टाइटेनियम मिश्र: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(11 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Metal alloys made by combining titanium with other elements}}
{{Short description|Metal alloys made by combining titanium with other elements}}
[[टाइटेनियम]] [[मिश्र धातु]] वे मिश्र धातु हैं जिनमें टाइटेनियम और अन्य [[रासायनिक तत्व]]ों का मिश्रण होता है। इस तरह के मिश्र धातुओं में बहुत अधिक तन्य शक्ति और क्रूरता होती है (अत्यधिक तापमान पर भी)। वे वजन में हल्के होते हैं, असाधारण संक्षारण प्रतिरोध और अत्यधिक तापमान का सामना करने की क्षमता रखते हैं। चूंकि , कच्चे माल और प्रसंस्करण दोनों की उच्च लागत उनके उपयोग को [[सैन्य]] अनुप्रयोगों, विमान, [[अंतरिक्ष यान]], [[साइकिल]], चिकित्सा उपकरणों, गहनों, अत्यधिक तनाव वाले घटकों जैसे महंगी [[स्पोर्ट्स कार]]ों पर [[कनेक्टिंग छड़]] और कुछ प्रीमियम खेल उपकरण और [[उपभोक्ता इलेक्ट्रॉनिक्स]] तक सीमित करती है।
[[टाइटेनियम]] [[मिश्र धातु]] वे धातु होती है, जिनमें टाइटेनियम और अन्य [[रासायनिक तत्व|रासायनिक]] [[तत्वों]] का मिश्रण होता है। इस तरह के मिश्र धातुओं में अत्यधिक तापमान पर भी बहुत अधिक तन्य बल और कठोरता होती है। वे वजन में हल्के होते हैं, यह असाधारण संक्षारण प्रतिरोध और अत्यधिक तापमान का सामना करने की क्षमता रखते हैं। चूंकि, कच्चे माल और प्रसंस्करण दोनों की उच्च लागत उनके उपयोग को [[सैन्य]] अनुप्रयोगों, विमान [[अंतरिक्ष यान]] [[साइकिल]] चिकित्सा उपकरणों, गहनों अत्यधिक तनाव वाले घटकों जैसे महंगी [[स्पोर्ट्स कार|स्पोर्ट्स कारो]] पर [[कनेक्टिंग छड़]] और कुछ प्रीमियम खेल उपकरण और [[उपभोक्ता इलेक्ट्रॉनिक्स]] तक सीमित करती है।


चूंकि व्यावसायिक रूप से शुद्ध टाइटेनियम में स्वीकार्य यांत्रिक गुण हैं और इसका उपयोग [[ हड्डी ]] और दंत प्रत्यारोपण के लिए किया गया है, अधिकांश अनुप्रयोगों के लिए टाइटेनियम को [[अल्युमीनियम]] और [[वैनेडियम]] की थोड़ी मात्रा के साथ मिश्रित किया जाता है, सामान्यतः  क्रमशः 6% और 4% वजन के अनुसार। इस मिश्रण में एक [[ठोस घुलनशीलता]] होती है जो तापमान के साथ नाटकीय रूप से भिन्न होती है, जिससे इसे वर्षा को मजबूत करने की अनुमति मिलती है। यह गर्मी उपचार प्रक्रिया मिश्र धातु को अपने अंतिम आकार में काम करने के बाद किया जाता है, लेकिन इससे पहले इसे उपयोग में लाया जाता है, जिससे उच्च शक्ति वाले उत्पाद का निर्माण बहुत आसान हो जाता है।
चूंकि, व्यावसायिक रूप से शुद्ध टाइटेनियम में स्वीकार्य यांत्रिक गुण होते है और अधिकांश अनुप्रयोगों के लिए [[आर्थोपेडिक|विकलांग विज्ञान]] और दंत प्रत्यारोपण के लिए उपयोग किया जाता है। अधिकांश अनुप्रयोगों के लिए [[टाइटेनियम]] को कम मात्रा में [[एल्यूमीनियम]] और वैनेडियम के साथ क्रमशः 6% और 4% वजन के साथ मिश्रित किया जाता है। इस ठोस मिश्रण में एक [[ठोस घुलनशीलता|घुलनशीलता]] होती है, जो तापमान के साथ नाटकीय रूप से बदलती रहती है, जिससे इसे अवक्षेपण को मजबूत करने की अनुमति मिलती है। यह ऊष्मा परिशोधन प्रक्रिया मिश्र धातु के अंतिम रूप में बनाये जाने के बाद की आती है, लेकिन इससे पहले इसे उपयोग में लाया जाता है जिससे उच्च बल वाले उत्पाद को अधिक आसानी से बनाया जा सके।


