिकांश इकाइयाँ इस प्रकार परिभाषित हैं कि किसी पूर्ण संख्या एन (n) के लिए एक मोड़ (अर्थात एक पूर्ण वृत्त) एन (n) इकाइयों के बराबर होता है। रेडियन (और इसके दशमलव उपगुणक) और व्यास दो अपवाद हैं।
कोणीय माप की अधिकांश इकाइयाँ इस प्रकार परिभाषित हैं कि किसी पूर्ण संख्या एन (n) के लिए एक मोड़ (टर्न) (अर्थात एक पूर्ण वृत्त) एन (n) इकाइयों के बराबर होता है। रेडियन (और इसके दशमलव उपगुणक) और व्यास दो अपवाद हैं।


एक रेडियन एक वृत्त के चाप द्वारा अंतरित कोण होता है जिसकी लंबाई वृत्त की त्रिज्या के समान होती है। रेडियन एसआई (SI) प्रणाली में कोणीय माप की व्युत्पन्न इकाई है। परिभाषा के अनुसार, यह विमाहीन है, हालांकि अस्पष्टता से बचने के लिए इसे रेड (rad) के रूप में दर्शाया जा सकता है। डिग्री में मापे गए कोणों को (°) के प्रतीक से दिखाया जाता है। डिग्री के उपखंड मिनट हैं (1 मिनट (′) = 1/60° (डिग्री)) और दूसरा (1 सेकंड (") = 1/3600° (डिग्री))360° का कोण एक पूर्ण वृत्त द्वारा अंतरित कोण के सामान होता है, और {{math|2''π''}} रेडियन, या 400 ग्रेडियन के बराबर होता है।
एक रेडियन एक वृत्त के चाप द्वारा अंतरित कोण होता है जिसकी लंबाई वृत्त की त्रिज्या के समान होती है। रेडियन एसआई (SI) प्रणाली में कोणीय माप की व्युत्पन्न इकाई है। हालांकि अस्पष्टता से बचने के लिए इसे रेड (rad) के रूप में दर्शाया जा सकता है। डिग्री में मापे गए कोणों को (°) प्रतीक से दिखाया जाता है। डिग्री के उपखंड मिनट हैं (1 मिनट (′) = 1/60° (डिग्री)) और दूसरा (1 सेकंड (") = 1/3600° (डिग्री)) है। 360° (डिग्री) का कोण एक पूर्ण वृत्त द्वारा अंतरित कोण के सामान होता है, {{math|2''π''}} रेडियन, या 400 ग्रेडियन के बराबर होता है।


कोणों को निरूपित करने के लिए प्रयुक्त अन्य इकाइयाँ निम्नलिखित तालिका में सूचीबद्ध हैं। इन इकाइयों को इस तरह परिभाषित किया गया है कि मोड़ (टर्न्स) की संख्या एक पूर्ण घूर्णन के बराबर है।
कोणों को निरूपित करने के लिए प्रयुक्त अन्य इकाइयाँ निम्नलिखित तालिका में सूचीबद्ध हैं। इन इकाइयों को इस तरह परिभाषित किया गया है कि मोड़ (टर्न्स) की संख्या एक पूर्ण घूर्णन के बराबर है।
Line 195: Line 188:
{|class = "wikitable"
{|class = "wikitable"
!नाम !!एक  
!नाम !!एक  
टर्न में  
मोड़ (टर्न) में  


संख्या
संख्या
!डिग्री में !!विवरण
!डिग्री में !!विवरण
|-
|-
|[[turn (geometry)|टर्न]]||1||360° || मोड़, चक्र, परिक्रमण और घूर्णन, पूर्ण वृत्तीय गति या माप (उसी बिंदु पर लौटने के लिए) है। अनुप्रयोग के आधार पर एक मोड़ संक्षिप्त रूप से  
|[[turn (geometry)|मोड़ (टर्न)]]||1||360° || मोड़ (टर्न), चक्र, परिक्रमण और घूर्णन, पूर्ण वृत्तीय गति या माप (उसी बिंदु पर लौटने के लिए) है। अनुप्रयोग के आधार पर एक मोड़ (टर्न) संक्षिप्त रूप से सीवाईसी (cyc),आरइवी (rev), या आरओटी (rot) है। एक मोड़ 2π रेडियन या 360° (डिग्री) के बराबर होता है।
सी वाई सी (cyc),आरइवी (rev), या आरओटी (rot) है। एक मोड़ 2π रेडियन या 360° (डिग्री) के बराबर होता है।एक मोड़ (टर्न) 2π रेडियन या 360° (डिग्री) के बराबर होता है।
|-
|-
|{{pi}} के गुणज  ||2||180° || ''{{pi}}'' रेडियन (MUL{{pi}}) इकाई के गुणकों को [[Reverse Polish Notation|RPN]] वैज्ञानिक कैलकुलेटर में लागू किया जाता है [[WP&nbsp;43S|WP 43S।]]<ref name="Bonin_2016"/><ref name="Bonin_2019_OG"/><ref name="Bonin_2019_RG"/> यह भी देखें [[IEEE 754 recommended operations]]
|{{pi}} के गुणज  ||2||180° || ''{{pi}}'' रेडियन एमयूएल''{{pi}}'' (MUL{{pi}}) इकाई के गुणकों को [[Reverse Polish Notation|आरपीएन]] वैज्ञानिक कैलकुलेटर में लागू किया जाता है। [[WP&nbsp;43S|WP 43S।]]<ref name="Bonin_2016"/><ref name="Bonin_2019_OG"/><ref name="Bonin_2019_RG"/> यह भी देखें [[IEEE 754 recommended operations|IEEE 754 अनुशंसित संचालन]]
|-
|-
|[[circular sector|चतुर्थाँश]]||4||90°||एक चतुर्थांश एक 1/4 मोड़ (टर्न) है और इसे ''[[right angle|समकोण]]'' भी कहते है। चतुर्थांश [[Euclid's Elements|यूक्लिड के तत्वों]] में प्रयुक्त इकाई है। एक चतुर्थांश को दर्शाने के लिए प्रतीक <sup>∟</sup> का उपयोग किया गया है। 1 क्वाड = 90° = {{sfrac|{{pi}}|2}} रेड (rad) = {{sfrac|4}} टर्न = 100 ग्रेड (grad)।
|[[circular sector|चतुर्थाँश]]||4||90°||एक चतुर्थांश एक 1/4 मोड़ (टर्न) और ''[[right angle|समकोण]]'' भी कहते है। चतुर्थांश [[Euclid's Elements|यूक्लिड के तत्वों]] में प्रयुक्त इकाई है। एक चतुर्थांश को दर्शाने के लिए प्रतीक <sup>∟</sup> का उपयोग किया गया है। 1 क्वाड = 90° = {{sfrac|{{pi}}|2}} रेड (rad) = {{sfrac|4}} टर्न = 100 ग्रेड (grad)।
|-
|-
|[[circular sector|सेक्सटैंट]]||6||60°||सेक्स्टेंट [[Babylonians|बेबीलोनियों]] द्वारा उपयोग की जाने वाली इकाई थी, डिग्री, चाप का मिनट और चाप का सेकंड बेबीलोनियाई इकाई के [[sexagesimal|षाष्टिक (सेक्सेजिमल)]] उपइकाई हैं।,<ref name="Jeans_1947"/><ref name="Murnaghan_1946"/> यह विशेष रूप से पटरी और परकार से बनाना आसान है। यह ''[[equilateral triangle|समबाहु त्रिभुज]]''  का कोण है या 1/6 मोड़ (टर्न) है। 1 बेबीलोनियाई इकाई = 60° = {{pi}}/3 रेड ≈ 1.047197551 रेड .
|[[circular sector|सेक्सटैंट]]||6||60°||सेक्स्टेंट [[Babylonians|बेबीलोनियों]] द्वारा उपयोग की जाने वाली इकाई थी, डिग्री, चाप का मिनट और चाप का सेकंड बेबीलोनियाई इकाई कि [[sexagesimal|षाष्टिक (सेक्सेजिमल)]] उपइकाई हैं।<ref name="Jeans_1947"/><ref name="Murnaghan_1946"/> यह विशेष रूप से पटरी और परकार से बनाना आसान है। यह ''[[equilateral triangle|समबाहु त्रिभुज]]''  का कोण या 1/6 मोड़ (टर्न) होता है। 1 बेबीलोनियाई इकाई = 60° = {{pi}}/3 रेड ≈ 1.047197551 रेड  
|-
|-
|[[Radian|रेडियन]]||{{math|2''π''}}||57°17′||रेडियन एक वृत्त की परिधि से निर्धारित होता है जो वृत्त की त्रिज्या के बराबर लंबाई (n = 2π = 6.283...) का होता है। यह एक वृत्त के चाप द्वारा अंतरित कोण होता है, जिसकी लंबाई वृत्त की त्रिज्या के समान होती है। रेडियन का प्रतीक रेड (rad) है। एक मोड़ (टर्न) 2{{math|π}} रेडियन होता है, और एक रेडियन {{sfrac|180°|{{pi}}}} या लगभग 57.2958 डिग्री होता है। गणितीय ग्रंथों में, कोणों को अक्सर एक रेडियन के साथ विमाहीन माना जाता है, जिसके परिणामस्वरूप इकाई रेड (rad) को अक्सर छोड़ दिया जाता है।रेडियन का उपयोग लगभग सभी गणितीय कार्यों में किया जाता है, सरल प्रयोगिक ज्यामिति से परे, उदाहरण के लिए, मनभावन और "प्राकृतिक" गुणों के कारण जो [[trigonometric function|त्रिकोणमितीय फलन]] प्रदर्शित करते हैं जब उनके तर्क रेडियन में होते हैं।रेडियन [[SI|एसआई]] (SI) में कोणीय माप की (व्युत्पन्न) इकाई है, जो कोण को  
|[[Radian|रेडियन]]||{{math|2''π''}}||57°17′||रेडियन एक वृत्त की परिधि से निर्धारित होता है जो वृत्त की त्रिज्या के बराबर लंबाई (n = 2π = 6.283...) का होता है। यह एक वृत्त के चाप द्वारा अंतरित कोण होता है, जिसकी लंबाई वृत्त की त्रिज्या के समान होती है। रेडियन का प्रतीक रेड (rad) है। एक मोड़ (टर्न) 2{{math|π}} रेडियन होता है, और एक रेडियन {{sfrac|180°|{{pi}}}} या लगभग 57.2958° (डिग्री) होता है। गणितीय ग्रंथों में, कोणों को अक्सर एक रेडियन को विमाहीन माना जाता है, जिसके परिणामस्वरूप इकाई रेड (rad) को अक्सर छोड़ दिया जाता है। रेडियन का उपयोग लगभग सभी गणितीय कार्यों में किया जाता है, सरल प्रयोगिक ज्यामिति से परे, उदाहरण के लिए, मनभावन और "प्राकृतिक" गुणों के कारण जो [[trigonometric function|त्रिकोणमितीय फलन]] प्रदर्शित करते हैं जब उनके तर्क रेडियन में होते हैं। रेडियन [[SI|एसआई]] (SI) में कोणीय माप की (व्युत्पन्न) इकाई है, जो कोण को  
विमाहीन भी मानता है।
विमाहीन भी मानता है।
|-
|-
| हेक्साकॉन्टेडे||60 ||6°||हेक्साकॉन्टेड एक इकाई है जिसका उपयोग [[Eratosthenes|एराटोस्थनीज]] द्वारा किया जाता है। यह 6° के बराबर होता है, जिससे एक पूरा मोड़ 60 हेक्साकॉन्टेड्स में विभाजित हो जाता है।
| हेक्साकॉन्टेडे||60 ||6°||हेक्साकॉन्टेड एक इकाई है जिसका उपयोग [[Eratosthenes|एराटोस्थनीज]] द्वारा किया जाता है। यह 6° (डिग्री) के बराबर होता है, जिससे एक पूरा मोड़ (टर्न) 60 हेक्साकॉन्टेड्स में विभाजित हो जाता है।
|-
|-
|[[Binary angular measurement|द्विआधारी  डिग्री]] ||256||1°33'45"  || बाइनरी डिग्री, जिसे ''[[binary radian|बाइनरी रेडियन]]''  या ब्रैड या बाइनरी कोणीय माप (BAM) से भी जाना जाता है।<ref name="ooPIC"/> बाइनरी डिग्री का उपयोग अभिकलन में किया जाता है ताकि एक कोण को एक [[byte|बाइट]] में अच्छे से दर्शाया जा सके (यद्यपि सीमित परिशुद्धता के लिए)। अभिकलन में प्रयुक्त कोण के अन्य माप, n के अन्य मान के लिए एक पूरे मोड़ को 2<sup>''n''</sup> बराबर भागों में विभाजित करने पर आधारित होते हैं।<ref name="Hargreaves_2010" /> यह एक मोड़ (टर्न) का {{sfrac|256}} है। <ref name="ooPIC" />
|[[Binary angular measurement|बाइनरी डिग्री]] ||256||1°33'45"  || बाइनरी डिग्री, जिसे ''[[binary radian|बाइनरी रेडियन]]''  या ब्रैड या बाइनरी कोणीय माप बीएएम (BAM) से भी जाना जाता है।<ref name="ooPIC"/> बाइनरी डिग्री का उपयोग अभिकलन में किया जाता है ताकि एक कोण को एक [[byte|बाइट]] में अच्छे से दर्शाया जा सके (यद्यपि सीमित परिशुद्धता के लिए)। अभिकलन में प्रयुक्त कोण के अन्य माप, n के अन्य मान के लिए एक पूरे मोड़ (टर्न) को 2<sup>''n''</sup> बराबर भागों में विभाजित करने पर आधारित होते हैं।<ref name="Hargreaves_2010" /> यह एक मोड़ (टर्न) का {{sfrac|256}} है। <ref name="ooPIC" />
|-
|-
|[[degree (angle)|डिग्री]] ||360 ||1°|| One advantage of this old [[sexagesimal]] subunit is that many angles common in simple geometry are measured as a whole number of degrees. Fractions of a degree may be written in normal decimal notation (e.g. 3.5° for three and a half degrees), but the "minute" and "second" sexagesimal subunits of the "degree-minute-second" system are also in use, especially for [[Geographic coordinate system|geographical coordinates]] and in [[astronomy]] and [[ballistics]] (''n''&nbsp;=&nbsp;360) The ''degree'', denoted by a small superscript circle (°), is 1/360 of a turn, so one ''turn'' is 360°. The case of degrees for the formula given earlier, a ''degree'' of ''n'' = 360° units is obtained by setting ''k'' = {{sfrac|360°|2{{pi}}}}.
|[[degree (angle)|डिग्री]] ||360 ||1°|| इस पुराने [[sexagesimal|षाष्टिक (सेक्सजेसिमल)]] उपइकाई का एक फायदा यह है कि साधारण ज्यामिति में सामान्य कई कोणों को डिग्री की एक पूरी संख्या के रूप में मापा जाता है। डिग्री के अंश सामान्य दशमलव संकेतन में लिखे जा सकते हैं (उदाहरण के लिए 3.5 डिग्री), लेकिन "डिग्री-मिनट-सेकंड" प्रणाली के "मिनट" और "सेकंड" षाष्टिक (सेक्सजेसिमल) उपिकाई भी उपयोग में हैं, विशेष रूप से [[Geographic coordinate system|भौगोलिक निर्देशांक]] के लिए और [[astronomy|खगोल विज्ञान]] और [[ballistics|अस्त्रविज्ञान]] में (n = 360)। ऊपर लिखे हुए एक छोटे वृत्त (°) द्वारा दर्शाई गई डिग्री, एक मोड़ (टर्न) का 1/360 है, इसलिए एक मोड़ (टर्न) 360° (डिग्री) का होता है। पहले दिए गए सूत्र के लिए डिग्री का मामला, ''k'' = {{sfrac|360°|2{{pi}}}} निर्धारित करके n = 360° (डिग्री) इकाई प्राप्त की जाती है।
|-
|-
| [[grad (angle)|ग्रेड]]||400 ||0°54′ || The ''grad'', also called ''grade'', ''[[gradian]]'', or ''gon''. It is a decimal subunit of the quadrant. A right angle is 100 grads. A [[kilometre]] was historically defined as a [[centi]]-grad of arc along a [[meridian (geography)|meridian]] of the Earth, so the kilometer is the decimal analog to the [[sexagesimal]] [[nautical mile]] (''n''&nbsp;=&nbsp;400). The grad is used mostly in [[triangulation (surveying)|triangulation]] and continental [[surveying]].
| [[grad (angle)|ग्रेड]]||400 ||0°54′ || ग्रेड, जिसे, ग्रैड, [[gradian|ग्रेडियन]] या गॉन चतुर्थांश की दशमलव उपइकाईयां कहलाती है। एक समकोण 100 ग्रैड होता है। एक [[kilometre|किलोमीटर]] को ऐतिहासिक रूप से पृथ्वी के एक [[meridian (geography)|मध्याह्न रेखा]] के साथ चाप के एक [[centi|सेंटी]]-ग्रेड के रूप में परिभाषित किया गया था, इसलिए किलोमीटर [[sexagesimal|षाष्टिक (सेक्सजेसिमल)]] [[nautical mile|समुद्री मील]] (n = 400) का दशमलव अनुरूप है। ग्रेड का उपयोग ज्यादातर त्रिभुज और महाद्वीपीय सर्वेक्षण में किया जाता है। ग्रेड का उपयोग ज्यादातर [[triangulation (surveying)|त्रिभुजन]] और महाद्वीपीय [[surveying|सर्वेक्षण]] में किया जाता है।
|-
|-
| [[Minute of arc|चाप के मिनट]]||21,600 ||0°1′|| The ''minute of arc'' (or ''MOA'', ''arcminute'', or just ''minute'') is {{sfrac|60}} of a degree. A [[nautical mile]] was historically defined as a minute of arc along a [[great circle]] of the Earth (''n''&nbsp;=&nbsp;21,600).  The ''arcminute'' is {{sfrac|60}} of a degree = {{sfrac|21,600}} turn. It is denoted by a single prime (&nbsp;&nbsp;). For example, 3°&nbsp;30′ is equal to 3&nbsp;×&nbsp;60&nbsp;+&nbsp;30&nbsp;=&nbsp;210 minutes or 3&nbsp;+&nbsp;{{sfrac|30|60}} = 3.5 degrees. A mixed format with decimal fractions is also sometimes used, e.g. &nbsp;5.72′ = 3&nbsp;+&nbsp;{{sfrac|5.72|60}} degrees. A [[nautical mile]] was historically defined as an arcminute along a [[great circle]] of the Earth.
| [[Minute of arc|चाप के मिनट]]||21,600 ||0°1′|| चाप का मिनट (या एमओए, चाप-मिनट, या केवल मिनट) डिग्री का {{sfrac|60}} होता है। 
एक [[nautical mile|समुद्री मील]] को ऐतिहासिक रूप से पृथ्वी के एक [[great circle|बड़े वृत्त]] (n = 21,600) के साथ चाप के एक मिनट के रूप में परिभाषित किया गया था। चाप-मिनट {{sfrac|60}} डिग्री {{sfrac|21,600}} मोड़ (टर्न) होता है। इसे प्रतीक ( ′ ) द्वारा निरूपित किया जाता है। उदाहरण के लिए, 3° 30′, 3 × 60 + 30 = 210 मिनट या 3 + {{sfrac|30|60}} = 3.5 डिग्री के बराबर होता है। कभी-कभी दशमलव अंशों के साथ मिश्रित प्रारूप का भी उपयोग किया जाता है, उदाहरण के लिए 3° 5.72′ = 3 + {{sfrac|5.72|60}} डिग्री।
|-
|-
| [[Second of arc|चाप के]]  
| [[Second of arc|चाप के]]  
[[Second of arc|सेकंड]]
[[Second of arc|सेकंड]]
|1,296,000 ||0°0′1″||चाप का दूसरा (चाप-सेकंड, या सिर्फ दूसरा) चाप के एक मिनट का {{sfrac|60}} और डिग्री का  1/3600 (n = 1,296,000) है। आर्कसेकंड (या चाप का दूसरा, या सिर्फ दूसरा) एक आर्कमिनट का  1/60 और एक डिग्री का  1/3600 है। इसे दोहरे अभाज्य ( ″ ) से निरूपित किया जाता है। उदाहरण के लिए, 3° 7′ 30″ 3 +  7/60 +  30/3600 डिग्री, या 3.125 डिग्री के बराबर है। of a minute of arc and {{sfrac|3600}} of a degree (''n''&nbsp;=&nbsp;1,296,000). The ''arcsecond'' (or ''second of arc'', or just ''second'') is {{sfrac|60}} of an arcminute and {{sfrac|3600}} of a degree. It is denoted by a double prime (&nbsp;″&nbsp;). For example, 3°&nbsp;7′&nbsp;30″ is equal to 3 + {{sfrac|7|60}} + {{sfrac|30|3600}} degrees, or 3.125&nbsp;degrees.
|1,296,000 ||0°0′1″||चाप का सेकंड (या चाप-सेकंड, या केवल सेकंड) चाप के एक मिनट का {{sfrac|60}} और डिग्री का {{sfrac|3600}} (n = 1,296,000) होता है। चाप-सेकंड (या चाप का सेकंड, या केवल सेकंड) एक चाप-मिनट का {{sfrac|60}} और एक डिग्री का {{sfrac|3600}} होता है। इसे प्रतीक ( ″ ) से निरूपित किया जाता है। उदाहरण के लिए, 3° 7′ 30″  3 + {{sfrac|7|60}} + {{sfrac|30|3600}} डिग्री या 3.125 डिग्री के बराबर है। 
|}
|}


