वैकल्पिक क्रमपरिवर्तन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 65: Line 65:
== संबंधित पूर्णांक अनुक्रम ==
== संबंधित पूर्णांक अनुक्रम ==


विषम-अनुक्रमित ज़िगज़ैग संख्याएँ (यानी, स्पर्शरेखा संख्याएँ) बर्नौली संख्याओं से निकटता से संबंधित हैं। संबंध सूत्र द्वारा दिया गया है
विषम-अनुक्रमित ज़िगज़ैग संख्याएँ (यानी, स्पर्शरेखा संख्याएँ) बर्नौली संख्याओं से निकटता से संबंधित हैं। संबंध सूत्र द्वारा दिया गया है:


: <math>B_{2n} =(-1)^{n-1}\frac{2n}{4^{2n}-2^{2n}} A_{2n-1}</math>
: <math>B_{2n} =(-1)^{n-1}\frac{2n}{4^{2n}-2^{2n}} A_{2n-1}</math>
n > 0 के लिए।
n > 0 के लिए,


अगर जेड<sub>''n''</sub> {1, ..., n} के क्रमपरिवर्तनों की संख्या को दर्शाता है जो या तो ऊपर-नीचे या नीचे-ऊपर (या दोनों, n <2 के लिए) हैं, तो यह ऊपर दिए गए जोड़े से Z का अनुसरण करता है<sub>''n''</sub> = कोई<sub>''n''</sub> n ≥ 2 के लिए। Z के पहले कुछ मान<sub>''n''</sub> हैं 1, 1, 2, 4, 10, 32, 122, 544, 2770, 15872, 101042, ... {{OEIS|id=A001250}}.
यदि Z<sub>''n,''</sub> <math>{1, ..., n}</math> के क्रमपरिवर्तनों की संख्या को दर्शाता है जो या तो ऊपर-नीचे या नीचे-ऊपर हैं (या दोनों, n < 2 के लिए) तो यह दी गई जोड़ी से अनुसरण करता है कि Zn = 2An के लिए ≥ 2, Z<sub>''n''</sub> के पहले कुछ मान <math>1, 1, 2, 4, 10, 32, 122, 544, 2770, 15872, 101042, ...</math> ([[OEIS]] में अनुक्रम [[A001250]]) हैं।


यूलर टेढ़ी-मेढ़ी संख्याएं एंट्रिंगर संख्या से संबंधित हैं, जिससे टेढ़ी-मेढ़ी संख्या की गणना की जा सकती है। प्रवेशक संख्याओं को पुनरावर्ती रूप से निम्नानुसार परिभाषित किया जा सकता है:<ref>Weisstein, Eric W. "Entringer Number." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/EntringerNumber.html</ref>
यूलर टेढ़ी-मेढ़ी संख्याएं एंट्रिंगर संख्या से संबंधित हैं, जिससे टेढ़ी-मेढ़ी संख्या की गणना की जा सकती है, प्रवेशक संख्याओं को पुनरावर्ती रूप से निम्नानुसार परिभाषित किया जा सकता है:<ref>Weisstein, Eric W. "Entringer Number." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/EntringerNumber.html</ref>
: <math> E(0,0) = 1 </math>
: <math> E(0,0) = 1 </math>
: <math> E(n,0) = 0 \qquad \mbox{for } n > 0 </math>
: <math> E(n,0) = 0 \qquad \mbox{for } n > 0 </math>
: <math> E(n,k) = E(n, k-1) + E(n-1, n-k) </math>.
: <math> E(n,k) = E(n, k-1) + E(n-1, n-k) </math>.
तब<sup>th</sup> टेढ़ी मेढ़ी संख्या प्रवेशकर्ता संख्या E(n, n) के बराबर है।
N<sup>th</sup> ज़िगज़ैग संख्या प्रवेशकर्ता संख्या E(n, n) के बराबर है।