== श्रेणियां ==
== श्रेणियां ==
टाइटेनियम मिश्र धातुओं को सामान्यतः चार मुख्य श्रेणियों में वर्गीकृत किया जाता है:<ref>[http://www.azom.com/details.asp?ArticleID=2591 Characteristics of Alpha, Alpha Beta and Beta Titanium Alloys]</ref>
टाइटेनियम मिश्र धातुओं को सामान्यतः चार मुख्य श्रेणियों में वर्गीकृत किया जाता है<ref>[http://www.azom.com/details.asp?ArticleID=2591 Characteristics of Alpha, Alpha Beta and Beta Titanium Alloys]</ref>
* Alpha alloys which contain neutral alloying elements (such as [[tin]]) and/ or alpha stabilisers (such as aluminium or [[oxygen]]) only. These are not heat treatable. Examples include:<ref name="Titanium – A Technical Guide">{{cite book|title=Titanium – A Technical Guide|publisher=ASM International|url=https://books.google.com/books?id=HgzukknbNGAC|isbn=9781615030620|year=2000}}</ref> Ti-5Al-2Sn-ELI, Ti-8Al-1Mo-1V.
* अल्फा मिश्र धातु जिसमें टिन और अल्फा स्थिरक जैसे एल्यूमीनियम या ऑक्सीजन जैसे तटस्थ मिश्र धातु के तत्व होते हैं। ये ऊष्मा उपचार योग्य नहीं होते है। उदाहरणों के रूप में,<ref name="Titanium – A Technical Guide">{{cite book|title=Titanium – A Technical Guide|publisher=ASM International|url=https://books.google.com/books?id=HgzukknbNGAC|isbn=9781615030620|year=2000}}</ref> टीआई-5एएल-2एसएन-इएलआई, टीआई-8एएल-1एमओ-1वी.इत्यादि के रूप में होते है।
* Near-alpha alloys contain small amount of [[ductile]] beta-phase. Besides alpha-phase stabilisers, near-alpha alloys are alloyed with 1–2% of beta phase stabilizers such as molybdenum, silicon or vanadium. Examples include:<ref name="Titanium – A Technical Guide" /> [[Ti-6Al-2Sn-4Zr-2Mo]], Ti-5Al-5Sn-2Zr-2Mo, IMI 685, Ti 1100.
* निकट-अल्फ़ा मिश्र धातुओं में तन्य बीटा-चरण की थोड़ी मात्रा होती है। अल्फा-चरण स्थिरक के अतिरिक्त निकट-अल्फा मिश्र धातुओं को मोलिब्डेनम, सिलिकॉन या वैनेडियम जैसे बीटा चरण स्थिरक के 1-2% के साथ मिश्रित किया जाता है। उदाहरणों के रूप में,<ref name="Titanium – A Technical Guide" /> [[Ti-6Al-2Sn-4Zr-2Mo|टीआई-6एएल-2एसएन-4जेडआर-2एमओ]], टीआई-5[[Ti-6Al-2Sn-4Zr-2Mo|एएल]]-5एसएन-2जेडआर-2एमओ, आईएमआई 685, टीआई-1100.इत्यादि के रूप में होते है।
* Alpha and beta alloys, which are metastable and generally include some combination of both alpha and beta stabilisers, and which can be heat treated. Examples include:<ref name="Titanium – A Technical Guide" /> [[Ti-6Al-4V]], Ti-6Al-4V-ELI, Ti-6Al-6V-2Sn, [[Ti-6Al-7Nb]].
* अल्फा और बीटा मिश्र धातु के रूप में होते है, जो मेटास्टेबल होते हैं और सामान्यतः अल्फा और बीटा स्थिरक दोनों के संयोजन के रूप में सम्मलित होते है और और जिनका ताप उपचार किया जा सकता है। उदाहरणों के रूप में<ref name="Titanium – A Technical Guide" /> [[Ti-6Al-4V|टीआई-6एएल]][[Ti-6Al-4V|-4वी]], टीआई-6एएल-4वी-इएलआई, टीआई-6एएल-6वी-2एसएन, [[Ti-6Al-7Nb|टीआई-6एएल]][[Ti-6Al-7Nb|-7एनबी]].इत्यादि के रूप में होते है।
* Beta and near beta alloys, which are metastable and which contain sufficient beta stabilisers (such as molybdenum, silicon and vanadium) to allow them to maintain the beta phase when quenched, and which can also be solution treated and aged to improve strength. Examples include:<ref name="Titanium – A Technical Guide" /> [[Ti-10V-2Fe-3Al]], Ti–29Nb–13Ta–4.6Zr,<ref>{{cite journal|title=Mechanical properties enhancement in Ti–29Nb–13Ta–4.6Zr alloy via heat treatment with no detrimental effect on its biocompatibility|journal=Materials & Design|date=1 February 2014|volume=54|pages=786–791|doi=10.1016/j.matdes.2013.09.007|issn=0261-3069|last1=Najdahmadi|first1=A.|last2=Zarei-Hanzaki|first2=A.|last3=Farghadani|first3=E.}}</ref> Ti-13V-11Cr-3Al, Ti-8Mo-8V-2Fe-3Al, Beta C, Ti-15-3.
* बीटा और निकट बीटा मिश्रधातु, जो मेटास्टेबल होते हैं और जिनमें पर्याप्त बीटा स्थिरक जैसे मोलिब्डेनम, सिलिकॉन और वैनेडियम होते हैं, जो बुझने पर बीटा चरण को बनाए रखने की अनुमति देते हैं और जिसे शक्ति में सुधार के लिए उपचारित और वृद्ध भी किया जा सकता है।<ref name="Titanium – A Technical Guide" /> [[Ti-10V-2Fe-3Al|टीआई]][[Ti-10V-2Fe-3Al|-10]][[Ti-6Al-4V|वी]]-2एफइ-3[[Ti-6Al-4V|एएल]], [[Ti-10V-2Fe-3Al|टीआई]]–29एनबी–13टीए-4.6जेडआर,<ref>{{cite journal|title=Mechanical properties enhancement in Ti–29Nb–13Ta–4.6Zr alloy via heat treatment with no detrimental effect on its biocompatibility|journal=Materials & Design|date=1 February 2014|volume=54|pages=786–791|doi=10.1016/j.matdes.2013.09.007|issn=0261-3069|last1=Najdahmadi|first1=A.|last2=Zarei-Hanzaki|first2=A.|last3=Farghadani|first3=E.}}</ref> टीआई-13वी-11सीआर-3एएल, टीआई-8एमओ-8वी-2एफइ-3एएल बीटा सी, टीआई-15-3.इत्यादि के रूप में होते है।
 
 
 
 
 
 
 
 
 
 


[[Category:All articles with dead external links]]
[[Category:All articles with unsourced statements]]
[[Category:Articles with dead external links from June 2016]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Articles with unsourced statements from August 2010]]
[[Category:Commons category link is the pagename]]
[[Category:Created On 21/03/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with reference errors]]
[[Category:Pages with script errors]]


