वैकल्पिक क्रमपरिवर्तन: Difference between revisions
(Created page with "{{Short description|Type of permutation}} {{distinguish|text=the alternating group}} {{use mdy dates|date=September 2021}} {{Use American English|date = March 2019}} ...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Type of permutation}} | {{Short description|Type of permutation}} | ||
[[साहचर्य]] गणित में, समुच्चय {1, 2, 3, ..., n} का एक वैकल्पिक क्रमसंचय (या ज़िगज़ैग क्रमसंचय) उन संख्याओं का एक क्रमसंचय (व्यवस्था) है जिससे की प्रत्येक प्रविष्टि पूर्ववर्ती प्रविष्टि की तुलना में वैकल्पिक रूप से अधिक या कम होती है, उदाहरण के लिए, {1, 2, 3, 4} के पाँच वैकल्पिक क्रमसंचय हैं: | |||
* 1, 3, 2, 4 इस कारण से 1 < 3 > 2 < 4, | |||
* 1, 4, 2, 3 इस कारण से 1 < 4 > 2 < 3, | |||
* 2, 3, 1, 4 इस कारण से 2 < 3 > 1 < 4, | |||
* 2, 4, 1, 3 इस कारण से 2 < 4 > 1 < 3, तथा | |||
* 3, 4, 1, 2 इस कारण से 3 < 4 > 1 < 2. | |||
इस प्रकार के क्रमचय का अध्ययन पहली बार 19वीं शताब्दी में डेसिरे आंद्रे द्वारा किया गया था।<ref>Jessica Millar, N. J. A. Sloane, Neal E. Young, [https://arxiv.org/abs/math/0205218v3 "A New Operation on Sequences: the Boustrouphedon Transform"] Journal of Combinatorial Theory, Series A 76(1):44–54 (1996)</ref> | इस प्रकार के क्रमचय का अध्ययन पहली बार 19वीं शताब्दी में डेसिरे आंद्रे द्वारा किया गया था।<ref>Jessica Millar, N. J. A. Sloane, Neal E. Young, [https://arxiv.org/abs/math/0205218v3 "A New Operation on Sequences: the Boustrouphedon Transform"] Journal of Combinatorial Theory, Series A 76(1):44–54 (1996)</ref> | ||
अलग-अलग लेखक वैकल्पिक क्रमसंचय शब्द का उपयोग थोड़ा अलग तरीके से करते हैं: कुछ के लिए आवश्यक है कि एक वैकल्पिक क्रमसंचय में दूसरी प्रविष्टि पहले से बड़ी होनी चाहिए (जैसा कि ऊपर के उदाहरणों में है), अन्य के लिए यह आवश्यक है कि प्रत्यावर्तन को उलट दिया जाए (ताकि दूसरी प्रविष्टि छोटी हो जाए) पहले की तुलना में, फिर तीसरा दूसरे से बड़ा, और इसी तरह), जबकि अन्य दोनों प्रकारों को वैकल्पिक क्रमपरिवर्तन के नाम से पुकारते हैं। | |||
समुच्चय {1, ..., n} के वैकल्पिक क्रमपरिवर्तनों की संख्या An के निर्धारण को एंड्रे की समस्या कहा जाता है। संख्याएँ An को यूलर संख्याएँ, टेढ़ी-मेढ़ी संख्याएँ या ऊपर/नीचे संख्याएँ कहा जाता है। जब n सम संख्या हो तो An को छेदक संख्या कहा जाता है, जबकि यदि n विषम हो तो इसे स्पर्शरेखा संख्या कहते हैं। ये बाद वाले नाम अनुक्रम के लिए [[जनरेटिंग फ़ंक्शन]] के अध्ययन से आते हैं। | |||
== परिभाषाएँ == | == परिभाषाएँ == | ||