नंबर ए<sub>2''n''</sub> सम सूचकांकों के साथ को छेदक संख्या या ज़िग संख्या कहा जाता है: चूंकि छेदक फलन सम फलन है और स्पर्शरेखा विषम फलन है, यह ऊपर एंड्रे के प्रमेय से अनुसरण करता है कि वे [[मैकलॉरिन श्रृंखला]] के अंश हैं {{math|sec ''x''}}. पहले कुछ मान 1, 1, 5, 61, 1385, 50521, ... {{OEIS|id=A000364}}.
सम सूचकांकों वाली संख्याओं A<sub>2n</sub> को छेदक संख्याएँ या ज़िग संख्याएँ कहा जाता है: चूंकि छेदक फलन सम है और स्पर्शरेखा विषम है, यह ऊपर एंड्रे के प्रमेय से अनुसरण करता है कि वे {{math|sec ''x''}} की [[मैकलॉरिन श्रृंखला]] में अंश हैं। पहले कुछ मान <math>1, 1, 5, 61, 1385, 50521, ...</math> ([[OEIS]] में अनुक्रम [[A000364]]) हैं।


छेदक संख्याएँ सूत्र E द्वारा हस्ताक्षरित यूलर संख्याओं (अतिशयोक्तिपूर्ण छेदक के टेलर गुणांक) से संबंधित हैं<sub>2''n''</sub> = (−1)<sup>एन</सुप><sub>2''n''</sub>. (और<sub>''n''</sub>= 0 जब n विषम हो।)
छेदक संख्याएँ सूत्र E<sub>2n</sub> = (−1)<sup>n</sup>A<sub>2n</sub> द्वारा हस्ताक्षरित यूलर संख्याओं (अतिपरवलयिक छेदक के टेलर गुणांक) से (<math>En = 0</math> जब n विषम है) संबंधित हैं।


तदनुसार, संख्या <sub>2''n''+1</sub> विषम सूचकांकों के साथ स्पर्शरेखा संख्याएँ या ज़ैग संख्याएँ कहलाती हैं। पहले कुछ मान 1, 2, 16, 272, 7936, ... {{OEIS|id=A000182}}.
तदनुसार, विषम सूचकांकों वाली संख्या A<sub>2n+1</sub> को स्पर्शरेखा संख्या या ज़ैग संख्या कहा जाता है। पहले कुछ मान 1, 2, 16, 272, 7936, ... ([[OEIS]] में अनुक्रम [[A000182]]) हैं।


==दूसरी तरह की स्टर्लिंग संख्याओं के संदर्भ में स्पष्ट सूत्र==
==दूसरी तरह की स्टर्लिंग संख्याओं के संदर्भ में स्पष्ट सूत्र==
यूलर टेढ़ी-मेढ़ी संख्या का यूलर संख्या के साथ संबंध, और बर्नौली संख्या का उपयोग निम्नलिखित को सिद्ध करने के लिए किया जा सकता है
यूलर टेढ़ी-मेढ़ी संख्या का यूलर संख्या के साथ संबंध, और बर्नौली संख्या का उपयोग निम्नलिखित को सिद्ध करने के लिए किया जा सकता है<ref>{{cite journal
<ref>{{cite journal
  | last = Mendes| first = Anthony  
  | last = Mendes| first = Anthony  
  | title = A Note on Alternating Permutations
  | title = A Note on Alternating Permutations
Line 94: Line 93:
  | volume = 114
  | volume = 114
  | year = 2007
  | year = 2007
  | jstor = 27642223 | doi = 10.1080/00029890.2007.11920432 }}</ref>
  | jstor = 27642223 | doi = 10.1080/00029890.2007.11920432 }}</ref><ref>{{cite journal
<ref>{{cite journal
  | last1 = Mező| first1 = István  
  | last1 = Mező| first1 = István  
  | last2 = Ramírez| first2 = José L.
  | last2 = Ramírez| first2 = José L.
Line 104: Line 102:
  }}</ref>
  }}</ref>
:<math> A_{r}=-\frac{4^{r}}{a_{r}} \sum_{k=1}^{r}\frac{(-1)^{k}\, S(r,k)}{k+1}\left(\frac{3}{4}\right)^{(k)} </math>
:<math> A_{r}=-\frac{4^{r}}{a_{r}} \sum_{k=1}^{r}\frac{(-1)^{k}\, S(r,k)}{k+1}\left(\frac{3}{4}\right)^{(k)} </math>
कहाँ
जहाँ
:<math> a_{r}=\begin{cases} (-1)^{\frac{r-1}{2}}(1+2^{-r}) &\mbox{if r is odd}  \\
:<math> a_{r}=\begin{cases} (-1)^{\frac{r-1}{2}}(1+2^{-r}) &\mbox{if r is odd}  \\
(-1)^{\frac{r}{2}} & \mbox{if r is even}  \end{cases}, </math>
(-1)^{\frac{r}{2}} & \mbox{if r is even}  \end{cases}, </math>
<math>(x)^{(n)}=(x)(x+1)\cdots (x+n-1)</math> गिरने और बढ़ते फैक्टोरियल को दर्शाता है, और <math> S(r,k) </math> [[दूसरी तरह की स्टर्लिंग संख्या]] को दर्शाता है।
<math>(x)^{(n)}=(x)(x+1)\cdots (x+n-1)</math> बढ़ते भाज्य को दर्शाता है, और <math> S(r,k) </math> [[दूसरी तरह की स्टर्लिंग संख्या]] को दर्शाता है।