=== अन्य वर्णनकर्ता ===
=== अन्य वर्णनकर्ता ===
* घंटे का कोण (n = 24): खगोलीय घंटे का कोण है {{sfrac|24}}मोड़। चूंकि यह प्रणाली उन वस्तुओं को मापने के लिए उत्तरदायी है जो प्रति दिन एक बार चक्र करते हैं (जैसे सितारों की सापेक्ष स्थिति), सेक्सेजिमल सबयूनिट्स को मिनट का समय और दूसरा समय कहा जाता है। ये चाप के मिनट और सेकंड से अलग और 15 गुना बड़े हैं। 1 घंटे = 15° = {{sfrac|{{pi}}|12}} रेड = {{sfrac|6}}क्वाड = {{sfrac|24}}बारी = {{sfrac|16|2|3}}ग्रेड।
* घंटे का कोण (n = 24) खगोलीय घंटे का कोण {{sfrac|24}} मोड़ (टर्न) का होता है। चूंकि यह प्रणाली उन वस्तुओं को मापने के लिए उत्तरदायी है जो प्रति दिन एक बार परिक्रमण करते हैं (जैसे सितारों की सापेक्ष स्थिति), षाष्टिक (सेक्सजेसिमल) उपइकाई को समय का मिनट और समय का सेकंड कहा जाता है। ये चाप के मिनट और सेकंड से अलग और 15 गुना बड़े होते है। 1 घंटा = 15° (डिग्री) = {{sfrac|{{pi}}|12}} रेड = {{sfrac|6}} क्वाड = {{sfrac|24}} मोड़ (टर्न) = {{sfrac|16|2|3}} ग्रेड।
* (कम्पास) बिंदु या हवा (n = 32): नेविगेशन में उपयोग किया जाने वाला बिंदु है {{sfrac|32}} एक मोड़ का। 1 बिंदु = {{sfrac|8}} समकोण का = 11.25° = 12.5 ग्रेड। प्रत्येक बिंदु को चार तिमाही-अंकों में विभाजित किया जाता है ताकि 1 मोड़ 128 तिमाही-अंक के बराबर हो।
* (कम्पास) बिंदु या विन्ड (n = 32), संचालन में उपयोग किया जाने वाला बिंदु है, जोकि एक मोड़ (टर्न) का {{sfrac|32}} होता है। 1 बिंदु = समकोण का {{sfrac|8}} = 11.25° (डिग्री) = 12.5 ग्रेड। प्रत्येक बिंदु को चार तिमाही-अंकों में विभाजित किया जाता है ताकि 1 मोड़ (टर्न) 128 तिमाही-अंक के बराबर हो।
* Pechus (n = 144–180): Pechus एक बेबीलोनियाई इकाई थी जो लगभग 2° या बराबर थी {{sfrac|2|1|2}}°.
* पेचस (n = 144–180), पेचस एक बेबीलोनियाई इकाई थी जो लगभग 2° (डिग्री) या {{sfrac|2|1|2}}° (डिग्री) बराबर होती है।
* ताऊ, एक चक्कर में रेडियन की संख्या (1 मोड़ = {{mvar|τ}} रेड), {{math|''τ'' {{=}} 2π}}.
* टाऊ, एक मोड़ (टर्न) में रेडियन की संख्या (1 मोड़ (टर्न) = {{mvar|τ}} रेड), {{math|''τ'' {{=}} 2π}}
* व्यास वाला हिस्सा (n = 376.99...): व्यास वाला हिस्सा (कभी-कभी इस्लामी गणित में इस्तेमाल होता है) है {{sfrac|60}} रेडियन एक व्यास वाला भाग लगभग 0.95493° होता है। प्रति मोड़ लगभग 376.991 व्यास के हिस्से हैं।
* व्यास भाग (n = 376.99...), व्यास भाग लगभग 0.95493° (डिग्री) और {{sfrac|60}} रेडियन होता है। प्रति मोड़ (टर्न) लगभग 376.991 व्यास भाग होते हैं।
* मिलीराडियन और व्युत्पन्न परिभाषाएँ: सच्चे मिलिरेडियन को एक रेडियन के हज़ारवें हिस्से को परिभाषित किया जाता है, जिसका अर्थ है कि एक मोड़ का रोटेशन ठीक 2000π मिल (या लगभग 6283.185 मील) के बराबर होगा, और आग्नेयास्त्रों के लिए लगभग सभी स्कोप जगहें इस परिभाषा के लिए कैलिब्रेटेड हैं। इसके अलावा तोपखाने और नेविगेशन के लिए इस्तेमाल की जाने वाली तीन अन्य व्युत्पन्न परिभाषाएँ हैं जो लगभग एक मिलीरेडियन के बराबर हैं। इन तीन अन्य परिभाषाओं के तहत एक मोड़ ठीक 6000, 6300 या 6400 मील के लिए बनाता है, जो 0.05625 से 0.06 डिग्री (3.375 से 3.6 मिनट) तक की सीमा के बराबर है। इसकी तुलना में, वास्तविक मिलीरेडियन लगभग 0.05729578 डिग्री (3.43775 मिनट) है। एक नाटो सैन्य को परिभाषित किया गया है {{sfrac|6400}} एक वृत्त का। ट्रू मिलिरेडियन की तरह ही, अन्य सभी परिभाषाएं मिल की सबटेंशन की उपयोगी संपत्ति का फायदा उठाती हैं, यानी कि एक मिलीरेडियन का मान लगभग 1 मीटर की चौड़ाई से घटाए गए कोण के बराबर होता है जैसा कि 1 किमी दूर से देखा जाता है ({{sfrac|2{{pi}}|6400}} = 0.0009817... ≈ {स्फ्रैक|1000}})।
* मिली रेडियन और व्युत्पन्न परिभाषाएं, वास्तविक मिली रेडियन को एक रेडियन का एक हजारवां भाग बताया गया है, जिसका अर्थ है कि एक मोड़ (टर्न) का घूर्णन ठीक 2000π मील (या लगभग 6283.185 मील) के बराबर होगा, और बंदूक आदि शस्त्र के लिए लगभग सभी कार्यक्षेत्र इस परिभाषा के लिए अंशांकित हैं। इसके अलावा, तोपखाने और संचालन के लिए उपयोग की जाने वाली तीन अन्य परिभाषाएँ हैं, जो लगभग एक मिली रेडियन के बराबर हैं। इन तीन अन्य परिभाषाओं के तहत एक मोड़ (टर्न) ठीक 6000, 6300 या 6400 मील के लिए बनाता है, जो 0.05625 से 0.06° (डिग्री) (3.375 से 3.6' (मिनट)) तक की सीमा के बराबर है। इसकी तुलना में, वास्तविक मिली रेडियन लगभग 0.05729578° डिग्री (3.43775°      (मिनट)) का होता है। एक "नाटो मील" को एक वृत्त के {{sfrac|6400}} से परिभाषित किया गया है। वास्तविक मिली रेडियन की तरह ही, अन्य परिभाषाओं में से प्रत्येक सबटेंशन की मील की उपयोगी सामग्री का शोषण करती है, अर्थात एक मिली रेडियन का मान लगभग 1 मीटर की चौड़ाई से घटाए गए कोण के बराबर होता है, जैसा कि 1 किमी दूर से देखा जाता है ({{sfrac|2{{pi}}|6400}} = 0.0009817... ≈ 1/1000)।  
* अखनाम और ज़म। पुराने अरब में एक मोड़ को 32 अखनाम में विभाजित किया गया था और प्रत्येक अखनाम को 7 ज़म में विभाजित किया गया था, ताकि एक मोड़ 224 ज़म हो।
* पुराने अरब में एक मोड़ (टर्न) को 32 अखनाम में विभाजित किया गया था और प्रत्येक अखनाम को 7 ज़म में विभाजित किया गया था, ताकि एक मोड़ (टर्न) 224 का ज़म हो।