एक | एक क्रमचय {{math|''c''<sub>1</sub>, ..., ''c''<sub>''n''</sub>}} को प्रत्यावर्ती कहा जाता है यदि इसकी प्रविष्टियां बारी-बारी से ऊपर और नीचे जाती हैं। इस प्रकार, पहली और आखिरी के अलावा प्रत्येक प्रविष्टि अपने दोनों पड़ोसियों की तुलना में या तो बड़ी या छोटी होनी चाहिए, कुछ लेखक केवल "अप-डाउन" क्रमपरिवर्तन को संदर्भित करने के लिए वैकल्पिक शब्द का उपयोग करते हैं जिसके लिए {{math|''c''<sub>1</sub> < ''c''<sub>2</sub> > ''c''<sub>3</sub> < ...}} "डाउन-अप" क्रमपरिवर्तन कहते हैं जो {{math|''c''<sub>1</sub> > ''c''<sub>2</sub> < ''c''<sub>3</sub> > ...}} जो नाम उल्टे वैकल्पिक को संतुष्ट करते हैं। अन्य लेखक इस सम्मेलन को उलट देते हैं, या ऊपर-नीचे और नीचे-ऊपर क्रमपरिवर्तन दोनों को संदर्भित करने के लिए "वैकल्पिक" शब्द का उपयोग करते हैं। | ||
डाउन-अप और अप-डाउन क्रमपरिवर्तन के बीच एक-से-एक सरल पत्राचार होता है: प्रत्येक प्रविष्टि {{math|''c''<sub>''i''</sub>}} को {{math|''n'' + 1 - ''c''<sub>''i''</sub>}} के साथ बदलकर प्रविष्टियों के सापेक्ष क्रम को उलट देता है। | |||
प्रथा के अनुसार, किसी भी नामकरण योजना में लंबाई 0 ([[खाली सेट]] का क्रमचय) और 1 (एकल प्रविष्टि 1 से युक्त क्रमचय) के अद्वितीय क्रमपरिवर्तन को वैकल्पिक रूप से लिया जाता है। | प्रथा के अनुसार, किसी भी नामकरण योजना में लंबाई 0 ([[खाली सेट|खाली समुच्चय]] का क्रमचय) और 1 (एकल प्रविष्टि 1 से युक्त क्रमचय) के अद्वितीय क्रमपरिवर्तन को वैकल्पिक रूप से लिया जाता है। | ||
== आंद्रे का प्रमेय == | == आंद्रे का प्रमेय == | ||
[[File:Bernoulli-zigzag.jpg|thumb|बर्नोली (1742) में ज़िगज़ैग नंबर, ओपेरा ओम्निया वॉल्यूम। 4, पृ. 105]] | [[File:Bernoulli-zigzag.jpg|thumb|बर्नोली (1742) में ज़िगज़ैग नंबर, ओपेरा ओम्निया वॉल्यूम। 4, पृ. 105]]समुच्चय {1, ..., n} के वैकल्पिक क्रमपरिवर्तनों की संख्या An के निर्धारण को एंड्रे की समस्या कहा जाता है। संख्याएँ An को विभिन्न प्रकार से यूलर संख्याएँ, टेढ़ी-मेढ़ी संख्याएँ, ऊपर/नीचे संख्याएँ, या इन नामों के कुछ संयोजनों के रूप में जाना जाता है। विशेष रूप से [[यूलर संख्या]] नाम का प्रयोग कभी-कभी निकट से संबंधित अनुक्रम के लिए किया जाता है। An के पहले कुछ मान <math>1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, ...</math> (ओईआईएस में अनुक्रम [[A000111]]) हैं। | ||
ये संख्याएँ [[कैटलन | ये संख्याएँ [[कैटलन संख्याओं]] के समान एक साधारण पुनरावृत्ति को संतुष्ट करती हैं: समुच्चय <math>{1, 2, 3, ..., n, n + 1}</math> वैकल्पिक क्रमपरिवर्तन (दोनों डाउन-अप और अप-डाउन) के समुच्चय को विभाजित करके सबसे बड़ी प्रविष्टि n + 1 की स्थिति k के अनुसार, यह दिखाया जा सकता है | ||