== यह भी देखें ==
== यह भी देखें ==
* सबसे लंबे समय तक बारी-बारी से
* सबसे लंबे समय तक बारी-बारी से
* Boustrophedon रूपांतरण
* बोस्टरोफेडन रूपांतरण
* [[बाड़ (गणित)]], एक [[आंशिक रूप से आदेशित सेट|आंशिक रूप से आदेशित समुच्चय]] जिसमें इसके रैखिक विस्तार के रूप में वैकल्पिक क्रमपरिवर्तन हैं
* [[बाड़ (गणित)]], एक [[आंशिक रूप से आदेशित सेट|आंशिक रूप से आदेशित समुच्चय]] जिसमें इसके रैखिक विस्तार के रूप में वैकल्पिक क्रमपरिवर्तन हैं



Revision as of 23:19, 1 April 2023

साहचर्य गणित में, समुच्चय {1, 2, 3, ..., n} का एक वैकल्पिक क्रमसंचय (या ज़िगज़ैग क्रमसंचय) उन संख्याओं का एक क्रमसंचय (व्यवस्था) है जिससे की प्रत्येक प्रविष्टि पूर्ववर्ती प्रविष्टि की तुलना में वैकल्पिक रूप से अधिक या कम होती है, उदाहरण के लिए, {1, 2, 3, 4} के पाँच वैकल्पिक क्रमसंचय हैं:

  • 1, 3, 2, 4        इस कारण से       1 < 3 > 2 < 4,
  • 1, 4, 2, 3        इस कारण से       1 < 4 > 2 < 3,
  • 2, 3, 1, 4        इस कारण से       2 < 3 > 1 < 4,
  • 2, 4, 1, 3        इस कारण से       2 < 4 > 1 < 3, तथा
  • 3, 4, 1, 2        इस कारण से       3 < 4 > 1 < 2.

इस प्रकार के क्रमचय का अध्ययन पहली बार 19वीं शताब्दी में डेसिरे आंद्रे द्वारा किया गया था।[1]

अलग-अलग लेखक वैकल्पिक क्रमसंचय शब्द का उपयोग थोड़ा अलग तरीके से करते हैं: कुछ के लिए आवश्यक है कि एक वैकल्पिक क्रमसंचय में दूसरी प्रविष्टि पहले से बड़ी होनी चाहिए (जैसा कि ऊपर के उदाहरणों में है), अन्य के लिए यह आवश्यक है कि प्रत्यावर्तन को उलट दिया जाए (ताकि दूसरी प्रविष्टि छोटी हो जाए) पहले की तुलना में, फिर तीसरा दूसरे से बड़ा, और इसी तरह), जबकि अन्य दोनों प्रकारों को वैकल्पिक क्रमपरिवर्तन के नाम से पुकारते हैं।

समुच्चय {1, ..., n} के वैकल्पिक क्रमपरिवर्तनों की संख्या An के निर्धारण को एंड्रे की समस्या कहा जाता है। संख्याएँ An को यूलर संख्याएँ, टेढ़ी-मेढ़ी संख्याएँ या ऊपर/नीचे संख्याएँ कहा जाता है। जब n सम संख्या हो तो An को छेदक संख्या कहा जाता है, जबकि यदि n विषम हो तो इसे स्पर्शरेखा संख्या कहते हैं। ये बाद वाले नाम अनुक्रम के लिए जनरेटिंग फ़ंक्शन के अध्ययन से आते हैं।