===हस्ताक्षरित कोण===
===सांकेतिक कोण===
हालांकि एक कोण के मापन की परिभाषा एक नकारात्मक कोण की अवधारणा का समर्थन नहीं करती है, यह अक्सर एक सम्मेलन को लागू करने के लिए उपयोगी होता है जो सकारात्मक और नकारात्मक कोणीय मूल्यों को कुछ संदर्भ के सापेक्ष विपरीत दिशाओं में अभिविन्यास और/या घुमावों का प्रतिनिधित्व करने की अनुमति देता है।
हालांकि एक कोण के मापन की परिभाषा एक ऋणात्मक कोण की अवधारणा का समर्थन नहीं करती है, यह प्रायः एक सम्मेलन को लागू करने के लिए उपयोगी होता है, जो धनात्मक और ऋणात्मक कोणीय मानो को कुछ संदर्भ के सापेक्ष विपरीत दिशाओं में अभिविन्यास या घुर्णन का प्रतिनिधित्व करने की अनुमति देता है।


द्वि-आयामी कार्टेशियन समन्वय प्रणाली में, कोण को आमतौर पर इसके दो पक्षों द्वारा परिभाषित किया जाता है, इसके शीर्ष पर मूल। प्रारंभिक पक्ष सकारात्मक एक्स-अक्ष पर है, जबकि दूसरी तरफ या टर्मिनल पक्ष रेडियन, डिग्री या मोड़ में प्रारंभिक पक्ष से माप द्वारा परिभाषित किया गया है। धनात्मक कोणों के साथ धनात्मक y-अक्ष की ओर घूर्णन और ऋणात्मक y-अक्ष की ओर घूर्णन का प्रतिनिधित्व करने वाले ऋणात्मक कोण। जब कार्टेशियन निर्देशांक मानक स्थिति द्वारा दर्शाए जाते हैं, जो x-अक्ष दाईं ओर और y-अक्ष ऊपर की ओर परिभाषित होते हैं, सकारात्मक घुमाव वामावर्त होते हैं और नकारात्मक घुमाव दक्षिणावर्त होते हैं।
द्वि-विमीय कार्तीय निर्देशांक प्रणाली में, कोण को विशिष्ट रूप से इसकी दोनो रेखाओ और मूल बिंदु पर शीर्ष द्वारा परिभाषित किया जाता है। प्रारंभिक रेखा धनात्मक एक्स (x)-अक्ष पर है, जबकि दुसरी रेखा या अंतिम रेखा, प्रारंभिक रेखा द्वारा रेडियन, डिग्री या मोड़ (टर्न) में परिभाषित किया गया है। धनात्मक कोणों के साथ धनात्मक वाई (y)-अक्ष की ओर घूर्णन और ऋणात्मक कोणों के साथ, ऋणात्मक वाई (y)-अक्ष की ओर घूर्णन करते है। जब कार्तीय निर्देशांक मानक स्थिति द्वारा दर्शाए जाते हैं, जो एक्स (x)-अक्ष दाईं ओर और वाई (y)-अक्ष ऊपर की ओर परिभाषित होते हैं, धनात्मक घुर्णन वामावर्त होते हैं और ऋणात्मक घुर्णन दक्षिणावर्त होते हैं।


कई संदर्भों में, −θ का कोण प्रभावी रूप से एक पूर्ण मोड़ माइनस के कोण के बराबर होता है। उदाहरण के लिए, −45° के रूप में दर्शाया गया एक अभिविन्यास प्रभावी रूप से 360° − 45° या 315° के रूप में दर्शाए गए अभिविन्यास के समतुल्य है। हालांकि अंतिम स्थिति समान है, -45° का एक भौतिक घुमाव (आंदोलन) 315° के घूर्णन के समान नहीं है (उदाहरण के लिए, धूल भरे फर्श पर झाड़ू रखने वाले व्यक्ति के घूमने से अलग-अलग निशान दिखाई देंगे फर्श पर बह क्षेत्रों की)।
कई संदर्भों में, −θ का कोण प्रभावी रूप से एक पूर्ण मोड़ (टर्न) न्यूनता के कोण के बराबर होता है। उदाहरण के लिए, −45° (डिग्री) के रूप में दर्शाया गया एक अभिविन्यास प्रभावी रूप से 360° (डिग्री), − 45° (डिग्री) या 315° (डिग्री) के रूप में दर्शाए गए अभिविन्यास के बराबर है। हालांकि अंतिम स्थिति समान है, -45° (डिग्री) का एक भौतिक घूर्णन (संचलन) 315° (डिग्री) के घूर्णन के समान नहीं होता है (उदाहरण के लिए, धूल भरे फर्श पर झाड़ू रखने वाले व्यक्ति के घूमने से फर्श पर घूमें हुए क्षेत्रों के अलग-अलग निशान छुट जाते है)।


त्रि-आयामी ज्यामिति में, दक्षिणावर्त और वामावर्त का कोई पूर्ण अर्थ नहीं होता है, इसलिए सकारात्मक और नकारात्मक कोणों की दिशा को कुछ संदर्भ के सापेक्ष परिभाषित किया जाना चाहिए, जो आमतौर पर कोण के शीर्ष से गुजरने वाला एक वेक्टर होता है और उस विमान के लंबवत होता है जिसमें की किरणें होती हैं कोण झूठ।
त्रि-विमीय ज्यामिति में, दक्षिणावर्त और वामावर्त का कोई पूर्ण अर्थ नहीं है, इसलिए धनात्मक और ऋणात्मक कोणों की दिशा को कुछ निर्देशो के सापेक्ष परिभाषित किया जाना चाहिए, उस तल मे जिसमें कोण की किरणें होती हैं, प्रया: कोण के शीर्ष से गुजरने वाला एक सदिश और समतल के लंबवत होता है।


नेविगेशन में, बियरिंग्स या अज़ीमुथ को उत्तर के सापेक्ष मापा जाता है। परंपरा के अनुसार, ऊपर से देखने पर, असर कोण सकारात्मक दक्षिणावर्त होते हैं, इसलिए 45° का असर उत्तर-पूर्व अभिविन्यास से मेल खाता है। नेविगेशन में नेगेटिव बियरिंग्स का उपयोग नहीं किया जाता है, इसलिए उत्तर-पश्चिम ओरिएंटेशन 315° के बेयरिंग से मेल खाता है।
संचालन में, बियरिंग्स या दिगंश (अज़ीमुथ) को उत्तर के सापेक्ष मापा जाता है। परिपाटी के अनुसार, ऊपर से देखने पर, बेयरिंग कोण धनात्मक दक्षिणावर्त होते हैं, इसलिए 45° (डिग्री) का बेयरिंग उत्तर-पूर्व अभिविन्यास के सामान होता है। संचालन में ऋणात्मक बियरिंग्स का उपयोग नहीं किया जाता है, इसलिए उत्तर-पश्चिम अभिविन्यास 315° (डिग्री) के बेयरिंग के सामान होता है।


=== कोण के आकार को मापने के वैकल्पिक तरीके ===
=== कोण के आकार को मापने के वैकल्पिक तरीके ===
एक कोणीय इकाई के लिए, यह निश्चित है कि कोण जोड़ अभिधारणा धारण करता है। कुछ कोण माप जहां कोण जोड़ अभिधारणा धारण नहीं करते हैं उनमें शामिल हैं:
एक कोणीय इकाई के लिए, यह निश्चित है कि कोण योग अभिधारणा रखते है। कुछ कोण माप जहां कोण योग अभिधारणा नहीं रखते है, उनमें शामिल हैं:
* ढलान या ढाल कोण के स्पर्शरेखा के बराबर है; एक ढाल को अक्सर प्रतिशत के रूप में व्यक्त किया जाता है। बहुत छोटे मान (5% से कम) के लिए, ढलान का ग्रेड लगभग रेडियन में कोण का माप होता है।
* ढलान या ढाल कोण के स्पर्शरेखा के बराबर है, एक ढाल को प्राय: प्रतिशत के रूप में व्यक्त किया जाता है। बहुत छोटे मान (5% से कम) के लिए, ढलान का ग्रेड लगभग रेडियन में कोण का माप होता है।
* दो रेखाओं के बीच के फैलाव को [[ परिमेय ज्यामिति ]] में रेखाओं के बीच के कोण की ज्या के वर्ग के रूप में परिभाषित किया जाता है। चूँकि किसी कोण की ज्या और उसके संपूरक कोण की ज्या समान होती है, कोई भी घूर्णन कोण जो किसी एक रेखा को दूसरी रेखा में मैप करता है, रेखाओं के बीच फैलाव के लिए समान मान की ओर ले जाता है।
* दो रेखाओं के बीच के प्रसार को[[ परिमेय ज्यामिति | परिमेय ज्यामिति]] में रेखाओं के बीच के कोण की ज्या के वर्ग के रूप में परिभाषित किया जाता है। चूँकि किसी कोण की ज्या और उसके संपूरक कोण की ज्या समान होती है, कोई भी घूर्णन कोण जो किसी एक रेखा को दूसरी रेखा में मैप करता है, रेखाओं के बीच प्रसार के लिए समान मान की ओर ले जाता है।
* हालांकि शायद ही कभी किया जाता है, कोई [[ त्रिकोणमितीय कार्य ]]ों के प्रत्यक्ष परिणामों की रिपोर्ट कर सकता है, जैसे कोण की साइन।
* हालांकि शायद ही कभी, कोई [[ त्रिकोणमितीय कार्य |त्रिकोणमितीय कार्य]] के प्रत्यक्ष परिणामों का वर्णन कर सकता है, जैसे कोण की ज्या।


===खगोलीय अनुमान ===
===खगोलीय अनुमान ===
[[ खगोलविद ]] वस्तुओं के स्पष्ट आकार और उनके बीच की दूरी को उनके अवलोकन बिंदु से डिग्री में मापते हैं।
[[ खगोलविद ]]वस्तुओं के स्पष्ट आकार और उनके बीच की दूरी को उनके विचार बिंदु से डिग्री में मापते हैं।हैं।
* 0.5° पृथ्वी से देखे गए सूर्य या चंद्रमा का अनुमानित व्यास है।
* पृथ्वी से देखे गए सूर्य या चंद्रमा का अनुमानित व्यास 0.5° (डिग्री) है।
* हाथ की लंबाई पर छोटी उंगली की अनुमानित चौड़ाई है।
* हाथ की लंबाई पर छोटी उंगली की अनुमानित चौड़ाई 1° (डिग्री) है।
* 10° बांह की लंबाई पर बंद मुट्ठी की अनुमानित चौड़ाई है।
* बांह की लंबाई पर बंद मुट्ठी की अनुमानित चौड़ाई 10° (डिग्री) है।
* 20° हाथ की लंबाई पर एक हैंड्सपैन की अनुमानित चौड़ाई है।
* हाथ की लंबाई पर एक हैंड्सपैन (बालिश्त) की अनुमानित चौड़ाई 20° (डिग्री) है।


ये माप स्पष्ट रूप से व्यक्तिगत विषय पर निर्भर करते हैं, और उपरोक्त को केवल अंगूठे के अनुमान के मोटे नियम के रूप में माना जाना चाहिए।
ये माप स्पष्ट रूप से विशेष विषय पर निर्भर करती हैं, और उपरोक्त को केवल अंगूठे के अनुमान के नियम के रूप में माना जाना चाहिए।


खगोल विज्ञान में, दाएं उदगम और गिरावट को आमतौर पर कोणीय इकाइयों में मापा जाता है, जो कि 24 घंटे के दिन के आधार पर समय के संदर्भ में व्यक्त किया जाता है।
खगोल विज्ञान में, दाएं उदगम और गिरावट को प्रायः कोणीय इकाइयों में मापा जाता है, जो कि 24 घंटे के दिन के आधार पर समय के संदर्भ में व्यक्त किया जाता है।
{|class="wikitable"  
{|class="wikitable"  
|-
|-
Line 268: Line 261:
|-
|-
! घंटे
! घंटे
| h || 15° || {{frac|{{pi}}|12}} || {{frac|1|24}} ||
| एच (h) || 15° || {{frac|{{pi}}|12}} || {{frac|1|24}} ||
|-
|-
! मिनट
! मिनट
| m || 0°15′ || {{frac|{{pi}}|720}} ||{{frac|1|1,440}} || {{frac|1|60}} hour
| एम (m) || 0°15′ || {{frac|{{pi}}|720}} ||{{frac|1|1,440}} || {{frac|1|60}} घंटा
|-
|-
! सेकंड
! सेकंड
| s || 0°0′15″ || {{frac|{{pi}}|43200}} || {{frac|1|86,400}} || {{frac|1|60}} minute
| एस (s) || 0°0′15″ || {{frac|{{pi}}|43200}} || {{frac|1|86,400}} || {{frac|1|60}} मिनट
|}
|}