: <math> 2A_{n+1} = \sum_{k=0}^n \binom{n}{k} A_k A_{n-k}</math> | : <math> 2A_{n+1} = \sum_{k=0}^n \binom{n}{k} A_k A_{n-k}</math> | ||
सभी | सभी {{math|''n'' ≥ 1}} के लिए, [[आंद्रे (1881)]] ने इस पुनरावृत्ति का उपयोग घातीय जनन फलन से संतुष्ट अवकल समीकरण देने के लिए किया, | ||
: <math> A(x) = \sum_{n=0}^\infty A_n \frac{x^n}{n!}</math> | : <math> A(x) = \sum_{n=0}^\infty A_n \frac{x^n}{n!}</math> | ||
अनुक्रम के लिए {{math|''A<sub>n</sub>''}} | अनुक्रम के लिए {{math|''A<sub>n</sub>''}}, वास्तव में, पुनरावृत्ति देता है: | ||
<math> | |||
2\sum_{n\geq 1} A_{n+1} \frac{x^{n+1}}{(n+1)!} | 2\sum_{n\geq 1} A_{n+1} \frac{x^{n+1}}{(n+1)!} | ||
= \sum_{n\geq 1} \sum_{k=0}^n \frac{A_k}{k!} \frac{A_{n-k}}{(n-k)!} \frac{x^{n+1}}{n+1} | = \sum_{n\geq 1} \sum_{k=0}^n \frac{A_k}{k!} \frac{A_{n-k}}{(n-k)!} \frac{x^{n+1}}{n+1} | ||
= \int \left(\sum_{k\geq 0}A_k \frac{x^k}{k!}\right) \left(\sum_{j\geq 0}A_j \frac{x^j}{j!}\right) \, dx - x | = \int \left(\sum_{k\geq 0}A_k \frac{x^k}{k!}\right) \left(\sum_{j\geq 0}A_j \frac{x^j}{j!}\right) \, dx - x | ||
</math> | </math> | ||
जहां हम | |||
जहां हम <math>j = n-k</math> और <math>\frac{x^{n+1}}{n+1}=\int x^{k+j}\,dx</math> को प्रतिस्थापित करते हैं। | |||
:<math> | :<math> | ||
2(A(x) - 1 - x) = \int A(x)^2\,dx - x, | 2(A(x) - 1 - x) = \int A(x)^2\,dx - x, | ||
</math> | </math> | ||
जो | जो विभेदीकरण के बाद <math>2\frac{dA}{dx} - 2 = A^2-1</math> बन जाता है। इस अंतर समीकरण को वेरिएबल्स को अलग करके हल किया जा सकता है (प्रारंभिक स्थिति <math>A(0)=A_0/0!=1</math> का उपयोग करके), और अंतिम परिणाम देते हुए एक स्पर्शरेखा अर्ध-कोण सूत्र का उपयोग करके सरलीकृत किया जा सकता है, | ||
इस अंतर समीकरण को | |||
<math> A(x) = \tan \left(\frac\pi4 + \frac x2\right) = \sec x + \tan x</math> | |||
छेदक और [[स्पर्शरेखा (त्रिकोणमिति)]] कार्यों का योग, इस परिणाम को आंद्रे प्रमेय के रूप में जाना जाता है। | |||
एंड्रे के प्रमेय से यह पता चलता है कि श्रृंखला A(x) की [[अभिसरण की त्रिज्या]] {{pi}}/2 है। यह किसी को [[स्पर्शोन्मुख विस्तार]] की गणना करने की अनुमति देता है।<ref>{{citation | |||
| last = Stanley | first = Richard P. | author-link = Richard P. Stanley | | last = Stanley | first = Richard P. | author-link = Richard P. Stanley | ||
| arxiv = 0912.4240 | | arxiv = 0912.4240 | ||
Line 63: | Line 63: | ||
| year = 2010}}</ref> | | year = 2010}}</ref> | ||
: <math> A_n \sim 2 \left(\frac{2}{\pi}\right)^{n + 1} n!\,. </math> | : <math> A_n \sim 2 \left(\frac{2}{\pi}\right)^{n + 1} n!\,. </math> | ||