परिभाषाएँ

एक क्रमचय c1, ..., cn को प्रत्यावर्ती कहा जाता है यदि इसकी प्रविष्टियां बारी-बारी से ऊपर और नीचे जाती हैं। इस प्रकार, पहली और आखिरी के अलावा प्रत्येक प्रविष्टि अपने दोनों पड़ोसियों की तुलना में या तो बड़ी या छोटी होनी चाहिए, कुछ लेखक केवल "अप-डाउन" क्रमपरिवर्तन को संदर्भित करने के लिए वैकल्पिक शब्द का उपयोग करते हैं जिसके लिए c1 < c2 > c3 < ... "डाउन-अप" क्रमपरिवर्तन कहते हैं जो c1 > c2 < c3 > ... जो नाम उल्टे  वैकल्पिक को संतुष्ट करते हैं। अन्य लेखक इस सम्मेलन को उलट देते हैं, या ऊपर-नीचे और नीचे-ऊपर क्रमपरिवर्तन दोनों को संदर्भित करने के लिए "वैकल्पिक" शब्द का उपयोग करते हैं।

डाउन-अप और अप-डाउन क्रमपरिवर्तन के बीच एक-से-एक सरल पत्राचार होता है: प्रत्येक प्रविष्टि ci को n + 1 - ci के साथ बदलकर प्रविष्टियों के सापेक्ष क्रम को उलट देता है।

प्रथा के अनुसार, किसी भी नामकरण योजना में लंबाई 0 (खाली समुच्चय का क्रमचय) और 1 (एकल प्रविष्टि 1 से युक्त क्रमचय) के अद्वितीय क्रमपरिवर्तन को वैकल्पिक रूप से लिया जाता है।

आंद्रे का प्रमेय

बर्नोली (1742) में ज़िगज़ैग नंबर, ओपेरा ओम्निया वॉल्यूम। 4, पृ. 105

समुच्चय {1, ..., n} के वैकल्पिक क्रमपरिवर्तनों की संख्या An के निर्धारण को एंड्रे की समस्या कहा जाता है। संख्याएँ An को विभिन्न प्रकार से यूलर संख्याएँ, टेढ़ी-मेढ़ी संख्याएँ, ऊपर/नीचे संख्याएँ, या इन नामों के कुछ संयोजनों के रूप में जाना जाता है। विशेष रूप से यूलर संख्या नाम का प्रयोग कभी-कभी निकट से संबंधित अनुक्रम के लिए किया जाता है। An के पहले कुछ मान (ओईआईएस में अनुक्रम A000111) हैं।

ये संख्याएँ कैटलन संख्याओं के समान एक साधारण पुनरावृत्ति को संतुष्ट करती हैं: समुच्चय वैकल्पिक क्रमपरिवर्तन (दोनों डाउन-अप और अप-डाउन) के समुच्चय को विभाजित करके सबसे बड़ी प्रविष्टि n + 1 की स्थिति k के अनुसार, यह दिखाया जा सकता है

सभी n ≥ 1 के लिए, आंद्रे (1881) ने इस पुनरावृत्ति का उपयोग घातीय जनन फलन से संतुष्ट अवकल समीकरण देने के लिए किया,

अनुक्रम के लिए An, वास्तव में, पुनरावृत्ति देता है:

जहां हम और को प्रतिस्थापित करते हैं।

जो विभेदीकरण के बाद बन जाता है। इस अंतर समीकरण को वेरिएबल्स को अलग करके हल किया जा सकता है (प्रारंभिक स्थिति का उपयोग करके), और अंतिम परिणाम देते हुए एक स्पर्शरेखा अर्ध-कोण सूत्र का उपयोग करके सरलीकृत किया जा सकता है,

छेदक और स्पर्शरेखा (त्रिकोणमिति) कार्यों का योग, इस परिणाम को आंद्रे प्रमेय के रूप में जाना जाता है।