==बीटा-टाइटेनियम==
==बीटा-टाइटेनियम==
बीटा टाइटेनियम मिश्र धातु टाइटेनियम के शरीर-केंद्रित क्यूबिक [[बहुरूपी]] रूप (बीटा कहा जाता है) को प्रदर्शित करते हैं। इस मिश्र धातु में प्रयुक्त तत्व अलग-अलग मात्रा में टाइटेनियम के अतिरिक्त निम्नलिखित में से एक या अधिक हैं। ये [[मोलिब्डेनम]], वैनेडियम, [[नाइओबियम]], [[टैंटलम]], [[zirconium]], [[मैंगनीज]], [[लोहा]], [[क्रोमियम]], [[कोबाल्ट]], [[निकल]] और तांबा हैं।
बीटा टाइटेनियम मिश्र धातु टाइटेनियम के बीसीसी एलोोट्रोपिक [[बहुरूपी]] रूप को बीटा कहते हैं। इस मिश्र धातु में उपयोग किये जाने वाले तत्व अलग-अलग मात्रा में टाइटेनियम के अतिरिक्त इस मिश्रधातु में प्रयुक्त होते हैं। ये [[मोलिब्डेनम]], वैनेडियम, [[नाइओबियम]], [[टैंटलम]], [[zirconium|ज़िरकोनियम]], [[मैंगनीज]], [[लोहा]], [[क्रोमियम]], [[कोबाल्ट]], [[निकल]] और तांबा के रूप में होते है।


टाइटेनियम मिश्र धातुओं में उत्कृष्ट फॉर्मैबिलिटी होती है और इसे आसानी से वेल्ड किया जा सकता है।<ref>{{cite journal |first1=Jon |last1=Goldberg |first2=Charles J. |last2=Burstone |year=1979 |title=ऑर्थोडोंटिक उपकरणों में उपयोग के लिए बीटा टाइटेनियम मिश्र धातुओं का मूल्यांकन|journal=Journal of Dental Research |volume=58 |issue=2 |pages=593–599 |doi=10.1177/00220345790580020901|pmid=283089 |s2cid=29064479 }}</ref>
टाइटेनियम मिश्र धातुओं में उत्कृष्ट फॉर्मैबिलिटी होती है और इसे आसानी से वेल्ड किया जा सकता है।<ref>{{cite journal |first1=Jon |last1=Goldberg |first2=Charles J. |last2=Burstone |year=1979 |title=ऑर्थोडोंटिक उपकरणों में उपयोग के लिए बीटा टाइटेनियम मिश्र धातुओं का मूल्यांकन|journal=Journal of Dental Research |volume=58 |issue=2 |pages=593–599 |doi=10.1177/00220345790580020901|pmid=283089 |s2cid=29064479 }}</ref>
बीटा टाइटेनियम आजकल बड़े पैमाने पर [[ऑर्थोडॉन्टिक]] क्षेत्र में उपयोग किया जाता है और 1980 के दशक में ऑर्थोडॉन्टिक्स उपयोग के लिए अपनाया गया था। इस प्रकार के मिश्र धातु ने कुछ उपयोगों के लिए स्टेनलेस स्टील को बदल दिया, क्योंकि 1960 के दशक से स्टेनलेस स्टील ऑर्थोडॉन्टिक्स पर हावी था। इसमें 18-8 ऑस्टेनिटिक स्टेनलेस स्टील की तुलना में लगभग दो बार लोच अनुपात की शक्ति / मापांक है, स्प्रिंग्स में बड़ा लोचदार विक्षेपण, और स्टेनलेस स्टील उपकरणों के नीचे 2.2 गुना कम बल प्रति इकाई विस्थापन है।
कुछ बीटा टाइटेनियम मिश्र धातु क्रायोजेनिक तापमान पर कठिन और भंगुर [[हेक्सागोनल क्रिस्टल परिवार]] ओमेगा-टाइटेनियम में परिवर्तित हो सकते हैं<ref>{{cite journal |last1=De Fontaine§§ |first1=D. |last2=Paton |first2=N.E. |last3=Williams |first3=J.C. |title=ट्रांसफॉर्मेशन डे ला फेज ओमेगा डन्स लेस एलियेजेज डी टाइटेन कॉमे उदाहरण डे रिएक्शन कंट्रोलर्स पर डिसप्लेसमेंटओमेगा फेज ट्रांसफॉर्मेशन इन टाइटेनियम अलॉयज ए उदाहरण ऑफ़ द डिसप्लेसमेंट-नियंत्रित रिएक्शन|journal=Acta Metallurgica |date=November 1971 |volume=19 |issue=11 |pages=1153–1162 |doi=10.1016/0001-6160(71)90047-2 |url=https://www.sciencedirect.com/science/article/abs/pii/0001616071900472 |access-date=27 April 2020}}</ref> या आयनीकरण विकिरण के प्रभाव में।<ref>{{cite journal|arxiv=2004.11562|last1=Ishida|first1=Taku|last2=Wakai|first2=Eiichi|last3=Makimura|first3=Shunsuke|last4=Casella|first4=Andrew M.|last5=Edwards|first5=Danny J.|last6=Senor|first6=David J.|last7=Ammigan|first7=Kavin|last8=Hurh|first8=Patrick G.|last9=Densham|first9=Christopher J.|last10=Fitton|first10=Michael D.|last11=Bennett|first11=Joe M.|last12=Kim|first12=Dohyun|last13=Simos|first13=Nikolaos|last14=Hagiwara|first14=Masayuki|last15=Kawamura|first15=Naritoshi|last16=Meigo|first16=Shin-ichiro|last17=Yohehara|first17=Katsuya|title=Tensile behavior of dual-phase titanium alloys under high-intensity proton beam exposure: Radiation-induced omega phase transformation in Ti-6Al-4V|journal=Journal of Nuclear Materials|year=2020|volume=541|page=152413|doi=10.1016/j.jnucmat.2020.152413|s2cid=216144772}}</ref>


== [[संक्रमण तापमान]] ==
बीटा टाइटेनियम आजकल बड़े पैमाने पर [[ऑर्थोडॉन्टिक|दंत संशोधन]] क्षेत्र में उपयोग किया जाता है और 1980 के दशक में दंत संशोधन में प्रयोग के लिए अपनाया गया था। इस प्रकार के मिश्र धातु ने कुछ उपयोगों के लिए स्टेनलेस स्टील को बदल दिया, क्योंकि 1960 के दशक से स्टेनलेस स्टील दंत संशोधन पर पूरी तरह से हावी हो गया था। इसमें 18-8 ऑस्टेनिटिक स्टेनलेस स्टील की तुलना में लगभग दो बार लोच अनुपात की बल / मापांक के रूप में होते है, स्प्रिंग्स में बड़ा लोचदार विक्षेपण और स्टेनलेस स्टील के उपकरणों की तुलना में प्रति यूनिट विस्थापन 2.2 गुना कम बल के रूप में होते है  
परिवेश के तापमान और दबाव पर टाइटेनियम की क्रिस्टल संरचना 1.587 के एसी / ए अनुपात के साथ क्लोज-पैक हेक्सागोनल α चरण है। लगभग 890 डिग्री सेल्सियस पर, टाइटेनियम एक शरीर-केंद्रित क्यूबिक β चरण में एक [[ अपररूपता ]] परिवर्तन से गुजरता है जो पिघलने के तापमान पर स्थिर रहता है।