== संबंधित पूर्णांक अनुक्रम == | == संबंधित पूर्णांक अनुक्रम == | ||
Line 114: | Line 112: | ||
* सबसे लंबे समय तक बारी-बारी से | * सबसे लंबे समय तक बारी-बारी से | ||
* Boustrophedon रूपांतरण | * Boustrophedon रूपांतरण | ||
* [[बाड़ (गणित)]], एक [[आंशिक रूप से आदेशित सेट]] जिसमें इसके रैखिक विस्तार के रूप में वैकल्पिक क्रमपरिवर्तन हैं | * [[बाड़ (गणित)]], एक [[आंशिक रूप से आदेशित सेट|आंशिक रूप से आदेशित समुच्चय]] जिसमें इसके रैखिक विस्तार के रूप में वैकल्पिक क्रमपरिवर्तन हैं | ||
== उद्धरण == | == उद्धरण == |
Revision as of 20:14, 1 April 2023
साहचर्य गणित में, समुच्चय {1, 2, 3, ..., n} का एक वैकल्पिक क्रमसंचय (या ज़िगज़ैग क्रमसंचय) उन संख्याओं का एक क्रमसंचय (व्यवस्था) है जिससे की प्रत्येक प्रविष्टि पूर्ववर्ती प्रविष्टि की तुलना में वैकल्पिक रूप से अधिक या कम होती है, उदाहरण के लिए, {1, 2, 3, 4} के पाँच वैकल्पिक क्रमसंचय हैं:
- 1, 3, 2, 4 इस कारण से 1 < 3 > 2 < 4,
- 1, 4, 2, 3 इस कारण से 1 < 4 > 2 < 3,
- 2, 3, 1, 4 इस कारण से 2 < 3 > 1 < 4,
- 2, 4, 1, 3 इस कारण से 2 < 4 > 1 < 3, तथा
- 3, 4, 1, 2 इस कारण से 3 < 4 > 1 < 2.
इस प्रकार के क्रमचय का अध्ययन पहली बार 19वीं शताब्दी में डेसिरे आंद्रे द्वारा किया गया था।[1]
अलग-अलग लेखक वैकल्पिक क्रमसंचय शब्द का उपयोग थोड़ा अलग तरीके से करते हैं: कुछ के लिए आवश्यक है कि एक वैकल्पिक क्रमसंचय में दूसरी प्रविष्टि पहले से बड़ी होनी चाहिए (जैसा कि ऊपर के उदाहरणों में है), अन्य के लिए यह आवश्यक है कि प्रत्यावर्तन को उलट दिया जाए (ताकि दूसरी प्रविष्टि छोटी हो जाए) पहले की तुलना में, फिर तीसरा दूसरे से बड़ा, और इसी तरह), जबकि अन्य दोनों प्रकारों को वैकल्पिक क्रमपरिवर्तन के नाम से पुकारते हैं।
समुच्चय {1, ..., n} के वैकल्पिक क्रमपरिवर्तनों की संख्या An के निर्धारण को एंड्रे की समस्या कहा जाता है। संख्याएँ An को यूलर संख्याएँ, टेढ़ी-मेढ़ी संख्याएँ या ऊपर/नीचे संख्याएँ कहा जाता है। जब n सम संख्या हो तो An को छेदक संख्या कहा जाता है, जबकि यदि n विषम हो तो इसे स्पर्शरेखा संख्या कहते हैं। ये बाद वाले नाम अनुक्रम के लिए जनरेटिंग फ़ंक्शन के अध्ययन से आते हैं।
परिभाषाएँ
एक क्रमचय c1, ..., cn को प्रत्यावर्ती कहा जाता है यदि इसकी प्रविष्टियां बारी-बारी से ऊपर और नीचे जाती हैं। इस प्रकार, पहली और आखिरी के अलावा प्रत्येक प्रविष्टि अपने दोनों पड़ोसियों की तुलना में या तो बड़ी या छोटी होनी चाहिए, कुछ लेखक केवल "अप-डाउन" क्रमपरिवर्तन को संदर्भित करने के लिए वैकल्पिक शब्द का उपयोग करते हैं जिसके लिए c1 < c2 > c3 < ... "डाउन-अप" क्रमपरिवर्तन कहते हैं जो c1 > c2 < c3 > ... जो नाम उल्टे वैकल्पिक को संतुष्ट करते हैं। अन्य लेखक इस सम्मेलन को उलट देते हैं, या ऊपर-नीचे और नीचे-ऊपर क्रमपरिवर्तन दोनों को संदर्भित करने के लिए "वैकल्पिक" शब्द का उपयोग करते हैं।