एंड्रे के प्रमेय से यह पता चलता है कि श्रृंखला A(x) की अभिसरण की त्रिज्या π/2 है। यह किसी को स्पर्शोन्मुख विस्तार की गणना करने की अनुमति देता है।[2]

संबंधित पूर्णांक अनुक्रम

विषम-अनुक्रमित ज़िगज़ैग संख्याएँ (यानी, स्पर्शरेखा संख्याएँ) बर्नौली संख्याओं से निकटता से संबंधित हैं। संबंध सूत्र द्वारा दिया गया है:

n > 0 के लिए,

यदि Zn, के क्रमपरिवर्तनों की संख्या को दर्शाता है जो या तो ऊपर-नीचे या नीचे-ऊपर हैं (या दोनों, n < 2 के लिए) तो यह दी गई जोड़ी से अनुसरण करता है कि Zn = 2An के लिए ≥ 2, Zn के पहले कुछ मान (OEIS में अनुक्रम A001250) हैं।

यूलर टेढ़ी-मेढ़ी संख्याएं एंट्रिंगर संख्या से संबंधित हैं, जिससे टेढ़ी-मेढ़ी संख्या की गणना की जा सकती है, प्रवेशक संख्याओं को पुनरावर्ती रूप से निम्नानुसार परिभाषित किया जा सकता है:[3]

.

Nth ज़िगज़ैग संख्या प्रवेशकर्ता संख्या E(n, n) के बराबर है।

सम सूचकांकों वाली संख्याओं A2n को छेदक संख्याएँ या ज़िग संख्याएँ कहा जाता है: चूंकि छेदक फलन सम है और स्पर्शरेखा विषम है, यह ऊपर एंड्रे के प्रमेय से अनुसरण करता है कि वे sec x की मैकलॉरिन श्रृंखला में अंश हैं। पहले कुछ मान (OEIS में अनुक्रम A000364) हैं।

छेदक संख्याएँ सूत्र E2n = (−1)nA2n द्वारा हस्ताक्षरित यूलर संख्याओं (अतिपरवलयिक छेदक के टेलर गुणांक) से ( जब n विषम है) संबंधित हैं।

तदनुसार, विषम सूचकांकों वाली संख्या A2n+1 को स्पर्शरेखा संख्या या ज़ैग संख्या कहा जाता है। पहले कुछ मान 1, 2, 16, 272, 7936, ... (OEIS में अनुक्रम A000182) हैं।

दूसरी तरह की स्टर्लिंग संख्याओं के संदर्भ में स्पष्ट सूत्र

यूलर टेढ़ी-मेढ़ी संख्या का यूलर संख्या के साथ संबंध, और बर्नौली संख्या का उपयोग निम्नलिखित को सिद्ध करने के लिए किया जा सकता है[4][5]

जहाँ

बढ़ते भाज्य को दर्शाता है, और दूसरी तरह की स्टर्लिंग संख्या को दर्शाता है।

यह भी देखें

उद्धरण

  1. Jessica Millar, N. J. A. Sloane, Neal E. Young, "A New Operation on Sequences: the Boustrouphedon Transform" Journal of Combinatorial Theory, Series A 76(1):44–54 (1996)
  2. Stanley, Richard P. (2010), "A survey of alternating permutations", Combinatorics and graphs, Contemporary Mathematics, vol. 531, Providence, RI: American Mathematical Society, pp. 165–196, arXiv:0912.4240, doi:10.1090/conm/531/10466, MR 2757798
  3. Weisstein, Eric W. "Entringer Number." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/EntringerNumber.html
  4. Mendes, Anthony (2007). "A Note on Alternating Permutations". The American Mathematical Monthly. 114 (5): 437–440. doi:10.1080/00029890.2007.11920432. JSTOR 27642223.
  5. Mező, István; Ramírez, José L. (2019). "The r-alternating permutations". Aequationes Mathematicae. doi:10.1007/s00010-019-00658-5.


संदर्भ

  • Henry, Philippe; Wanner, Gerhard (2019). "Zigzags with Bürgi, Bernoulli, Euler and the Seidel–Entringer–Arnol'd triangle". Elemente der Mathematik. 74 (4): 141–168. doi:10.4171/EM/393..


बाहरी संबंध