कुछ मिश्र धातु तत्व, जिन्हें अल्फा स्टेबलाइजर्स कहा जाता है, अल्फा-टू-बीटा संक्रमण तापमान बढ़ाते हैं,{{efn-lr|In a titanium or titanium alloy, alpha-to-beta transition temperature is the temperature above which the beta phase becomes thermodynamically favorable.}} जबकि अन्य (बीटा स्टेबलाइजर्स) संक्रमण तापमान को कम करते हैं। एल्यूमीनियम, [[गैलियम]], [[जर्मेनियम]], [[कार्बन]], ऑक्सीजन और [[नाइट्रोजन]] अल्फा स्टेबलाइजर्स हैं। मोलिब्डेनम, वैनेडियम, टैंटलम, नाइओबियम, मैंगनीज, लोहा, क्रोमियम, कोबाल्ट, निकल, तांबा और [[सिलिकॉन]] बीटा स्टेबलाइजर्स हैं।<ref>Vydehi Arun Joshi. ''Titanium Alloys: An Atlas of Structures and Fracture Features''. CRC Press, 2006.</ref>
कुछ बीटा टाइटेनियम मिश्र धातु क्रायोजेनिक तापमान पर कठिन और भंगुर [[हेक्सागोनल क्रिस्टल परिवार|हेक्सागोनल क्रिस्टल फैमली]] ओमेगा-टाइटेनियम में परिवर्तित हो सकते हैं<ref>{{cite journal |last1=De Fontaine§§ |first1=D. |last2=Paton |first2=N.E. |last3=Williams |first3=J.C. |title=ट्रांसफॉर्मेशन डे ला फेज ओमेगा डन्स लेस एलियेजेज डी टाइटेन कॉमे उदाहरण डे रिएक्शन कंट्रोलर्स पर डिसप्लेसमेंटओमेगा फेज ट्रांसफॉर्मेशन इन टाइटेनियम अलॉयज ए उदाहरण ऑफ़ द डिसप्लेसमेंट-नियंत्रित रिएक्शन|journal=Acta Metallurgica |date=November 1971 |volume=19 |issue=11 |pages=1153–1162 |doi=10.1016/0001-6160(71)90047-2 |url=https://www.sciencedirect.com/science/article/abs/pii/0001616071900472 |access-date=27 April 2020}}</ref> या आयनीकरण विकिरण के प्रभाव में में परिवर्तित हो सकते हैं।<ref>{{cite journal|arxiv=2004.11562|last1=Ishida|first1=Taku|last2=Wakai|first2=Eiichi|last3=Makimura|first3=Shunsuke|last4=Casella|first4=Andrew M.|last5=Edwards|first5=Danny J.|last6=Senor|first6=David J.|last7=Ammigan|first7=Kavin|last8=Hurh|first8=Patrick G.|last9=Densham|first9=Christopher J.|last10=Fitton|first10=Michael D.|last11=Bennett|first11=Joe M.|last12=Kim|first12=Dohyun|last13=Simos|first13=Nikolaos|last14=Hagiwara|first14=Masayuki|last15=Kawamura|first15=Naritoshi|last16=Meigo|first16=Shin-ichiro|last17=Yohehara|first17=Katsuya|title=Tensile behavior of dual-phase titanium alloys under high-intensity proton beam exposure: Radiation-induced omega phase transformation in Ti-6Al-4V|journal=Journal of Nuclear Materials|year=2020|volume=541|page=152413|doi=10.1016/j.jnucmat.2020.152413|s2cid=216144772}}</ref>
== [[संक्रमण तापमान|पारगमन तापमान]] ==
परिवेश के तापमान और दबाव पर टाइटेनियम की क्रिस्टल संरचना 1.587 के एसी/ए अनुपात के साथ क्लोज-पैक हेक्सागोनल α चरण के रूप में होता है। लगभग 890 कोटि सेल्सियस पर, टाइटेनियम एक बॉडी -केंद्रित क्यूबिक β चरण में एक [[ अपररूपता |अपररूपता]] परिवर्तन से गुजरता है, जो पिघलने के तापमान पर स्थिर रहता है।


कुछ मिश्र धातु तत्व, जिन्हें अल्फा स्थिरक कहा जाता है, इस प्रकार अल्फा टू बीटा पारगमन तापमान बढ़ाते हैं,{{efn-lr|In a titanium or titanium alloy, alpha-to-beta transition temperature is the temperature above which the beta phase becomes thermodynamically favorable.}} जबकि अन्य बीटा स्थिरक पारगमन तापमान को कम करते हैं। एल्यूमीनियम, [[गैलियम]], [[जर्मेनियम]], [[कार्बन]], ऑक्सीजन और [[नाइट्रोजन]] अल्फा स्थिरक के रूप में होते है। मोलिब्डेनम, वैनेडियम, टैंटलम, नाइओबियम, मैंगनीज, लोहा, क्रोमियम, कोबाल्ट, निकल, तांबा और [[सिलिकॉन]] बीटा स्थिरक के रूप में होते है।<ref>Vydehi Arun Joshi. ''Titanium Alloys: An Atlas of Structures and Fracture Features''. CRC Press, 2006.</ref>