==वक्रों के बीच कोण ==
==वक्रों के बीच कोण ==
[[File:Curve angles.svg|thumb|right|P पर दो वक्रों के बीच के कोण को <var>P</var> पर स्पर्शरेखा <var>A</var> और <var>B</var> के बीच के कोण के रूप में परिभाषित किया गया है।]]
[[File:Curve angles.svg|thumb|right|P पर दो वक्रों के बीच के कोण को <var>P</var> पर स्पर्शरेखा <var>A</var> और <var>B</var> के बीच के कोण के रूप में परिभाषित किया गया है।]]
एक रेखा और एक वक्र (मिश्रित कोण) के बीच के कोण या दो प्रतिच्छेदी वक्रों (वक्रीय कोण) के बीच के कोण को प्रतिच्छेदन बिंदु पर स्पर्शरेखा के बीच के कोण के रूप में परिभाषित किया गया है। विशेष मामलों को विभिन्न नाम (अब शायद ही कभी, यदि कभी इस्तेमाल किया जाता है) दिए गए हैं: - एम्फीसिर्टिक (जीआर। {{lang|grc|ἀμφί}}, दोनों तरफ, , उत्तल) या cissoidal (Gr. , ivy), उभयलिंगी; xystroidal या cystroidal (Gr। , स्क्रैपिंग के लिए एक उपकरण), अवतल-उत्तल; एम्फीकोएलिक (जीआर। , एक खोखला) या एंगुलस लुन्युलरिस, बीकोन्केव।<ref>{{harvnb|Chisholm|1911}}; {{harvnb|Heiberg|1908|p=178}}</ref>
एक रेखा और एक वक्र (मिश्रित कोण) के बीच के कोण या दो प्रतिच्छेदी वक्रों (वक्रीय कोण) के बीच के कोण को प्रतिच्छेदन बिंदु पर स्पर्शरेखाओ के बीच के कोण के रूप में परिभाषित किया गया है। विशेष स्थितियों को विभिन्न नाम (अब शायद ही कभी, यदि कभी इस्तेमाल किया जाता है) दिए गए हैं:एम्फीसिर्टिक या सिसोइडल, उभयोत्तल; जाइस्ट्रोइडल या सिस्टॉइडल (स्क्रैपिंग के लिए एक उपकरण), अवतल-उत्तल; एम्फीकोएलिक या एंगुलस लन्युलरिस, उभयावतल।<ref>{{harvnb|Chisholm|1911}}; {{harvnb|Heiberg|1908|p=178}}</ref>
==समद्विभाजक और समद्विभाजक कोण==
==समद्विभाजक और समद्विभाजक कोण==
प्राचीन यूनानी गणितज्ञ केवल एक कंपास और स्ट्रेटेज का उपयोग करके एक कोण को द्विभाजित करना (इसे समान माप के दो कोणों में विभाजित करना) जानते थे, लेकिन केवल कुछ कोणों को ही काट सकते थे। 1837 में, पियरे वॉन्टजेल ने दिखाया कि अधिकांश कोणों के लिए यह निर्माण नहीं किया जा सकता है।
प्राचीन यूनानी गणितज्ञ केवल एक परकार (कंपास) और पटरी की सहायता से कोण को द्विभाजित करना (इसे समान माप के दो कोणों में विभाजित करना) जानते थे, लेकिन केवल कुछ कोणों को ही समत्रिभाजित कर सकते थे। 1837 में, पियरे वॉन्टजेल ने दिखाया कि अधिकांश कोणों के लिए यह निर्माण नहीं किया जा सकता है।


== डॉट उत्पाद और सामान्यीकरण ==
== डॉट उत्पाद और सामान्यीकरण ==
यूक्लिडियन अंतरिक्ष में, दो यूक्लिडियन वैक्टर 'u' और 'v' के बीच का कोण उनके डॉट उत्पाद और उनकी लंबाई से संबंधित है।
यूक्लिडियन स्थान में, दो यूक्लिडियन सदिश 'u' और 'v' के बीच का कोण उनके आदिश-गुणनफल और उनकी लंबाई से संबंधित होता है।


:<math> \mathbf{u} \cdot \mathbf{v} = \cos(\theta) \left\| \mathbf{u} \right\| \left\| \mathbf{v} \right\| .</math>
:<math> \mathbf{u} \cdot \mathbf{v} = \cos(\theta) \left\| \mathbf{u} \right\| \left\| \mathbf{v} \right\| .</math>
यह सूत्र दो विमानों (या घुमावदार सतहों) के बीच के कोण को उनके सामान्य वैक्टर से और उनके वेक्टर समीकरणों से तिरछी रेखाओं के बीच के कोण को खोजने के लिए एक आसान विधि प्रदान करता है।
यह सूत्र दो समतलो (या वक्रिय सतहों) के बीच के कोण को उनके सामान्य सदिश से और उनके सदिश समीकरणों से तिरछी रेखाओं के बीच के कोण को ज्ञात करने के लिए एक आसान विधि है।


=== आंतरिक उत्पाद ===
=== आंतरिक उत्पाद ===
एक अमूर्त वास्तविक आंतरिक उत्पाद स्थान में कोणों को परिभाषित करने के लिए, हम यूक्लिडियन डॉट उत्पाद ( · ) को आंतरिक उत्पाद से बदलते हैं <math> \langle \cdot , \cdot \rangle </math>, अर्थात
एक सामान्य वास्तविक आंतरिक गुणन स्थान में कोणों को परिभाषित करने के लिए, हम यूक्लिडियन आदिश-गुणनफल ( · ) को आंतरिक गुणन से बदलते हैं <math> \langle \cdot , \cdot \rangle </math>, अर्थात


:<math> \langle \mathbf{u} , \mathbf{v} \rangle = \cos(\theta)\ \left\| \mathbf{u} \right\| \left\| \mathbf{v} \right\| .</math>
:<math> \langle \mathbf{u} , \mathbf{v} \rangle = \cos(\theta)\ \left\| \mathbf{u} \right\| \left\| \mathbf{v} \right\|</math>
एक जटिल आंतरिक उत्पाद स्थान में, उपरोक्त कोसाइन के लिए अभिव्यक्ति गैर-वास्तविक मान दे सकती है, इसलिए इसे इसके साथ बदल दिया जाता है
एक जटिल आंतरिक गुणन स्थान में, उपरोक्त कोज्या के लिए व्यंजक अवास्तविक मान दे सकता है, इसलिए इसे इसके साथ बदल दिया जाता है


:<math> \operatorname{Re} \left( \langle \mathbf{u} , \mathbf{v} \rangle \right) = \cos(\theta) \left\| \mathbf{u} \right\| \left\| \mathbf{v} \right\| .</math>
:<math> \operatorname{Re} \left( \langle \mathbf{u} , \mathbf{v} \rangle \right) = \cos(\theta) \left\| \mathbf{u} \right\| \left\| \mathbf{v} \right\| .</math>
या, अधिक सामान्यतः, निरपेक्ष मान का उपयोग करते हुए
या, अधिक सामान्यतः, स्पष्ट मान का उपयोग करते हुए


:<math> \left| \langle \mathbf{u} , \mathbf{v} \rangle \right| = \left| \cos(\theta) \right| \left\| \mathbf{u} \right\| \left\| \mathbf{v} \right\| .</math>
:<math> \left| \langle \mathbf{u} , \mathbf{v} \rangle \right| = \left| \cos(\theta) \right| \left\| \mathbf{u} \right\| \left\| \mathbf{v} \right\| .</math>
बाद की परिभाषा वैक्टर की दिशा की उपेक्षा करती है और इस प्रकार एक-आयामी उप-स्थानों के बीच के कोण का वर्णन करती है <math>\operatorname{span}(\mathbf{u})</math> तथा <math>\operatorname{span}(\mathbf{v})</math> वैक्टर द्वारा फैला हुआ <math>\mathbf{u}</math> तथा <math>\mathbf{v}</math> अनुरूप।
परवर्ती (लैटर) की परिभाषा सदिश की दिशा को नजरअंदाज करता है और इस प्रकार एक-विमीय सबस्पेस के बीच के कोण का वर्णन करती है <math>\operatorname{span}(\mathbf{u})</math> तथा <math>\operatorname{span}(\mathbf{v})</math> सदिश द्वारा विस्तरित <math>\mathbf{u}</math> तथा <math>\mathbf{v}</math> अनुरूप।


=== उप-स्थानों के बीच कोण ===
=== उप-स्थानों के बीच कोण ===
एक-आयामी उप-स्थानों के बीच कोण की परिभाषा <math>\operatorname{span}(\mathbf{u})</math> तथा  <math>\operatorname{span}(\mathbf{v})</math> के द्वारा दिया गया
एक-आयामी सबस्पेस के बीच कोण की परिभाषा <math>\operatorname{span}(\mathbf{u})</math> तथा  <math>\operatorname{span}(\mathbf{v})</math> के द्वारा दिया गया


:<math> \left| \langle \mathbf{u} , \mathbf{v} \rangle \right| = \left| \cos(\theta) \right| \left\| \mathbf{u} \right\| \left\| \mathbf{v} \right\| </math>
:<math> \left| \langle \mathbf{u} , \mathbf{v} \rangle \right| = \left| \cos(\theta) \right| \left\| \mathbf{u} \right\| \left\| \mathbf{v} \right\|. </math>
हिल्बर्ट अंतरिक्ष में किसी भी परिमित आयाम के उप-स्थानों तक बढ़ाया जा सकता है। दो उप-स्थान दिए गए हैं <math> \mathcal{U} </math>, <math> \mathcal{W} </math> साथ <math> \dim ( \mathcal{U}) := k \leq \dim ( \mathcal{W}) := l </math>, यह की परिभाषा की ओर जाता है <math>k</math> उप-स्थानों के बीच के कोणों को विहित या प्रमुख कोण कहा जाता है।
हिल्बर्ट स्पेस में किसी भी परिमित विमा के सबस्पेस तक बढ़ाया जा सकता है। दो सबस्पेस दिए गए हैं<math> \mathcal{U} </math>, <math> \mathcal{W} </math> और  <math> \dim ( \mathcal{U}) := k \leq \dim ( \mathcal{W}) := l </math>, यह <math>k</math> कोणों की परिभाषा की ओर ले जाता है, सबस्पेस के बीच के कोणों को कैनोनिकल या प्रमुख कोण कहा जाता है।


=== [[ रीमैनियन ज्यामिति ]] में कोण ===
=== रीमैनियन ज्यामिति में कोण ===
रीमैनियन ज्यामिति में, दो स्पर्शरेखाओं के बीच के कोण को परिभाषित करने के लिए मीट्रिक टेंसर का उपयोग किया जाता है। जहाँ U और V स्पर्शरेखा सदिश हैं और g<sub>''ij''</sub>मीट्रिक टेंसर G के घटक हैं,
रीमैनियन ज्यामिति में, दो स्पर्शरेखाओं के बीच के कोण को परिभाषित करने के लिए मीट्रिक टेंसर का उपयोग किया जाता है। जहाँ U और V स्पर्शरेखा सदिश हैं और g<sub>''ij''</sub> मीट्रिक टेंसर G के घटक हैं,


:<math>
:<math>
\cos \theta = \frac{g_{ij}U^iV^j}{\sqrt{ \left| g_{ij}U^iU^j \right| \left| g_{ij}V^iV^j \right|}}.
\cos \theta = \frac{g_{ij}U^iV^j}{\sqrt{ \left| g_{ij}U^iU^j \right| \left| g_{ij}V^iV^j \right|}}
</math>
</math>


=== अतिपरवलयिक कोण ===
=== अतिपरवलयिक कोण ===
एक अतिपरवलयिक कोण एक अतिपरवलयिक फलन का तर्क है जिस प्रकार वृत्ताकार कोण एक वृत्तीय फलन का तर्क है। तुलना को एक अतिपरवलयिक क्षेत्र और एक वृत्ताकार क्षेत्र के उद्घाटन के आकार के रूप में देखा जा सकता है क्योंकि इन क्षेत्रों के क्षेत्र प्रत्येक मामले में कोण परिमाण के अनुरूप होते हैं। वृत्ताकार कोण के विपरीत, अतिपरवलयिक कोण असीम होता है। जब सर्कुलर और हाइपरबॉलिक फ़ंक्शंस को उनके कोण तर्क में अनंत श्रृंखला के रूप में देखा जाता है, तो सर्कुलर वाले हाइपरबॉलिक फ़ंक्शंस के केवल वैकल्पिक श्रृंखला रूप होते हैं। दो प्रकार के कोण और कार्य के इस बुनाई को लियोनहार्ड यूलर द्वारा अनंत के विश्लेषण के परिचय में समझाया गया था।
एक अतिपरवलयिक कोण एक अतिपरवलयिक फलन का तर्क है जिस प्रकार वृत्ताकार कोण एक वृत्तीय फलन का तर्क है। तुलना को एक अतिपरवलयिक क्षेत्र और एक वृत्ताकार क्षेत्र के मुख के आकार के रूप में देखा जा सकता है क्योंकि इन क्षेत्रों के क्षेत्र प्रत्येक स्थिति में कोण परिमाण के अनुरूप होते हैं। वृत्ताकार कोण के विपरीत, अतिपरवलयिक कोण असीम होता है। जब चक्रीय और अतिपरवलयिक तर्क को उनके कोण तर्क में अनंत श्रृंखला के रूप में देखा जाता है, तो चक्रीय वाले अतिपरवलयिक तर्क के केवल वैकल्पिक श्रृंखला रूप होते हैं। दो प्रकार के कोण और कार्य के इस वयन को ''''लियोनहार्ड यूलर'''<nowiki/>' द्वारा अनंत के विश्लेषण के परिचय में समझाया गया था।


==भूगोल और खगोल विज्ञान में कोण ==
==भूगोल और खगोल विज्ञान में कोण ==
भूगोल में, भौगोलिक समन्वय प्रणाली का उपयोग करके पृथ्वी पर किसी भी बिंदु के स्थान की पहचान की जा सकती है। यह प्रणाली भूमध्य रेखा और (आमतौर पर) ग्रीनविच मेरिडियन को संदर्भ के रूप में उपयोग करते हुए, पृथ्वी के केंद्र में अंतरित कोणों के संदर्भ में किसी भी स्थान के अक्षांश और देशांतर को निर्दिष्ट करती है।
भूगोल में, भौगोलिक निर्देशांक प्रणाली का उपयोग करके पृथ्वी पर किसी भी बिंदु के स्थान पता लागया जा सकता है। यह प्रणाली भूमध्य रेखा और (प्रायः) ग्रिनिच याम्योत्तर को संदर्भ के रूप में उपयोग करते हुए, पृथ्वी के केंद्र में अंतरित कोणों के संदर्भ में किसी भी स्थान के अक्षांश और देशांतर को निर्दिष्ट करती है।


खगोल विज्ञान में, खगोलीय क्षेत्र पर एक दिए गए बिंदु (अर्थात, एक खगोलीय वस्तु की स्पष्ट स्थिति) को कई खगोलीय समन्वय प्रणालियों में से किसी का उपयोग करके पहचाना जा सकता है, जहां संदर्भ विशेष प्रणाली के अनुसार भिन्न होते हैं। खगोलविद पृथ्वी के केंद्र के माध्यम से दो रेखाओं की कल्पना करके दो तारों के कोणीय पृथक्करण को मापते हैं, जिनमें से प्रत्येक एक तारे को काटता है। उन रेखाओं के बीच के कोण को मापा जा सकता है और यह दो तारों के बीच कोणीय पृथक्करण है।
खगोल विज्ञान में, खगोलीय क्षेत्र पर एक दिए गए बिंदु (अर्थात, एक खगोलीय वस्तु की स्पष्ट स्थिति) को कई खगोलीय समन्वय प्रणालियों में से किसी का उपयोग करके पहचाना जा सकता है। खगोलविद पृथ्वी के केंद्र के माध्यम से दो रेखाओं की कल्पना करके दो तारों के कोणीय पृथक्करण को मापते हैं, जिनमें से प्रत्येक एक तारे को काटता है। उन रेखाओं के बीच के कोण को मापा जा सकता है और यह दो तारों के बीच कोणीय पृथक्करण है।