डाउन-अप और अप-डाउन क्रमपरिवर्तन के बीच एक-से-एक सरल पत्राचार होता है: प्रत्येक प्रविष्टि ci को n + 1 - ci के साथ बदलकर प्रविष्टियों के सापेक्ष क्रम को उलट देता है।
प्रथा के अनुसार, किसी भी नामकरण योजना में लंबाई 0 (खाली समुच्चय का क्रमचय) और 1 (एकल प्रविष्टि 1 से युक्त क्रमचय) के अद्वितीय क्रमपरिवर्तन को वैकल्पिक रूप से लिया जाता है।
आंद्रे का प्रमेय
समुच्चय {1, ..., n} के वैकल्पिक क्रमपरिवर्तनों की संख्या An के निर्धारण को एंड्रे की समस्या कहा जाता है। संख्याएँ An को विभिन्न प्रकार से यूलर संख्याएँ, टेढ़ी-मेढ़ी संख्याएँ, ऊपर/नीचे संख्याएँ, या इन नामों के कुछ संयोजनों के रूप में जाना जाता है। विशेष रूप से यूलर संख्या नाम का प्रयोग कभी-कभी निकट से संबंधित अनुक्रम के लिए किया जाता है। An के पहले कुछ मान (ओईआईएस में अनुक्रम A000111) हैं।
ये संख्याएँ कैटलन संख्याओं के समान एक साधारण पुनरावृत्ति को संतुष्ट करती हैं: समुच्चय वैकल्पिक क्रमपरिवर्तन (दोनों डाउन-अप और अप-डाउन) के समुच्चय को विभाजित करके सबसे बड़ी प्रविष्टि n + 1 की स्थिति k के अनुसार, यह दिखाया जा सकता है
सभी n ≥ 1 के लिए, आंद्रे (1881) ने इस पुनरावृत्ति का उपयोग घातीय जनन फलन से संतुष्ट अवकल समीकरण देने के लिए किया,
अनुक्रम के लिए An, वास्तव में, पुनरावृत्ति देता है:
जहां हम और को प्रतिस्थापित करते हैं।
जो विभेदीकरण के बाद बन जाता है। इस अंतर समीकरण को वेरिएबल्स को अलग करके हल किया जा सकता है (प्रारंभिक स्थिति का उपयोग करके), और अंतिम परिणाम देते हुए एक स्पर्शरेखा अर्ध-कोण सूत्र का उपयोग करके सरलीकृत किया जा सकता है,
छेदक और स्पर्शरेखा (त्रिकोणमिति) कार्यों का योग, इस परिणाम को आंद्रे प्रमेय के रूप में जाना जाता है।
एंड्रे के प्रमेय से यह पता चलता है कि श्रृंखला A(x) की अभिसरण की त्रिज्या π/2 है। यह किसी को स्पर्शोन्मुख विस्तार की गणना करने की अनुमति देता है।[2]
संबंधित पूर्णांक अनुक्रम
विषम-अनुक्रमित ज़िगज़ैग संख्याएँ (यानी, स्पर्शरेखा संख्याएँ) बर्नौली संख्याओं से निकटता से संबंधित हैं। संबंध सूत्र द्वारा दिया गया है
n > 0 के लिए।
अगर जेडn {1, ..., n} के क्रमपरिवर्तनों की संख्या को दर्शाता है जो या तो ऊपर-नीचे या नीचे-ऊपर (या दोनों, n <2 के लिए) हैं, तो यह ऊपर दिए गए जोड़े से Z का अनुसरण करता हैn = कोईn n ≥ 2 के लिए। Z के पहले कुछ मानn हैं 1, 1, 2, 4, 10, 32, 122, 544, 2770, 15872, 101042, ... (sequence A001250 in the OEIS).
यूलर टेढ़ी-मेढ़ी संख्याएं एंट्रिंगर संख्या से संबंधित हैं, जिससे टेढ़ी-मेढ़ी संख्या की गणना की जा सकती है। प्रवेशक संख्याओं को पुनरावर्ती रूप से निम्नानुसार परिभाषित किया जा सकता है:[3]
- .