== गुण ==
== गुण ==
सामान्यतः , बीटा-चरण टाइटेनियम अधिक नमनीय चरण होता है और अल्फा-चरण मजबूत होता है फिर भी कम नमनीय होता है, क्लोज-पैकिंग की तुलना में बीटा-चरण के [[ घन क्रिस्टल प्रणाली ]] संरचना में स्लिप (सामग्री विज्ञान) की बड़ी संख्या के कारण बराबर क्षेत्रों के अल्फा-चरण। अल्फा-बीटा-चरण टाइटेनियम में एक यांत्रिक गुण है जो दोनों के बीच में है।
सामान्यतः, बीटा चरण टाइटेनियम अधिक नमनीय चरण के रूप में होता है और एचसीपी अल्फा-चरण की तुलना में बीटा-चरण की बीसीसी संरचना में स्लिप विमानों की बड़ी संख्या के कारण अल्फा-चरण मजबूत होता है, लेकिन कम नमनीय होता है। अल्फा-बीटा-चरण टाइटेनियम में एक यांत्रिक गुण है जो दोनों के बीच में होता है।


उच्च तापमान पर धातु में [[रंजातु डाइऑक्साइड]] घुल जाता है, और इसका गठन बहुत ऊर्जावान होता है। इन दो कारकों का मतलब है कि सबसे सावधानी से शुद्ध किए गए टाइटेनियम को छोड़कर सभी टाइटेनियम में घुलित ऑक्सीजन की एक महत्वपूर्ण मात्रा है, और इसलिए इसे Ti-O मिश्र धातु माना जा सकता है। ऑक्साइड अवक्षेप कुछ शक्ति प्रदान करते हैं (जैसा कि ऊपर चर्चा की गई है), लेकिन गर्मी उपचार के लिए बहुत प्रतिक्रियाशील नहीं हैं और मिश्र धातु की कठोरता को अधिक सीमा तक कम कर सकते हैं।
उच्च तापमान पर धातु में [[रंजातु डाइऑक्साइड|टाइटेनियम डाइऑक्साइड]] घुल जाता है और इसका गठन बहुत प्रभावी रूप में होता है। इन दो कारकों का अर्थ है कि सावधानी से शुद्ध किए गए टाइटेनियम को छोड़कर सभी टाइटेनियम में घुलित ऑक्सीजन की एक महत्वपूर्ण मात्रा होती है और इसलिए इसे टीआई-मिश्र धातु के रूप में माना जाता है। ऑक्साइड अवक्षेप कुछ बल प्रदान करते हैं जैसा कि ऊपर चर्चा की गई है, लेकिन हीट उपचार के लिए बहुत प्रतिक्रियाशील नहीं होते है और मिश्र धातु की कठोरता को अधिक सीमा तक कम कर सकते हैं।


कई मिश्र धातुओं में मामूली योजक के रूप में टाइटेनियम भी होता है, लेकिन चूंकि मिश्र धातुओं को सामान्यतः वर्गीकृत किया जाता है, जिसके अनुसार तत्व अधिकांश सामग्री बनाते हैं, इन्हें सामान्यतः टाइटेनियम मिश्र धातु नहीं माना जाता है। टाइटेनियम#अनुप्रयोगों पर उप-लेख देखें।
कई मिश्र धातुओं में सामान्य योजक के रूप में टाइटेनियम भी होता है, लेकिन चूंकि मिश्र धातुओं को सामान्यतः वर्गीकृत किया जाता है, जिसके अनुसार तत्व अधिकांश सामग्री बनाते हैं, इन्हें सामान्यतः टाइटेनियम मिश्र धातु नहीं माना जाता है। टाइटेनियम अनुप्रयोगों पर उप लेख पर देख सकते है।


अकेले टाइटेनियम एक मजबूत, हल्की धातु है। यह सामान्य, निम्न-कार्बन स्टील्स से अधिक मजबूत है, लेकिन 45% हल्का है। यह कमजोर एल्यूमीनियम मिश्र धातुओं की तुलना में दोगुना मजबूत है लेकिन केवल 60% भारी है। टाइटेनियम में समुद्री जल के लिए उत्कृष्ट संक्षारण प्रतिरोध है, और इस प्रकार इसका उपयोग प्रोपेलर शाफ्ट, हेराफेरी और नावों के अन्य भागों में किया जाता है जो समुद्री जल के संपर्क में आते हैं। टाइटेनियम और इसकी मिश्र धातुओं का उपयोग हवाई जहाजों, मिसाइलों और रॉकेटों में किया जाता है जहां ताकत, कम वजन और उच्च तापमान का प्रतिरोध महत्वपूर्ण होता है। इसके अतिरिक्त , चूंकि टाइटेनियम मानव शरीर के भीतर प्रतिक्रिया नहीं करता है, यह और इसके मिश्र धातुओं का उपयोग कृत्रिम जोड़ों, शिकंजा और फ्रैक्चर के लिए प्लेट और अन्य जैविक प्रत्यारोपण के लिए किया जाता है। देखें: टाइटेनियम#ऑर्थोपेडिक इम्प्लांट्स।
अकेले टाइटेनियम एक मजबूत हल्की धातु के रूप में होती है। यह सामान्य निम्न-कार्बन स्टील्स से अधिक मजबूत होती है, लेकिन 45% हल्का है। यह कमजोर एल्यूमीनियम मिश्र धातुओं की तुलना में दोगुना मजबूत है लेकिन केवल 60% भारी है। टाइटेनियम में समुद्री जल के लिए उत्कृष्ट संक्षारण प्रतिरोध है, और इस प्रकार इसका उपयोग प्रोपेलर शाफ्ट, हेराफेरी और नावों के अन्य भागों में किया जाता है जो समुद्री जल के संपर्क में आते हैं। टाइटेनियम और इसकी मिश्र धातुओं का उपयोग हवाई जहाजों, मिसाइलों और रॉकेटों में किया जाता है जहां ताकत, कम वजन और उच्च तापमान का प्रतिरोध महत्वपूर्ण होता है। इसके अतिरिक्त , चूंकि टाइटेनियम मानव शरीर के भीतर प्रतिक्रिया नहीं करता है, यह और इसके मिश्र धातुओं का उपयोग कृत्रिम जोड़ों, शिकंजा और फ्रैक्चर के लिए प्लेट और अन्य जैविक प्रत्यारोपण के लिए किया जाता है। देखें: टाइटेनियम#ऑर्थोपेडिक इम्प्लांट्स।