भूगोल और खगोल विज्ञान दोनों में, देखने की दिशा को एक ऊर्ध्वाधर कोण के रूप में निर्दिष्ट किया जा सकता है जैसे कि क्षितिज के संबंध में ऊंचाई/ऊंचाई के साथ-साथ उत्तर के संबंध में दिगंश।
भूगोल और खगोल विज्ञान दोनों में, देखने की दिशा को एक ऊर्ध्वाधर कोण के रूप में निर्दिष्ट किया जा सकता है जैसे कि क्षितिज के संबंध में ऊंचाई के साथ-साथ उत्तर के संबंध में दिगंश होता है।


खगोलविद वस्तुओं के स्पष्ट आकार को कोणीय व्यास के रूप में भी मापते हैं। उदाहरण के लिए, जब पृथ्वी से देखा जाता है, तो पूर्णिमा का कोणीय व्यास लगभग 0.5° होता है। कोई कह सकता है, चंद्रमा का व्यास आधा डिग्री का कोण घटाता है। इस तरह के कोणीय माप को दूरी/आकार अनुपात में बदलने के लिए छोटे-कोण सूत्र का उपयोग किया जा सकता है।
खगोलविद वस्तुओं के स्पष्ट आकार को कोणीय व्यास के रूप में भी मापते हैं। उदाहरण के लिए, जब पृथ्वी से देखने पर चंद्रमा का कोणीय व्यास लगभग 0.5° (डिग्री) होता है। इस तरह के कोणीय माप को दूरी/आकार अनुपात में बदलने के लिए छोटे-कोण सूत्र का उपयोग किया जा सकता है।


==यह भी देखें==
==यह भी देखें==
Line 384: Line 377:
* {{cite EB9 |wstitle=Angle |volume=2 |pages=29–30 |mode=cs2|short=x }}
* {{cite EB9 |wstitle=Angle |volume=2 |pages=29–30 |mode=cs2|short=x }}


{{Authority control}}
 
[[Category:कोण| ]]
 
[[Category: Machine Translated Page]]
[[Category:AC with 0 elements]]
[[Category: Mathematics]]
[[Category:All articles with dead external links]]
[[Category:Articles with dead external links from June 2020]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Articles with permanently dead external links]]
[[Category:CS1]]
[[Category:CS1 English-language sources (en)]]
[[Category:CS1 maint]]
[[Category:Commons category link is locally defined]]
[[Category:Exclude in print]]
[[Category:Interwiki category linking templates]]
[[Category:Interwiki link templates]]
[[Category:Machine Translated Page]]
[[Category:Mathematics]]
[[Category:Pages with red-linked authority control categories]]
[[Category:Pages with reference errors]]
[[Category:Pages with script errors]]
[[Category:Templates that add a tracking category]]
[[Category:Templates using TemplateData]]
[[Category:Wikimedia Commons templates]]
[[Category:कोण]]
[[Category:गणित]]

Latest revision as of 13:39, 9 September 2022

एक शीर्ष से निकलने वाली दो किरणों द्वारा निर्मित कोण.

यूक्लिडियन ज्यामिति में, एक कोण दो रेखाओं द्वारा बनाई गई आकृति है, जो एक ही बिंदु पर मिलती है, जिसे कोण का शीर्ष (वर्टेक्स ज्योमेट्) कहा जाता है।[1] दोनों रेखाएं तथा इनसे बनने वाले कोण एक ही तल में होते हैं। दो तलों के प्रतिच्छेदन से तथा दो वक्रो के प्रतिच्छेदन से भी एक कोण बनता हैं, जिन्हे द्वितल (डायहेड्रल) तथा वक्रीय कोण कहा जाता है। जो कि उनके प्रतिच्छेदन बिंदु पर संबंधित वक्रों की स्पर्शरेखा वाली रेखाओं का कोण होता है।

कोण का उपयोग कोण या घूर्णन के माप को देखने के लिए भी किया जाता है। यह माप एक वृत्ताकार चाप की लंबाई और उसकी त्रिज्या का अनुपात है। एक ज्यामितीय कोण के मामले में, चाप शीर्ष पर केंद्रित होता है और रेखाओं द्वारा सीमांकित होता है। घूर्णन कि स्थिति में, चाप घूर्णन के केंद्र में केंद्रित होता है तथा किसी अन्य बिंदु से तथा घूर्णन द्वारा इसकी छवि को सीमित करता है।

इतिहास और व्युत्पत्ति

कोण शब्द लैटिन शब्द एंगुलस से आया है, जिसका अर्थ "कोना" है।[2]

यूक्लिड एक समतल कोण को, उस तल में, जहां दो तिरछी रेखाएँ, एक दूसरे से मिलती हैं, एक दूसरे के झुकाव के रूप में इसको परिभाषित किया जाता है। 'प्रोक्लस' के अनुसार, कोण या तो गुणवत्ता या मात्रा, या संबंध होना चाहिए। पहली अवधारणा का उपयोग 'यूडेमस' द्वारा किया गया था, जो एक कोण को एक सीधी रेखा से विचलन के रूप में मानते थे, दूसरी 'अन्ताकिया के कार्पस' द्वारा, जिसने इसे प्रतिच्छेदन रेखाओं के बीच का अंतराल या स्थान माना था तथा यूक्लिड ने तीसरी अवधारणा को अपनाया।[3]

कोणों की पहचान

गणितीय व्यंजको में, ग्रीक अक्षरों (α, β, γ, θ, φ, . . . ) किसी कोण के आकार को दर्शाने वाले चर के रूप (इसके अन्य अर्थ के साथ अस्पष्टता से बचने के लिए, प्रतीक π प्रायः पर इस उद्देश्य के लिए उपयोग नहीं किया जाता है) मे उपयोग करना सामान्य है। छोटे रोमन अक्षरों (a, b, c, . . . ) का भी उपयोग किया जाता है। ऐसे परिस्थिति में जहां यह अस्पष्ट नहीं है, एक कोण को बड़े रोमन अक्षर द्वारा दर्शाया जा सकता है, जो इसके शीर्ष को दर्शाता है। उदाहरण के लिए इस आलेख में आंकड़े देखें।

ज्यामितीय आकृतियों में, कोणों को उन तीन बिंदुओं से भी पहचाना जा सकता है, जो उन्हें परिभाषित करते हैं। उदाहरण के लिए, एबी (AB) तथा एसी (AC) रेखाओं (अर्थात बिंदु ए (A) से बिंदु बी (b) तथा सी (C) तक की रेखाओं) द्वारा गठित शीर्ष ए (A) वाले कोण को ∠BAC या से दर्शाया गया है। जहां अस्पष्टता का कोई संकट नहीं है, कोण को कभी-कभी केवल इसके शीर्ष द्वारा प्रदर्शित किया जा सकता है।

संभावित रूप से, ∠BAC के रूप में निरूपित एक कोण, चार कोणों में से किसी को भी प्रदर्शित कर सकता है, बी (B) से सी (C) तक का दक्षिणावर्त कोण, बी (B) से सी (C) का वामावर्त कोण, सी (C) से बी (B) का दक्षिणावर्त कोण, या सी (C) से बी (B) का वामावर्त कोण, जहां कोण के माप की दिशा उसका संकेत निर्धारित करती है (धनात्मक और ऋणात्मक कोण देखें)। हालांकि, कई ज्यामितीय स्थितियों में, संदर्भ से यह स्पष्ट है कि धनात्मक कोण 180° डिग्री से कम या उसके बराबर है, ऐसी स्थिति में कोई अस्पष्टता नहीं होती है। अन्यथा, एक समझौता अपनाया जा सकता है ताकि ∠BAC हमेशा बी (B) से सी (C) तक वामावर्त (धनात्मक) कोण को संदर्भित करता है, तथा ∠CAB सी (C) से बी (B) तक वामावर्त (धनात्मक) कोण।

कोणों के प्रकार

व्यक्तिगत कोण

कोणों के लिए कुछ सामान्य शब्दावली है, जिसका माप हमेशा ऋणात्मक नहीं होता।[4][5]

  • 0° के बराबर या मुड़े हुए कोण को शून्य कोण कहा जाता है।
  • एक समकोण से छोटे (90° (डिग्री) से कम) कोण को न्यून कोण ("न्यून" अर्थात "स्पष्ट") कहा जाता है।
  • अभिलम्बवत दो रेखाओं द्वारा 1/4 मोड़ (टर्न) (90° (डिग्री) या π/2 रेडियन) के बराबर के कोण को समकोण कहा जाता है।
  • एक समकोण से बड़ा और एक ऋजु कोण से छोटे (90° (डिग्री) और 180° (डिग्री) के बीच) कोण को अधिक कोण ("अधिक" अर्थात "कुंद") कहा जाता है।
  • 1/2 मोड़ (टर्न) के बराबर कोण (180° (डिग्री) या π रेडियन) को एक ऋजु कोण कहा जाता है।
  • एक कोण जो एक ऋजु कोण से बड़े तथा 1 मोड़ से कम (180° (डिग्री) और 360° (डिग्री) के बीच) का कोण प्रतिवर्ती कोण कहलाता है।
  • 1 मोड़ के बराबर कोण (360° (डिग्री) या 2π रेडियन) को पूर्ण कोण, सम्पूर्ण कोण, गोलाकार कोण या पेरिगॉन कहा जाता है।
  • ऐसा कोण जो समकोण का गुणज न हो, तिर्यक कोण कहलाता है।

नाम, अंतराल और मापने की इकाइयाँ नीचे दी गई तालिका में दिखाई गई हैं।

न्यून (a), अधिक (b), और सीधा (c) angles. न्यून और अधिक कोणों को तिरछा कोण भी कहा जाता है.
वृहत्तकोण
नाम शून्य न्यून समकोण अधिक ऋजु प्रतिवर्ती पेरिगॉन
इकाइयाँ अंतराल
मोड़ (टर्न) 0 turn (0, 1/4) turn 1/4 turn (1/4, 1/2) turn 1/2 turn (1/2, 1) turn 1 turn
रेडियन 0 rad (0, 1/2π) rad 1/2π rad (1/2π, π) rad π rad (π, 2π) rad 2π rad
डिग्री (0, 90)° 90° (90,180)° 180° (180, 360)° 360°
गोन 0g (0,100)g 100g (100, 200)g 200g (200, 400)g 400g

तुल्यता कोण जोड़े

  • समान माप वाले कोण सर्वांगसम कहलाते हैं। एक कोण को उसके माप से परिभाषित किया जाता है और यह कोण की भुजाओं की लंबाई पर निर्भर नहीं होता है (उदाहरण के लिए सभी समकोण माप में बराबर होते हैं)।
  • दो कोण जो अंतिम रेखाओं का साझा करते हैं, लेकिन एक मोड़ (टर्न) के पूर्णांक गुणक द्वारा आकार में भिन्न होते हैं, कोटरमिनल कोण कहलाते हैं।
  • एक संदर्भ कोण किसी भी कोण का न्यून संस्करण है, जिसे बार-बार घटाकर या सीधे कोण (1/2 मोड़ (टर्न), 180° (डिग्री) या रेडियन) को जोड़कर निर्धारित किया जाता है,आवश्यकतानुसार परिणामों के लिए, जब तक परिणाम का परिमाण एक न्यून कोण न हो, 0 और1/4 मोड़ (टर्न) के बीच का मान, 90° (डिग्री), या π/2 रेडियन। उदाहरण के लिए, 30° (डिग्री) के कोण में 30° डिग्री का संदर्भ कोण होता है, और 150° (डिग्री) के कोण में 30° (डिग्री) (180-150) का संदर्भ कोण भी होता है। 750° (डिग्री) के कोण का संदर्भ कोण 30° (डिग्री) (750-720) होता है।[6]

लंबवत और आसन्न कोण जोड़े

कोण समानता दिखाने के लिए यहां हैच के निशान का उपयोग किया जाता है।

जब दो सीधी रेखाएँ एक बिंदु पर प्रतिच्छेदन से चार कोण बनते हैं। जोड़ी में इन कोणों को एक दूसरे के सापेक्ष उनके स्थान के अनुसार नाम दिए गए है।

  • दो प्रतिच्छेदी सीधी रेखाओं से बनी X-समान आकृति मे एक दूसरे विपरीत मुख के बने एक कोण युग्म को उर्ध्वाधर कोण या सम्मुख कोण या लंबवत सम्मुख कोण कहते हैं। उन्हें vert. opp. ∠s के रूप में संक्षिप्त किया गया है। विपक्ष ई.एस.[7] उर्ध्वाधर सम्मुख कोणों की समानता को उर्ध्वाधर कोण प्रमेय कहते हैं। रोड्स के 'यूडेमस' ने थेल्स ऑफ मिलेटस को सबूत के लिए जिम्मेदार ठहराया।[8][9] प्रस्ताव ने दिखाया कि चूंकि दोनों लंबवत कोणों की एक जोड़ी दोनों आसन्न कोणों के समपूरक हैं, लंबवत कोण माप में बराबर होते हैं। एक ऐतिहासिक टिप्पणी के अनुसार,[9] जब 'थेल्स' ने देखा कि जब मिस्रवासी दो प्रतिच्छेद करने वाली रेखाएँ खींचते हैं, तो वे यह सुनिश्चित करने के लिए लंबवत कोणों को मापते हैं, कि वे समान हैं। 'थेल्स' ने निष्कर्ष निकाला कि कोई यह साबित कर सकता है, कि सभी लंबवत कोण समान होते हैं, यदि कोई कुछ सामान्य धारणाओं को स्वीकार करता है, जैसे
  • सभी समकोण समान होते हैं।
  • बराबर में जोड़े गए बराबर बराबर होते हैं।
  • बराबर में से घटाए गए बराबर बराबर होते हैं।
जब दो आसन्न कोण एक सीधी रेखा बनाते हैं, तो वे संपूरक होते हैं। इसलिए, यदि हम यह मान लें कि कोण ए (A) की माप x के बराबर है, तो कोण सी (C) की माप 180° − x होगी। इसी प्रकार, कोण डी (D) की माप 180° − x होगी। कोण सी (C) और कोण डी (D) दोनों के माप के बराबर हैं 180° − x और सर्वांगसम हैं। चूँकि कोण बी (B) दोनों कोणों सी (C) और डी (D) का पूरक है, कोण बी (B) की माप को निर्धारित करने के लिए इनमें से किसी भी कोण माप का उपयोग किया जा सकता है। कोण सी (C) या कोण डी (D) की माप का उपयोग करके, हम कोण बी (B) की माप 180° − (180° − x) = 180° − 180° + x = x ज्ञात करते हैं। इसलिए, कोण ए (A) और कोण बी (B) दोनों के माप x के बराबर हैं, और माप में बराबर हैं।
कोण A और B आसन्न हैं।
  • आसन्न कोण, प्रायः adj के रूप में संक्षिप्त। एस (∠s) ऐसे कोण हैं, जो एक सामान्य शीर्ष और रेखा साझा करते हैं लेकिन कोई आंतरिक बिंदु का साझा नहीं करते हैं। दूसरे शब्दों में, आसन्न कोण एक ही भुजा का साझा करते हैं। आसन्न कोण जो एक समकोण, ऋजुकोण या पूर्ण कोण का योग होते हैं, विशेष होते हैं और क्रमशः समपूरक, अनुपूरक और पूरक कोण कहलाते हैं।