तबth टेढ़ी मेढ़ी संख्या प्रवेशकर्ता संख्या E(n, n) के बराबर है।
नंबर ए2n सम सूचकांकों के साथ को छेदक संख्या या ज़िग संख्या कहा जाता है: चूंकि छेदक फलन सम फलन है और स्पर्शरेखा विषम फलन है, यह ऊपर एंड्रे के प्रमेय से अनुसरण करता है कि वे मैकलॉरिन श्रृंखला के अंश हैं sec x. पहले कुछ मान 1, 1, 5, 61, 1385, 50521, ... (sequence A000364 in the OEIS).
छेदक संख्याएँ सूत्र E द्वारा हस्ताक्षरित यूलर संख्याओं (अतिशयोक्तिपूर्ण छेदक के टेलर गुणांक) से संबंधित हैं2n = (−1)एन</सुप>ए2n. (औरn= 0 जब n विषम हो।)
तदनुसार, संख्या ए2n+1 विषम सूचकांकों के साथ स्पर्शरेखा संख्याएँ या ज़ैग संख्याएँ कहलाती हैं। पहले कुछ मान 1, 2, 16, 272, 7936, ... (sequence A000182 in the OEIS).
दूसरी तरह की स्टर्लिंग संख्याओं के संदर्भ में स्पष्ट सूत्र
यूलर टेढ़ी-मेढ़ी संख्या का यूलर संख्या के साथ संबंध, और बर्नौली संख्या का उपयोग निम्नलिखित को सिद्ध करने के लिए किया जा सकता है [4] [5]
कहाँ
गिरने और बढ़ते फैक्टोरियल को दर्शाता है, और दूसरी तरह की स्टर्लिंग संख्या को दर्शाता है।
यह भी देखें
- सबसे लंबे समय तक बारी-बारी से
- Boustrophedon रूपांतरण
- बाड़ (गणित), एक आंशिक रूप से आदेशित समुच्चय जिसमें इसके रैखिक विस्तार के रूप में वैकल्पिक क्रमपरिवर्तन हैं
उद्धरण
- ↑ Jessica Millar, N. J. A. Sloane, Neal E. Young, "A New Operation on Sequences: the Boustrouphedon Transform" Journal of Combinatorial Theory, Series A 76(1):44–54 (1996)
- ↑ Stanley, Richard P. (2010), "A survey of alternating permutations", Combinatorics and graphs, Contemporary Mathematics, vol. 531, Providence, RI: American Mathematical Society, pp. 165–196, arXiv:0912.4240, doi:10.1090/conm/531/10466, MR 2757798
- ↑ Weisstein, Eric W. "Entringer Number." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/EntringerNumber.html
- ↑ Mendes, Anthony (2007). "A Note on Alternating Permutations". The American Mathematical Monthly. 114 (5): 437–440. doi:10.1080/00029890.2007.11920432. JSTOR 27642223.
- ↑ Mező, István; Ramírez, José L. (2019). "The r-alternating permutations". Aequationes Mathematicae. doi:10.1007/s00010-019-00658-5.
संदर्भ
- André, Désiré (1879), "Développements de séc x et de tang x", Comptes rendus de l'Académie des sciences, 88: 965–967.
- André, Désiré (1881), "Sur les permutations alternées" (PDF), Journal de mathématiques pures et appliquées, 3e série, 7: 167–184, archived from the original (PDF) on November 22, 2021.
- Henry, Philippe; Wanner, Gerhard (2019). "Zigzags with Bürgi, Bernoulli, Euler and the Seidel–Entringer–Arnol'd triangle". Elemente der Mathematik. 74 (4): 141–168. doi:10.4171/EM/393..
- Stanley, Richard P. (2011). Enumerative Combinatorics. Vol. I (2nd ed.). Cambridge University Press.
बाहरी संबंध
- Weisstein, Eric W. "Alternating Permutation". MathWorld.
- Ross Tang, "An Explicit Formula for the Euler zigzag numbers (Up/down numbers) from power series" A simple explicit formula for An.
- "A Survey of Alternating Permutations", a preprint by Richard P. Stanley