== टाइटेनियम ग्रेड ==
== टाइटेनियम ग्रेड ==
टाइटेनियम और टाइटेनियम मिश्र धातु सीमलेस पाइप पर एएसटीएम अंतर्राष्ट्रीय मानक निम्नलिखित मिश्र धातुओं को संदर्भित करता है, जिसके लिए निम्नलिखित उपचार की आवश्यकता होती है:
टाइटेनियम और टाइटेनियम मिश्र धातु सीमलेस पाइप पर एएसटीएम अंतर्राष्ट्रीय मानक निम्नलिखित मिश्र धातुओं को संदर्भित करता है, जिसके लिए निम्नलिखित उपचार की आवश्यकता होती है,
<blockquote> मिश्र धातुओं की आपूर्ति निम्नलिखित स्थितियों में की जा सकती है: ग्रेड 5, 23, 24, 25, 29, 35, या 36 एनीलेड या वृद्ध; ग्रेड 9, 18, 28, या 38 ठंडे काम और तनाव से राहत या एनीलेड; ग्रेड 9, 18, 23, 28, या 29 रूपांतरित-बीटा स्थिति; और ग्रेड 19, 20, या 21 समाधान-उपचारित या समाधान-उपचारित और वृद्ध।<ref name=ASTMB861>[http://www.astm.org/Standards/B861.htm ASTM B861 – 10 Standard Specification for Titanium and Titanium Alloy Seamless Pipe (Grades 1 to 38)]</ref></blockquote>
<blockquote> मिश्र धातुओं की आपूर्ति निम्नलिखित स्थितियों में की जा सकती है: ग्रेड 5, 23, 24, 25, 29, 35, या 36 एनीलेड या वृद्ध; ग्रेड 9, 18, 28, या 38 ठंडे काम और तनाव से राहत या एनीलेड; ग्रेड 9, 18, 23, 28, या 29 रूपांतरित-बीटा स्थिति और ग्रेड 19, 20, या 21 समाधान-उपचारित और वृद्ध के रूप में होते है।<ref name=ASTMB861>[http://www.astm.org/Standards/B861.htm ASTM B861 – 10 Standard Specification for Titanium and Titanium Alloy Seamless Pipe (Grades 1 to 38)]</ref></blockquote>
<blockquote> नोट 1—एच ग्रेड सामग्री उच्च गारंटी वाली न्यूनतम [[अत्यंत सहनशक्ति]] को छोड़कर संबंधित न्यूमेरिक ग्रेड (अर्थात् ग्रेड 2एच = ग्रेड 2) के समान है, और हमेशा अपने संबंधित न्यूमेरिक ग्रेड की आवश्यकताओं को पूरा करने के रूप में प्रमाणित हो सकती है। . ग्रेड 2H, 7H, 16H और 26H मुख्य रूप से प्रेशर वेसल के उपयोग के लिए हैं।<ref name=ASTMB861 /></blockquote>
<blockquote> नोट 1—एच ग्रेड सामग्री उच्च गारंटी वाली न्यूनतम [[अत्यंत सहनशक्ति|अत्यंत सहन]]बल को छोड़कर संबंधित न्यूमेरिक ग्रेड अर्थात् ग्रेड 2एच = ग्रेड 2 के समान है, और सदैव अपने संबंधित न्यूमेरिक ग्रेड की आवश्यकताओं को पूरा करने के रूप में प्रमाणित हो सकती है। . ग्रेड 2H, 7H, 16H और 26H मुख्य रूप से प्रेशर वेसल के उपयोग के लिए होते है।<ref name=ASTMB861 /></blockquote>
<blockquote> 5200 से अधिक वाणिज्यिक ग्रेड 2, 7, 16, और 26 परीक्षण रिपोर्ट के अध्ययन के आधार पर उपयोगकर्ता एसोसिएशन अनुरोध के उत्तर में एच ग्रेड जोड़े गए थे, जहां 99% से अधिक 58 [[केएसआई]] न्यूनतम यूटीएस से मिले थे।<ref name=ASTMB861 /></blockquote>
<blockquote> 5200 से अधिक वाणिज्यिक ग्रेड 2, 7, 16, और 26 परीक्षण रिपोर्ट के अध्ययन के आधार पर उपयोगकर्ता एसोसिएशन अनुरोध के उत्तर में एच ग्रेड जोड़े गए थे, जहां 99% से अधिक 58 [[केएसआई]] न्यूनतम यूटीएस से मिले थे।<ref name=ASTMB861 /></blockquote>
; ग्रेड 1: सबसे नमनीय और सबसे नरम टाइटेनियम मिश्र धातु है। यह ठंड बनाने और संक्षारक वातावरण के लिए एक अच्छा उपाय है। ASTM/ASME SB-265 व्यावसायिक रूप से शुद्ध टाइटेनियम शीट और प्लेट के लिए मानक प्रदान करता है।<ref>[http://www.unisteelsengg.com/titanium-alloys-grades-properties-and-application.html Titanium Grades, Application<!-- Bot generated title -->]</ref>
; ग्रेड 1: सबसे डुकटाइल और सबसे नरम टाइटेनियम मिश्र धातु के रूप में होती है । यह ठंड बनाने और संक्षारक वातावरण के लिए एक अच्छा उपाय है। एएसटीएम/एएसएमई एसबी-265 व्यावसायिक रूप से शुद्ध टाइटेनियम शीट और प्लेट के लिए मानक प्रदान करता है।<ref>[http://www.unisteelsengg.com/titanium-alloys-grades-properties-and-application.html Titanium Grades, Application<!-- Bot generated title -->]</ref>
; ग्रेड 2: बेरोजगार टाइटेनियम, मानक ऑक्सीजन।
; ग्रेड 2: बेरोजगार टाइटेनियम, मानक ऑक्सीजन के रूप में होता है।
; ग्रेड 2एच: बिना मिला हुआ टाइटेनियम (58 केएसआई न्यूनतम यूटीएस के साथ ग्रेड 2)।
; ग्रेड 2एच: बिना मिला हुआ टाइटेनियम 58 केएसआई न्यूनतम यूटीएस के साथ ग्रेड 2 के रूप में होता है।
; ग्रेड 3: बेरोजगार टाइटेनियम, मध्यम ऑक्सीजन।
; ग्रेड 3: बेरोजगार टाइटेनियम, मध्यम ऑक्सीजन के रूप में होता है।