एक तिर्यक रेखा एक रेखा है जो (प्रायः समानांतर) रेखाओं की एक जोड़ी को काटती है, और वैकल्पिक आंतरिक कोणों, संगत कोणों, आंतरिक कोणों और बाहरी कोणों से जुड़ी होती है।[10]

कोण जोड़े का संयोजन

तीन विशेष कोण जोड़े में कोणों का योग शामिल होता है:

पूरक कोण a और b (b a और a का पूरक है। > b) का पूरक है।
  • पूरक कोण कोण युग्म होते हैं, जिनकी मापों का योग एक समकोण (1/4 मोड़, 90° (डिग्री), या π/2 रेडियन) होता है ।[11] यदि दो पूरक कोण आसन्न हैं, तो उनकी वह भुजाएँ जो उभयनिष्ठ नहीं होती, एक समकोण बनाती हैं। यूक्लिडियन ज्यामिति में, एक समकोण त्रिभुज में दो न्यून कोण पूरक होते हैं, क्योंकि त्रिभुज के आंतरिक कोणों का योग 180° (डिग्री) होता है, और समकोण स्वयं 90° (डिग्री) का होता है।
विशेषण समपूरक लैटिन समपूरक से है, जो क्रिया के साथ जुड़ा है, "भरने के लिए"। एक समकोण बनाने के लिए इसके पूरक द्वारा एक न्यून कोण "भरा" जाता है।
कोण और समकोण के बीच के अंतर को कोण का पूरक कहा जाता है।[12] यदि कोण ए (A) और बी (B) पूरक हैं, तो निम्नलिखित संबंध रखते है।
(एक कोण की स्पर्श रेखा उसके पूरक के सह-स्पर्शरेखा के बराबर होती है और उसका छेदक उसके पूरक के सह-छेदक के बराबर होती है।)
कुछ त्रिकोणमितीय अनुपातों के नामों में उपसर्ग "सह" समपूरक शब्द को संदर्भित करता है।
  • दो कोण जो एक ऋजु कोण का योग करते हैं (1/2 मोड़ (टर्न), 180° (डिग्री), या π रेडियन) समपूरक कोण कहलाते हैं।[13] यदि दो समपूरक कोण आसन्न हैं (अर्थात एक उभयनिष्ठ शीर्ष है), तो उनकी वह भुजाएँ जो उभयनिष्ठ नहीं होती, एक सीधी रेखा बनाती हैं। ऐसे कोणों को कोणों का रैखिक युग्म कहा जाता है।[14] हालांकि, समपूरक कोणों का एक ही रेखा पर होना जरूरी नहीं है। उदाहरण के लिए, समांतर चतुर्भुज के आसन्न कोण तथा चक्रीय चतुर्भुज (जिसके शीर्ष सभी एक ही वृत्त पर पड़ते हैं) के सम्मुख कोण समपूरक होते हैं।
यदि एक बिंदु पी (P) केंद्र ओ (O) वाले वृत्त के बाहर है, और यदि पी (P) से स्पर्श रेखाएँ वृत्त को बिंदु टी (T) और क्यू (Q) पर स्पर्श करती हैं, तो ∠टीपीक्यू (∠TPQ) और ∠टीओक्यू (∠TOQ) पूरक हैं।
संपूरक कोणों की ज्या बराबर होती है। उनके कोज्या और स्पर्श रेखाएं (जब तक कि परिभाषित है) परिमाण में बराबर होते हैं, लेकिन विपरीत चिह्न होते हैं।
यूक्लिडियन ज्यामिति में, त्रिभुज के दो कोणों का योग तीसरे का समपूरक होता है, क्योंकि त्रिभुज के आंतरिक कोणों का योग एक ऋजु कोण होता है।
  • दो कोण जिनका योग एक पूर्ण कोण (1 मोड़ (टर्न), 360° (डिग्री), या 2π रेडियन) होता है, समपूरक कोण या संयुग्म कोण कहलाते हैं। एक कोण और एक पूर्ण कोण के बीच के अंतर को कोण का योग या कोण का संयुग्मी कहा जाता है।

बहुभुज-संबंधित कोण

  • एक साधारण बहुभुज के अंदर का कोण एक आंतरिक कोण कहलाता है। एक साधारण अवतल बहुभुज में कम से कम एक आंतरिक कोण होता है जो एक प्रतिवर्त कोण होता है।
    यूक्लिडियन ज्यामिति में, त्रिभुज के आंतरिक कोणों के मापों का योग π रेडियन, 180° (डिग्री) या 1/2 मोड़ (टर्न) तक होता है। एक साधारण उत्तल चतुर्भुज के आंतरिक कोणों के मापों योग 2π रेडियन, 360° (डिग्री) या 1 मोड़ (टर्न) तक होता हैं। सामान्यतः, n भुजाओं वाले एक साधारण उत्तल बहुभुज के आंतरिक कोणों के मापों का योग (n − 2) π रेडियन, (n − 2)180° (डिग्री), (n − 2)2 समकोण, या (n − 2)1/2 मोड़ (टर्न) होता है।
  • एक आंतरिक कोण के पूरक को एक बाह्य कोण कहा जाता है, अर्थात एक आंतरिक कोण और एक बाह्य कोण, कोणों का एक रैखिक युग्म बनाते हैं। बहुभुज के प्रत्येक शीर्ष पर दो बाहरी कोण होते हैं, प्रत्येक को शीर्ष पर मिलने वाली दो रेखाओ में से एक को विस्तारित करके प्राप्त करते है, ये दो कोण लंबवत तथा बराबर हैं। एक बाह्य कोण बहुभुज का पता लगाने के लिए एक शीर्ष पर घूर्णन की मात्रा को मापता है।[15] यदि संगत आंतरिक कोण एक प्रतिवर्त कोण है, तो बाह्य कोण को ऋणात्मक माना जाना चाहिए। यहां तक ​​कि एक आसाधारण बहुभुज में भी बाह्य कोण को परिभाषित करना संभव हो सकता है, लेकिन बाह्य कोण माप के चिन्ह को तय करने के लिए किसी को समतल (या सतह) का एक अभिविन्यास चुनना होगा।
    यूक्लिडियन ज्यामिति में, एक साधारण उत्तल बहुभुज के बाह्य कोणों का योग, यदि प्रत्येक शीर्ष पर दो बाह्य कोणों में से केवल एक माना जाए तो एक पूर्ण मोड़ (टर्न) 360°(डिग्री) होगा। यहाँ बाह्य कोण को पूरक बाह्य कोण कहा जा सकता है। नियमित बहुभुज बनाते समय बाह्य कोणों का उपयोग प्रायः लोगो टर्टल कार्यक्रमों में किया जाता है।
  • एक त्रिभुज में, दो बाह्य कोणों के समद्विभाजक और दूसरे आंतरिक कोण के समद्विभाजक समवर्ती होते हैं (एक बिंदु पर मिलते हैं)।[16]
  • एक त्रिभुज में, तीन प्रतिच्छेदन बिंदु, प्रत्येक बाह्य कोण का समद्विभाजक, जिसकी विपरीत विस्तारित भुजा होती है, संरेख होते हैं।[16]
  • एक त्रिभुज में, तीन प्रतिच्छेदन बिंदु, उनमें से दो एक आंतरिक कोण समद्विभाजक और विपरीत विस्तारित भुजा, और तीसरा बाह्य कोण समद्विभाजक और विपरीत विस्तारित भुजा के बीच, संरेख हैं।[16]
  • कुछ लेखक साधारण बहुभुज के बाह्य कोण के नाम का उपयोग केवल आंतरिक कोण के बाह्य कोण (पूरक नहीं!) लागू करने के लिए करते हैं।[17] यह उपरोक्त उपयोग के साथ विरोध करता है।

समतल से संबंधित कोण

  • दो तलों के बीच के कोण (जैसे एक बहुफलक के दो आसन्न फलक) को द्विफलकीय कोण कहा जाता है।[12] यह समतल से लम्बवत दो रेखाओं के बीच न्यून कोण के रूप में परिभाषित किया जा सकता है।
  • एक समतल और एक प्रतिच्छेदी सीधी रेखा के बीच का कोण प्रतिच्छेदन रेखा और प्रतिच्छेदन बिंदु से जाने वाली रेखा के बीच के कोण को घटाकर नब्बे डिग्री (90°) के बराबर होता है तथा समतल के अभिलंबवत होता है।

मापने के कोण

एक ज्यामितीय कोण का आकार सामान्यतः सबसे छोटे घूर्णन के परिमाण की विशेषता होती है, जो एक रेखा को दूसरे में मैप करता है। समान आकार वाले कोणों को समान या सर्वांगसम कहा जाता है।

कुछ संदर्भों में, जैसे किसी वृत्त पर एक बिंदु की पहचान करना या किसी संदर्भ अभिविन्यास (किसी वस्तु की स्थिति या कोण की दिशा) के सापेक्ष दो विमाओ में किसी वस्तु के अभिविन्यास (किसी वस्तु की स्थिति या कोण की दिशा) का वर्णन करना, पूर्ण मोड़ (टर्न) के निश्चित गुणक से भिन्न कोण प्रभावी रूप से समतुल्य होते हैं। अन्य संदर्भों में, जैसे कि एक कुंडलित वक्र पर एक बिंदु की पहचान करना या किसी संदर्भ अभिविन्यास (किसी वस्तु की स्थिति या कोण की दिशा) के सापेक्ष दो विमाओ में किसी वस्तु के संचयी घूर्णन का वर्णन करना, एक पूर्ण मोड़ (टर्न) के अशून्य गुणक से भिन्न कोण समतुल्य नहीं होते हैं।

आर}} रेडियन}}।

कोण θ को मापने के लिए, कोण के शीर्ष को केंद्र मानकर एक वृत्ताकार चाप खींचा जाता है, उदाहरण के लिए परकार (कंपास) के एक जोड़े के साथ। चाप की लंबाई एस (s) का वृत्त की त्रिज्या आर (r) से अनुपात, कोण में रेडियन की संख्या है। परंपरागत रूप से, गणित और एसआई (SI) में, रेडियन को विमाहीन मान 1 के बराबर माना जाता है।

कोण को एक और कोणीय इकाई से व्यक्त किया गया है, अतः कोण को k/2π के रूप के उपयुक्त रूपांतरण स्थिरांक से गुणा करके प्राप्त किया जा सकता है, जहाँ k चुनी हुई इकाई में व्यक्त एक पूर्ण मोड़ (टर्न) का माप है (उदाहरण के लिए, k = 360° के लिए डिग्री या 400 ग्रेड के लिए ग्रेडियन)।

इस प्रकार परिभाषित θ का मान वृत्त के आकार पर निर्भर नहीं करता, यदि त्रिज्या की लंबाई बदल जाती है तो चाप की लंबाई उसी अनुपात में बदल जाती है, अतः अनुपात एस/आर (s/r) अपरिवर्तित रहता है।[nb 1]

कोण योग अभिधारणा

कोण योग अभिधारणा बताती है कि यदि बी (B) कोण एओसी (∠AOC) के अंदर है, तो

कोण एओसी (∠AOC) कि माप कोण एओबी (∠AOB) के माप और कोण बीओसी (∠BOC) के माप का योग होता है।

इकाइयां

1 रेडियन की परिभाषा

पूरे इतिहास में, कोणों को विभिन्न इकाइयों में मापा गया है। इन्हें कोणीय इकाइयों के रूप में जाना जाता है, जिनमें सबसे आधुनिक इकाइयाँ डिग्री (°), रेडियन (रेड), और ग्रेडियन (ग्रेड) इत्यादि हैं।[19]

मात्राओं की अंतर्राष्ट्रीय प्रणाली में, कोण एक विमाहीन राशि के रूप में परिभाषित है। यह प्रभावित करता है कि विमीय विश्लेषण में कोण कैसा व्यवहार करता है।

कोणीय माप की अधिकांश इकाइयाँ इस प्रकार परिभाषित हैं कि किसी पूर्ण संख्या एन (n) के लिए एक मोड़ (टर्न) (अर्थात एक पूर्ण वृत्त) एन (n) इकाइयों के बराबर होता है। रेडियन (और इसके दशमलव उपगुणक) और व्यास दो अपवाद हैं।

एक रेडियन एक वृत्त के चाप द्वारा अंतरित कोण होता है जिसकी लंबाई वृत्त की त्रिज्या के समान होती है। रेडियन एसआई (SI) प्रणाली में कोणीय माप की व्युत्पन्न इकाई है। हालांकि अस्पष्टता से बचने के लिए इसे रेड (rad) के रूप में दर्शाया जा सकता है। डिग्री में मापे गए कोणों को (°) प्रतीक से दिखाया जाता है। डिग्री के उपखंड मिनट हैं (1 मिनट (′) = 1/60° (डिग्री)) और दूसरा (1 सेकंड (") = 1/3600° (डिग्री)) है। 360° (डिग्री) का कोण एक पूर्ण वृत्त द्वारा अंतरित कोण के सामान होता है, 2π रेडियन, या 400 ग्रेडियन के बराबर होता है।

कोणों को निरूपित करने के लिए प्रयुक्त अन्य इकाइयाँ निम्नलिखित तालिका में सूचीबद्ध हैं। इन इकाइयों को इस तरह परिभाषित किया गया है कि मोड़ (टर्न्स) की संख्या एक पूर्ण घूर्णन के बराबर है।