: ग्रेड 1-4 शुद्ध हैं और व्यावसायिक रूप से शुद्ध या सीपी माने जाते हैं। सामान्यतः तन्यता और उपज शक्ति इन शुद्ध ग्रेड के लिए ग्रेड संख्या के साथ बढ़ जाती है। उनके भौतिक गुणों में अंतर मुख्य रूप से [[अंतरालीय तत्व]]ों की मात्रा के कारण होता है। वे संक्षारण प्रतिरोध अनुप्रयोगों के लिए उपयोग किए जाते हैं जहां लागत, निर्माण में आसानी और वेल्डिंग महत्वपूर्ण हैं।
: ग्रेड 1-4 शुद्ध हैं और व्यावसायिक रूप से शुद्ध या सीपी माने जाते हैं। सामान्यतः तन्यता और उपज बल इन शुद्ध ग्रेड के लिए ग्रेड संख्या के साथ बढ़ जाती है। उनके भौतिक गुणों में अंतर मुख्य रूप से [[अंतरालीय तत्व]]ों की मात्रा के कारण होता है। वे संक्षारण प्रतिरोध अनुप्रयोगों के लिए उपयोग किए जाते हैं जहां लागत, निर्माण में आसानी और वेल्डिंग महत्वपूर्ण हैं।
; <span style="font-weight: normal;">'''ग्रेड 5''' को Ti6Al4V, Ti-6Al-4V या Ti 6-4</span> के नाम से भी जाना जाता है
; <span style="font-weight: normal;">'''ग्रेड 5''' को Ti6Al4V, Ti-6Al-4V या Ti 6-4</span> के नाम से भी जाना जाता है
: Ti-6Al-4V-ELI (ग्रेड 23) के साथ भ्रमित नहीं होना, सबसे अधिक उपयोग किया जाने वाला मिश्र धातु है। इसमें 6% एल्यूमीनियम, 4% वैनेडियम, 0.25% (अधिकतम) आयरन, 0.2% (अधिकतम) ऑक्सीजन और शेष टाइटेनियम की रासायनिक संरचना है।<ref name="asm" />यह व्यावसायिक रूप से शुद्ध टाइटेनियम (ग्रेड 1-4) की तुलना में अधिक मजबूत है, जबकि समान कठोरता और तापीय गुण हैं (तापीय चालकता को छोड़कर, जो CP Ti की तुलना में ग्रेड 5 Ti में लगभग 60% कम है)।<ref>[http://www.makeitfrom.com/compare/Grade-1-3.7025-R50250-Titanium/Grade-5-Ti-6Al-4V-3.7165-R56400-Titanium/ Compare Materials: Commercially Pure Titanium and 6Al-4V (Grade 5) Titanium]</ref> इसके कई फायदों में से, यह उष्मा उपचार योग्य है। यह ग्रेड ताकत, संक्षारण प्रतिरोध, वेल्ड और निर्माण क्षमता का एक उत्कृष्ट संयोजन है।
: Ti-6Al-4V-ELI (ग्रेड 23) के साथ भ्रमित नहीं होना चाहिए, सबसे अधिक उपयोग किया जाने वाला मिश्र धातु है। इसमें 6% एल्यूमीनियम, 4% वैनेडियम, 0.25% अधिकतम आयरन, 0.2% अधिकतम ऑक्सीजन और शेष टाइटेनियम की रासायनिक संरचना के रूप में होती है।<ref name="asm" /> यह व्यावसायिक रूप से शुद्ध टाइटेनियम ग्रेड 1-4 की तुलना में अधिक मजबूत होती है, तापीय चालकता को छोड़कर समान कठोरता और तापीय गुण होते है, जो CP Ti की तुलना में ग्रेड 5 Ti में लगभग 60% कम होते है ।<ref>[http://www.makeitfrom.com/compare/Grade-1-3.7025-R50250-Titanium/Grade-5-Ti-6Al-4V-3.7165-R56400-Titanium/ Compare Materials: Commercially Pure Titanium and 6Al-4V (Grade 5) Titanium]</ref> इसके कई लाभ में से है, यह उष्मा उपचार योग्य है। यह ग्रेड ताकत, संक्षारण प्रतिरोध वेल्ड और निर्माण क्षमता का एक उत्कृष्ट संयोजन के रूप में होता है।


<blockquote> यह अल्फा-बीटा मिश्र धातु टाइटेनियम उद्योग का वर्कहॉर्स मिश्र धातु है। मिश्रधातु 15 मिमी तक के अनुभाग आकार में पूरी तरह से उपचार योग्य है और इसका उपयोग लगभग 400 °C (750 °F) तक किया जाता है। चूंकि यह सबसे अधिक उपयोग किया जाने वाला मिश्र धातु है - पिघले हुए सभी मिश्र धातुओं के 70% से अधिक Ti6Al4V के एक उप-ग्रेड हैं, इसका उपयोग कई एयरोस्पेस एयरफ्रेम और इंजन घटक का उपयोग करता है और समुद्री, अपतटीय और बिजली उत्पादन में प्रमुख गैर-एयरोस्पेस अनुप्रयोग भी करता है। विशेष रूप से उद्योग।<ref name="azomTi6Al4V">[http://www.azom.com/details.asp?ArticleID=1547 Titanium Alloys – Ti6Al4V Grade 5]</ref></blockquote>
<blockquote> यह अल्फा-बीटा मिश्र धातु टाइटेनियम उद्योग का वर्कहॉर्स मिश्र धातु के रूप में होती है। मिश्रधातु 15 मिमी तक के अनुभाग आकार में पूरी तरह से उपचार योग्य होती है और इसका उपयोग लगभग 400 डिग्री सेल्सियस 750 डिग्री फारेनहाइट तक किया जाता है। चूंकि यह सबसे अधिक उपयोग किया जाने वाला मिश्र धातु है, पिघले हुए सभी मिश्र धातुओं के 70% से अधिक Ti6Al4V के एक उप-ग्रेड के रूप में होते है, इसका उपयोग कई एयरोस्पेस एयरफ्रेम और इंजन घटक का उपयोग करता है और समुद्री, अपतटीय और बिजली उत्पादन में प्रमुख गैर-एयरोस्पेस अनुप्रयोग भी करता है। विशेष रूप से उद्योग में भी इनका उपयोग किया जाता है।<ref name="azomTi6Al4V">[http://www.azom.com/details.asp?ArticleID=1547 Titanium Alloys – Ti6Al4V Grade 5]</ref></blockquote>
<blockquote> अनुप्रयोग: ब्लेड, डिस्क, अंगूठियां, एयरफ्रेम, फास्टनर, घटक। वेसल्स, केस, हब, फोर्जिंग। बायोमेडिकल प्रत्यारोपण।<ref name="asm">{{cite web|access-date=2009-02-19|url=http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MTP641|title=Titanium-6-4}}</ref></blockquote>
<blockquote> अनुप्रयोग: ब्लेड, डिस्क, अंगूठियां, एयरफ्रेम, फास्टनर, घटक वेसल्स, केस, हब, फोर्जिंग। बायोमेडिकल प्रत्यारोपण में भी इनका उपयोग किया जाता है।।<ref name="asm">{{cite web|access-date=2009-02-19|url=http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MTP641|title=Titanium-6-4}}</ref></blockquote>