नाम एक

मोड़ (टर्न) में

संख्या

डिग्री में विवरण
मोड़ (टर्न) 1 360° मोड़ (टर्न), चक्र, परिक्रमण और घूर्णन, पूर्ण वृत्तीय गति या माप (उसी बिंदु पर लौटने के लिए) है। अनुप्रयोग के आधार पर एक मोड़ (टर्न) संक्षिप्त रूप से सीवाईसी (cyc),आरइवी (rev), या आरओटी (rot) है। एक मोड़ 2π रेडियन या 360° (डिग्री) के बराबर होता है।
π के गुणज 2 180° π रेडियन एमयूएलπ (MULπ) इकाई के गुणकों को आरपीएन वैज्ञानिक कैलकुलेटर में लागू किया जाता है। WP 43S।[20][21][22] यह भी देखें IEEE 754 अनुशंसित संचालन
चतुर्थाँश 4 90° एक चतुर्थांश एक 1/4 मोड़ (टर्न) और समकोण भी कहते है। चतुर्थांश यूक्लिड के तत्वों में प्रयुक्त इकाई है। एक चतुर्थांश को दर्शाने के लिए प्रतीक का उपयोग किया गया है। 1 क्वाड = 90° = π/2 रेड (rad) = 1/4 टर्न = 100 ग्रेड (grad)।
सेक्सटैंट 6 60° सेक्स्टेंट बेबीलोनियों द्वारा उपयोग की जाने वाली इकाई थी, डिग्री, चाप का मिनट और चाप का सेकंड बेबीलोनियाई इकाई कि षाष्टिक (सेक्सेजिमल) उपइकाई हैं।[23][24] यह विशेष रूप से पटरी और परकार से बनाना आसान है। यह समबाहु त्रिभुज का कोण या 1/6 मोड़ (टर्न) होता है। 1 बेबीलोनियाई इकाई = 60° = π/3 रेड ≈ 1.047197551 रेड
रेडियन 2π 57°17′ रेडियन एक वृत्त की परिधि से निर्धारित होता है जो वृत्त की त्रिज्या के बराबर लंबाई (n = 2π = 6.283...) का होता है। यह एक वृत्त के चाप द्वारा अंतरित कोण होता है, जिसकी लंबाई वृत्त की त्रिज्या के समान होती है। रेडियन का प्रतीक रेड (rad) है। एक मोड़ (टर्न) 2π रेडियन होता है, और एक रेडियन 180°/π या लगभग 57.2958° (डिग्री) होता है। गणितीय ग्रंथों में, कोणों को अक्सर एक रेडियन को विमाहीन माना जाता है, जिसके परिणामस्वरूप इकाई रेड (rad) को अक्सर छोड़ दिया जाता है। रेडियन का उपयोग लगभग सभी गणितीय कार्यों में किया जाता है, सरल प्रयोगिक ज्यामिति से परे, उदाहरण के लिए, मनभावन और "प्राकृतिक" गुणों के कारण जो त्रिकोणमितीय फलन प्रदर्शित करते हैं जब उनके तर्क रेडियन में होते हैं। रेडियन एसआई (SI) में कोणीय माप की (व्युत्पन्न) इकाई है, जो कोण को

विमाहीन भी मानता है।

हेक्साकॉन्टेडे 60 हेक्साकॉन्टेड एक इकाई है जिसका उपयोग एराटोस्थनीज द्वारा किया जाता है। यह 6° (डिग्री) के बराबर होता है, जिससे एक पूरा मोड़ (टर्न) 60 हेक्साकॉन्टेड्स में विभाजित हो जाता है।
बाइनरी डिग्री 256 1°33'45" बाइनरी डिग्री, जिसे बाइनरी रेडियन या ब्रैड या बाइनरी कोणीय माप बीएएम (BAM) से भी जाना जाता है।[25] बाइनरी डिग्री का उपयोग अभिकलन में किया जाता है ताकि एक कोण को एक बाइट में अच्छे से दर्शाया जा सके (यद्यपि सीमित परिशुद्धता के लिए)। अभिकलन में प्रयुक्त कोण के अन्य माप, n के अन्य मान के लिए एक पूरे मोड़ (टर्न) को 2n बराबर भागों में विभाजित करने पर आधारित होते हैं।[26] यह एक मोड़ (टर्न) का 1/256 है। [25]
डिग्री 360 इस पुराने षाष्टिक (सेक्सजेसिमल) उपइकाई का एक फायदा यह है कि साधारण ज्यामिति में सामान्य कई कोणों को डिग्री की एक पूरी संख्या के रूप में मापा जाता है। डिग्री के अंश सामान्य दशमलव संकेतन में लिखे जा सकते हैं (उदाहरण के लिए 3.5 डिग्री), लेकिन "डिग्री-मिनट-सेकंड" प्रणाली के "मिनट" और "सेकंड" षाष्टिक (सेक्सजेसिमल) उपिकाई भी उपयोग में हैं, विशेष रूप से भौगोलिक निर्देशांक के लिए और खगोल विज्ञान और अस्त्रविज्ञान में (n = 360)। ऊपर लिखे हुए एक छोटे वृत्त (°) द्वारा दर्शाई गई डिग्री, एक मोड़ (टर्न) का 1/360 है, इसलिए एक मोड़ (टर्न) 360° (डिग्री) का होता है। पहले दिए गए सूत्र के लिए डिग्री का मामला, k = 360°/2π निर्धारित करके n = 360° (डिग्री) इकाई प्राप्त की जाती है।
ग्रेड 400 0°54′ ग्रेड, जिसे, ग्रैड, ग्रेडियन या गॉन चतुर्थांश की दशमलव उपइकाईयां कहलाती है। एक समकोण 100 ग्रैड होता है। एक किलोमीटर को ऐतिहासिक रूप से पृथ्वी के एक मध्याह्न रेखा के साथ चाप के एक सेंटी-ग्रेड के रूप में परिभाषित किया गया था, इसलिए किलोमीटर षाष्टिक (सेक्सजेसिमल) समुद्री मील (n = 400) का दशमलव अनुरूप है। ग्रेड का उपयोग ज्यादातर त्रिभुज और महाद्वीपीय सर्वेक्षण में किया जाता है। ग्रेड का उपयोग ज्यादातर त्रिभुजन और महाद्वीपीय सर्वेक्षण में किया जाता है।
चाप के मिनट 21,600 0°1′ चाप का मिनट (या एमओए, चाप-मिनट, या केवल मिनट) डिग्री का 1/60 होता है।

एक समुद्री मील को ऐतिहासिक रूप से पृथ्वी के एक बड़े वृत्त (n = 21,600) के साथ चाप के एक मिनट के रूप में परिभाषित किया गया था। चाप-मिनट 1/60 डिग्री 1/21,600 मोड़ (टर्न) होता है। इसे प्रतीक ( ′ ) द्वारा निरूपित किया जाता है। उदाहरण के लिए, 3° 30′, 3 × 60 + 30 = 210 मिनट या 3 + 30/60 = 3.5 डिग्री के बराबर होता है। कभी-कभी दशमलव अंशों के साथ मिश्रित प्रारूप का भी उपयोग किया जाता है, उदाहरण के लिए 3° 5.72′ = 3 + 5.72/60 डिग्री।

चाप के

सेकंड

1,296,000 0°0′1″ चाप का सेकंड (या चाप-सेकंड, या केवल सेकंड) चाप के एक मिनट का 1/60 और डिग्री का 1/3600 (n = 1,296,000) होता है। चाप-सेकंड (या चाप का सेकंड, या केवल सेकंड) एक चाप-मिनट का 1/60 और एक डिग्री का 1/3600 होता है। इसे प्रतीक ( ″ ) से निरूपित किया जाता है। उदाहरण के लिए, 3° 7′ 30″ 3 + 7/60 + 30/3600 डिग्री या 3.125 डिग्री के बराबर है।

अन्य वर्णनकर्ता

  • घंटे का कोण (n = 24) खगोलीय घंटे का कोण 1/24 मोड़ (टर्न) का होता है। चूंकि यह प्रणाली उन वस्तुओं को मापने के लिए उत्तरदायी है जो प्रति दिन एक बार परिक्रमण करते हैं (जैसे सितारों की सापेक्ष स्थिति), षाष्टिक (सेक्सजेसिमल) उपइकाई को समय का मिनट और समय का सेकंड कहा जाता है। ये चाप के मिनट और सेकंड से अलग और 15 गुना बड़े होते है। 1 घंटा = 15° (डिग्री) = π/12 रेड = 1/6 क्वाड = 1/24 मोड़ (टर्न) = 16+2/3 ग्रेड।
  • (कम्पास) बिंदु या विन्ड (n = 32), संचालन में उपयोग किया जाने वाला बिंदु है, जोकि एक मोड़ (टर्न) का 1/32 होता है। 1 बिंदु = समकोण का 1/8 = 11.25° (डिग्री) = 12.5 ग्रेड। प्रत्येक बिंदु को चार तिमाही-अंकों में विभाजित किया जाता है ताकि 1 मोड़ (टर्न) 128 तिमाही-अंक के बराबर हो।
  • पेचस (n = 144–180), पेचस एक बेबीलोनियाई इकाई थी जो लगभग 2° (डिग्री) या 2+1/2° (डिग्री) बराबर होती है।
  • टाऊ, एक मोड़ (टर्न) में रेडियन की संख्या (1 मोड़ (टर्न) = τ रेड), τ = 2π
  • व्यास भाग (n = 376.99...), व्यास भाग लगभग 0.95493° (डिग्री) और 1/60 रेडियन होता है। प्रति मोड़ (टर्न) लगभग 376.991 व्यास भाग होते हैं।
  • मिली रेडियन और व्युत्पन्न परिभाषाएं, वास्तविक मिली रेडियन को एक रेडियन का एक हजारवां भाग बताया गया है, जिसका अर्थ है कि एक मोड़ (टर्न) का घूर्णन ठीक 2000π मील (या लगभग 6283.185 मील) के बराबर होगा, और बंदूक आदि शस्त्र के लिए लगभग सभी कार्यक्षेत्र इस परिभाषा के लिए अंशांकित हैं। इसके अलावा, तोपखाने और संचालन के लिए उपयोग की जाने वाली तीन अन्य परिभाषाएँ हैं, जो लगभग एक मिली रेडियन के बराबर हैं। इन तीन अन्य परिभाषाओं के तहत एक मोड़ (टर्न) ठीक 6000, 6300 या 6400 मील के लिए बनाता है, जो 0.05625 से 0.06° (डिग्री) (3.375 से 3.6' (मिनट)) तक की सीमा के बराबर है। इसकी तुलना में, वास्तविक मिली रेडियन लगभग 0.05729578° डिग्री (3.43775° (मिनट)) का होता है। एक "नाटो मील" को एक वृत्त के 1/6400 से परिभाषित किया गया है। वास्तविक मिली रेडियन की तरह ही, अन्य परिभाषाओं में से प्रत्येक सबटेंशन की मील की उपयोगी सामग्री का शोषण करती है, अर्थात एक मिली रेडियन का मान लगभग 1 मीटर की चौड़ाई से घटाए गए कोण के बराबर होता है, जैसा कि 1 किमी दूर से देखा जाता है (2π/6400 = 0.0009817... ≈ 1/1000)।
  • पुराने अरब में एक मोड़ (टर्न) को 32 अखनाम में विभाजित किया गया था और प्रत्येक अखनाम को 7 ज़म में विभाजित किया गया था, ताकि एक मोड़ (टर्न) 224 का ज़म हो।

सांकेतिक कोण

हालांकि एक कोण के मापन की परिभाषा एक ऋणात्मक कोण की अवधारणा का समर्थन नहीं करती है, यह प्रायः एक सम्मेलन को लागू करने के लिए उपयोगी होता है, जो धनात्मक और ऋणात्मक कोणीय मानो को कुछ संदर्भ के सापेक्ष विपरीत दिशाओं में अभिविन्यास या घुर्णन का प्रतिनिधित्व करने की अनुमति देता है।

द्वि-विमीय कार्तीय निर्देशांक प्रणाली में, कोण को विशिष्ट रूप से इसकी दोनो रेखाओ और मूल बिंदु पर शीर्ष द्वारा परिभाषित किया जाता है। प्रारंभिक रेखा धनात्मक एक्स (x)-अक्ष पर है, जबकि दुसरी रेखा या अंतिम रेखा, प्रारंभिक रेखा द्वारा रेडियन, डिग्री या मोड़ (टर्न) में परिभाषित किया गया है। धनात्मक कोणों के साथ धनात्मक वाई (y)-अक्ष की ओर घूर्णन और ऋणात्मक कोणों के साथ, ऋणात्मक वाई (y)-अक्ष की ओर घूर्णन करते है। जब कार्तीय निर्देशांक मानक स्थिति द्वारा दर्शाए जाते हैं, जो एक्स (x)-अक्ष दाईं ओर और वाई (y)-अक्ष ऊपर की ओर परिभाषित होते हैं, धनात्मक घुर्णन वामावर्त होते हैं और ऋणात्मक घुर्णन दक्षिणावर्त होते हैं।

कई संदर्भों में, −θ का कोण प्रभावी रूप से एक पूर्ण मोड़ (टर्न) न्यूनता के कोण के बराबर होता है। उदाहरण के लिए, −45° (डिग्री) के रूप में दर्शाया गया एक अभिविन्यास प्रभावी रूप से 360° (डिग्री), − 45° (डिग्री) या 315° (डिग्री) के रूप में दर्शाए गए अभिविन्यास के बराबर है। हालांकि अंतिम स्थिति समान है, -45° (डिग्री) का एक भौतिक घूर्णन (संचलन) 315° (डिग्री) के घूर्णन के समान नहीं होता है (उदाहरण के लिए, धूल भरे फर्श पर झाड़ू रखने वाले व्यक्ति के घूमने से फर्श पर घूमें हुए क्षेत्रों के अलग-अलग निशान छुट जाते है)।

त्रि-विमीय ज्यामिति में, दक्षिणावर्त और वामावर्त का कोई पूर्ण अर्थ नहीं है, इसलिए धनात्मक और ऋणात्मक कोणों की दिशा को कुछ निर्देशो के सापेक्ष परिभाषित किया जाना चाहिए, उस तल मे जिसमें कोण की किरणें होती हैं, प्रया: कोण के शीर्ष से गुजरने वाला एक सदिश और समतल के लंबवत होता है।

संचालन में, बियरिंग्स या दिगंश (अज़ीमुथ) को उत्तर के सापेक्ष मापा जाता है। परिपाटी के अनुसार, ऊपर से देखने पर, बेयरिंग कोण धनात्मक दक्षिणावर्त होते हैं, इसलिए 45° (डिग्री) का बेयरिंग उत्तर-पूर्व अभिविन्यास के सामान होता है। संचालन में ऋणात्मक बियरिंग्स का उपयोग नहीं किया जाता है, इसलिए उत्तर-पश्चिम अभिविन्यास 315° (डिग्री) के बेयरिंग के सामान होता है।

कोण के आकार को मापने के वैकल्पिक तरीके

एक कोणीय इकाई के लिए, यह निश्चित है कि कोण योग अभिधारणा रखते है। कुछ कोण माप जहां कोण योग अभिधारणा नहीं रखते है, उनमें शामिल हैं:

  • ढलान या ढाल कोण के स्पर्शरेखा के बराबर है, एक ढाल को प्राय: प्रतिशत के रूप में व्यक्त किया जाता है। बहुत छोटे मान (5% से कम) के लिए, ढलान का ग्रेड लगभग रेडियन में कोण का माप होता है।
  • दो रेखाओं के बीच के प्रसार को परिमेय ज्यामिति में रेखाओं के बीच के कोण की ज्या के वर्ग के रूप में परिभाषित किया जाता है। चूँकि किसी कोण की ज्या और उसके संपूरक कोण की ज्या समान होती है, कोई भी घूर्णन कोण जो किसी एक रेखा को दूसरी रेखा में मैप करता है, रेखाओं के बीच प्रसार के लिए समान मान की ओर ले जाता है।
  • हालांकि शायद ही कभी, कोई त्रिकोणमितीय कार्य के प्रत्यक्ष परिणामों का वर्णन कर सकता है, जैसे कोण की ज्या।

खगोलीय अनुमान

खगोलविद वस्तुओं के स्पष्ट आकार और उनके बीच की दूरी को उनके विचार बिंदु से डिग्री में मापते हैं।हैं।

  • पृथ्वी से देखे गए सूर्य या चंद्रमा का अनुमानित व्यास 0.5° (डिग्री) है।
  • हाथ की लंबाई पर छोटी उंगली की अनुमानित चौड़ाई 1° (डिग्री) है।
  • बांह की लंबाई पर बंद मुट्ठी की अनुमानित चौड़ाई 10° (डिग्री) है।
  • हाथ की लंबाई पर एक हैंड्सपैन (बालिश्त) की अनुमानित चौड़ाई 20° (डिग्री) है।

ये माप स्पष्ट रूप से विशेष विषय पर निर्भर करती हैं, और उपरोक्त को केवल अंगूठे के अनुमान के नियम के रूप में माना जाना चाहिए।

खगोल विज्ञान में, दाएं उदगम और गिरावट को प्रायः कोणीय इकाइयों में मापा जाता है, जो कि 24 घंटे के दिन के आधार पर समय के संदर्भ में व्यक्त किया जाता है।

इकाई प्रतीक डिग्री रेडियन वृत्त अन्य
घंटे एच (h) 15° π12 124
मिनट एम (m) 0°15′ π720 11,440 160 घंटा
सेकंड एस (s) 0°0′15″ π43200 186,400 160 मिनट

वक्रों के बीच कोण

P पर दो वक्रों के बीच के कोण को P पर स्पर्शरेखा A और B के बीच के कोण के रूप में परिभाषित किया गया है।

एक रेखा और एक वक्र (मिश्रित कोण) के बीच के कोण या दो प्रतिच्छेदी वक्रों (वक्रीय कोण) के बीच के कोण को प्रतिच्छेदन बिंदु पर स्पर्शरेखाओ के बीच के कोण के रूप में परिभाषित किया गया है। विशेष स्थितियों को विभिन्न नाम (अब शायद ही कभी, यदि कभी इस्तेमाल किया जाता है) दिए गए हैं:— एम्फीसिर्टिक या सिसोइडल, उभयोत्तल; जाइस्ट्रोइडल या सिस्टॉइडल (स्क्रैपिंग के लिए एक उपकरण), अवतल-उत्तल; एम्फीकोएलिक या एंगुलस लन्युलरिस, उभयावतल।[27]

समद्विभाजक और समद्विभाजक कोण

प्राचीन यूनानी गणितज्ञ केवल एक परकार (कंपास) और पटरी की सहायता से कोण को द्विभाजित करना (इसे समान माप के दो कोणों में विभाजित करना) जानते थे, लेकिन केवल कुछ कोणों को ही समत्रिभाजित कर सकते थे। 1837 में, पियरे वॉन्टजेल ने दिखाया कि अधिकांश कोणों के लिए यह निर्माण नहीं किया जा सकता है।

डॉट उत्पाद और सामान्यीकरण

यूक्लिडियन स्थान में, दो यूक्लिडियन सदिश 'u' और 'v' के बीच का कोण उनके आदिश-गुणनफल और उनकी लंबाई से संबंधित होता है।

यह सूत्र दो समतलो (या वक्रिय सतहों) के बीच के कोण को उनके सामान्य सदिश से और उनके सदिश समीकरणों से तिरछी रेखाओं के बीच के कोण को ज्ञात करने के लिए एक आसान विधि है।

आंतरिक उत्पाद

एक सामान्य वास्तविक आंतरिक गुणन स्थान में कोणों को परिभाषित करने के लिए, हम यूक्लिडियन आदिश-गुणनफल ( · ) को आंतरिक गुणन से बदलते हैं , अर्थात

एक जटिल आंतरिक गुणन स्थान में, उपरोक्त कोज्या के लिए व्यंजक अवास्तविक मान दे सकता है, इसलिए इसे इसके साथ बदल दिया जाता है

या, अधिक सामान्यतः, स्पष्ट मान का उपयोग करते हुए

परवर्ती (लैटर) की परिभाषा सदिश की दिशा को नजरअंदाज करता है और इस प्रकार एक-विमीय सबस्पेस के बीच के कोण का वर्णन करती है तथा सदिश द्वारा विस्तरित तथा अनुरूप।

उप-स्थानों के बीच कोण

एक-आयामी सबस्पेस के बीच कोण की परिभाषा तथा के द्वारा दिया गया

हिल्बर्ट स्पेस में किसी भी परिमित विमा के सबस्पेस तक बढ़ाया जा सकता है। दो सबस्पेस दिए गए हैं, , और , यह कोणों की परिभाषा की ओर ले जाता है, सबस्पेस के बीच के कोणों को कैनोनिकल या प्रमुख कोण कहा जाता है।

रीमैनियन ज्यामिति में कोण

रीमैनियन ज्यामिति में, दो स्पर्शरेखाओं के बीच के कोण को परिभाषित करने के लिए मीट्रिक टेंसर का उपयोग किया जाता है। जहाँ U और V स्पर्शरेखा सदिश हैं और gij मीट्रिक टेंसर G के घटक हैं,

अतिपरवलयिक कोण

एक अतिपरवलयिक कोण एक अतिपरवलयिक फलन का तर्क है जिस प्रकार वृत्ताकार कोण एक वृत्तीय फलन का तर्क है। तुलना को एक अतिपरवलयिक क्षेत्र और एक वृत्ताकार क्षेत्र के मुख के आकार के रूप में देखा जा सकता है क्योंकि इन क्षेत्रों के क्षेत्र प्रत्येक स्थिति में कोण परिमाण के अनुरूप होते हैं। वृत्ताकार कोण के विपरीत, अतिपरवलयिक कोण असीम होता है। जब चक्रीय और अतिपरवलयिक तर्क को उनके कोण तर्क में अनंत श्रृंखला के रूप में देखा जाता है, तो चक्रीय वाले अतिपरवलयिक तर्क के केवल वैकल्पिक श्रृंखला रूप होते हैं। दो प्रकार के कोण और कार्य के इस वयन को 'लियोनहार्ड यूलर' द्वारा अनंत के विश्लेषण के परिचय में समझाया गया था।

भूगोल और खगोल विज्ञान में कोण

भूगोल में, भौगोलिक निर्देशांक प्रणाली का उपयोग करके पृथ्वी पर किसी भी बिंदु के स्थान पता लागया जा सकता है। यह प्रणाली भूमध्य रेखा और (प्रायः) ग्रिनिच याम्योत्तर को संदर्भ के रूप में उपयोग करते हुए, पृथ्वी के केंद्र में अंतरित कोणों के संदर्भ में किसी भी स्थान के अक्षांश और देशांतर को निर्दिष्ट करती है।

खगोल विज्ञान में, खगोलीय क्षेत्र पर एक दिए गए बिंदु (अर्थात, एक खगोलीय वस्तु की स्पष्ट स्थिति) को कई खगोलीय समन्वय प्रणालियों में से किसी का उपयोग करके पहचाना जा सकता है। खगोलविद पृथ्वी के केंद्र के माध्यम से दो रेखाओं की कल्पना करके दो तारों के कोणीय पृथक्करण को मापते हैं, जिनमें से प्रत्येक एक तारे को काटता है। उन रेखाओं के बीच के कोण को मापा जा सकता है और यह दो तारों के बीच कोणीय पृथक्करण है।

भूगोल और खगोल विज्ञान दोनों में, देखने की दिशा को एक ऊर्ध्वाधर कोण के रूप में निर्दिष्ट किया जा सकता है जैसे कि क्षितिज के संबंध में ऊंचाई के साथ-साथ उत्तर के संबंध में दिगंश होता है।

खगोलविद वस्तुओं के स्पष्ट आकार को कोणीय व्यास के रूप में भी मापते हैं। उदाहरण के लिए, जब पृथ्वी से देखने पर चंद्रमा का कोणीय व्यास लगभग 0.5° (डिग्री) होता है। इस तरह के कोणीय माप को दूरी/आकार अनुपात में बदलने के लिए छोटे-कोण सूत्र का उपयोग किया जा सकता है।

यह भी देखें

  • कोण मापने का यंत्र
  • कोणीय आँकड़े (माध्य, मानक विचलन)
  • कोण द्विभाजक
  • कोणीय त्वरण
  • कोणीय व्यास
  • कोणीय गति
  • तर्क (जटिल विश्लेषण)
  • ज्योतिषीय पहलू
  • केंद्रीय कोण
  • घड़ी कोण की समस्या
  • दशमलव डिग्री
  • डायहेड्रल कोण
  • बाहरी कोण प्रमेय
  • सुनहरा कोण
  • महान सर्कल दूरी
  • खुदा हुआ कोण
  • अपरिमेय कोण
  • चरण (लहरें)
  • चाँदा
  • ठोस कोण
  • गोलाकार कोण
  • उत्कृष्ट कोण
  • ट्राइसेक्शन
  • जेनिथ कोण

टिप्पणियाँ

  1. This approach requires however an additional proof that the measure of the angle does not change with changing radius r, चुनी गई माप इकाइयों के मुद्दे के अलावा। एक आसान तरीका कोण को संबंधित इकाई सर्कल चाप की लंबाई से मापना है। यहां इकाई को इस अर्थ में आयामहीन चुना जा सकता है कि यह वास्तविक रेखा पर इकाई खंड से जुड़ी वास्तविक संख्या 1 है। उदाहरण के लिए राडोस्लाव एम. दिमित्रिक देखें।[18]

संदर्भ

  1. Sidorov 2001
  2. Slocum 2007
  3. Chisholm 1911; Heiberg 1908, pp. 177–178
  4. "Angles – Acute, Obtuse, Straight and Right". www.mathsisfun.com. Retrieved 2020-08-17.
  5. Weisstein, Eric W. "Angle". mathworld.wolfram.com (in English). Retrieved 2020-08-17.
  6. "Mathwords: Reference Angle". www.mathwords.com. Archived from the original on 23 October 2017. Retrieved 26 April 2018.
  7. Wong & Wong 2009, pp. 161–163
  8. Euclid. The Elements. प्रस्ताव I:13.
  9. 9.0 9.1 Shute, Shirk & Porter 1960, pp. 25–27.
  10. Jacobs 1974, p. 255.
  11. "Complementary Angles". www.mathsisfun.com. Retrieved 2020-08-17.
  12. 12.0 12.1 Chisholm 1911
  13. "Supplementary Angles". www.mathsisfun.com. Retrieved 2020-08-17.
  14. Jacobs 1974, p. 97.
  15. Henderson & Taimina 2005, p. 104.
  16. 16.0 16.1 16.2 जॉनसन, रोजर ए. एडवांस्ड यूक्लिडियन ज्योमेट्री, डोवर पब्लिकेशन्स, 2007.
  17. D. Zwillinger, ed. (1995), CRC Standard Mathematical Tables and Formulae, Boca Raton, FL: CRC Press, p. 270 जैसा कि में उद्धृत किया गया है Weisstein, Eric W. "Exterior Angle". MathWorld.
  18. Dimitrić, Radoslav M. (2012). "On Angles and Angle Measurements" (PDF). The Teaching of Mathematics. XV (2): 133–140. Archived (PDF) from the original on 2019-01-17. Retrieved 2019-08-06.
  19. "angular unit". TheFreeDictionary.com. Retrieved 2020-08-31.
  20. Bonin, Walter (2016-01-11). "RE: WP-32S in 2016?". HP Museum. Archived from the original on 2019-08-06. Retrieved 2019-08-05.
  21. Bonin, Walter (2019) [2015]. WP 43S Owner's Manual (PDF). 0.12 (draft ed.). pp. 72, 118–119, 311. ISBN 978-1-72950098-9. Retrieved 2019-08-05.[permanent dead link] [1] [2] (314 pages)
  22. Bonin, Walter (2019) [2015]. WP 43S Reference Manual (PDF). 0.12 (draft ed.). pp. iii, 54, 97, 128, 144, 193, 195. ISBN 978-1-72950106-1. Retrieved 2019-08-05.[permanent dead link] [3] [4] (271 pages)
  23. Jeans, James Hopwood (1947). The Growth of Physical Science. CUP Archive. p. 7.
  24. Murnaghan, Francis Dominic (1946). Analytic Geometry. p. 2.
  25. 25.0 25.1 "ooPIC Programmer's Guide - Chapter 15: URCP". ooPIC Manual & Technical Specifications - ooPIC Compiler Ver 6.0. Savage Innovations, LLC. 2007 [1997]. Archived from the original on 2008-06-28. Retrieved 2019-08-05.
  26. Hargreaves, Shawn [in polski]. "Angles, integers, and modulo arithmetic". blogs.msdn.com. Archived from the original on 2019-06-30. Retrieved 2019-08-05.
  27. Chisholm 1911; Heiberg 1908, p. 178

ग्रंथ सूची

 This article incorporates text from a publication now in the public domainChisholm, Hugh, ed. (1911), "Angle", Encyclopædia Britannica (in English), vol. 2 (11th ed.), Cambridge University Press, p. 14

बाहरी संबंध