: सामान्यतः , Ti-6Al-4V का उपयोग 400 डिग्री सेल्सियस तक के अनुप्रयोगों में किया जाता है। इसका [[घनत्व]] लगभग 4420 किग्रा/मीटर है<sup>3</sup>, यंग का 120 GPa का मापांक, और 1000 MPa की तन्य शक्ति।<ref>[http://www.makeitfrom.com/material-properties/Grade-5-Ti-6Al-4V-3.7165-R56400-Titanium/ Material Properties Data: 6Al-4V (Grade 5) Titanium Alloy]</ref> तुलनात्मक रूप से, एनीलेड टाइप 316 स्टेनलेस स्टील का घनत्व 8000 किलोग्राम/मीटर है<sup>3</sup>, 193 GPa का मापांक, और 570 MPa की तन्य शक्ति।<ref>[http://www.makeitfrom.com/material-properties/AISI-316-1.4401-1.4436-S31600-Stainless-Steel/ Material Properties Data: Marine Grade Stainless Steel]</ref> टेम्पर्ड [[6061 एल्यूमीनियम मिश्र धातु]] का घनत्व 2700 किग्रा/मीटर है<sup>3</sup>, 69 GPa का मापांक, और 310 MPa की तन्य शक्ति, क्रमशः।<ref>[http://www.makeitfrom.com/material-properties/6061-T6-Aluminum/ Material Properties Data: 6061-T6 Aluminum]</ref>
: सामान्यतः , Ti-6Al-4V का उपयोग 400 कोटि सेल्सियस तक के अनुप्रयोगों में किया जाता है। इसका [[घनत्व]] लगभग 4420 किग्रा/मीटर है<sup>3</sup>, यंग का 120 GPa का मापांक, और 1000 MPa की तन्य शक्ति।<ref>[http://www.makeitfrom.com/material-properties/Grade-5-Ti-6Al-4V-3.7165-R56400-Titanium/ Material Properties Data: 6Al-4V (Grade 5) Titanium Alloy]</ref> तुलनात्मक रूप से, एनीलेड टाइप 316 स्टेनलेस स्टील का घनत्व 8000 किलोग्राम/मीटर है<sup>3</sup>, 193 GPa का मापांक, और 570 MPa की तन्य शक्ति।<ref>[http://www.makeitfrom.com/material-properties/AISI-316-1.4401-1.4436-S31600-Stainless-Steel/ Material Properties Data: Marine Grade Stainless Steel]</ref> टेम्पर्ड [[6061 एल्यूमीनियम मिश्र धातु]] का घनत्व 2700 किग्रा/मीटर है<sup>3</sup>, 69 GPa का मापांक, और 310 MPa की तन्य शक्ति, क्रमशः।<ref>[http://www.makeitfrom.com/material-properties/6061-T6-Aluminum/ Material Properties Data: 6061-T6 Aluminum]</ref>
: Ti-6Al-4V मानक विनिर्देशों में सम्मलित हैं:<ref>{{cite web|title=6Al-4V Titanium|url=https://performancetitanium.com/6al-4v-grade5/|website=Performance Titanium Group}}</ref>
: Ti-6Al-4V मानक विनिर्देशों में सम्मलित हैं:<ref>{{cite web|title=6Al-4V Titanium|url=https://performancetitanium.com/6al-4v-grade5/|website=Performance Titanium Group}}</ref>
::* AMS: 4911, 4928, 4965, 4967, 6930, 6931, T-9046, T9047
::* AMS: 4911, 4928, 4965, 4967, 6930, 6931, T-9046, T9047
::* एएसटीएम: बी265, बी348, एफ1472
::* एएसटीएम: बी265, बी348, एफ1472
Line 70: Line 68:
::* डीएमएस: 1592, 1570
::* डीएमएस: 1592, 1570
; ग्रेड 6: इसमें 5% एल्यूमीनियम और 2.5% टिन होता है। इसे Ti-5Al-2.5Sn के नाम से भी जाना जाता है। उच्च तापमान पर इसकी अच्छी वेल्डेबिलिटी, स्थिरता और ताकत के कारण इस मिश्र धातु का उपयोग एयरफ्रेम और जेट इंजनों में किया जाता है।<ref>{{cite web|url=http://matweb.com/search/DataSheet.aspx?MatGUID=e234a0ea74ea4680b116a1bccd59ca00|title=Titanium Ti-5Al-2.5Sn (Grade 6) - Material Web}}</ref>
; ग्रेड 6: इसमें 5% एल्यूमीनियम और 2.5% टिन होता है। इसे Ti-5Al-2.5Sn के नाम से भी जाना जाता है। उच्च तापमान पर इसकी अच्छी वेल्डेबिलिटी, स्थिरता और ताकत के कारण इस मिश्र धातु का उपयोग एयरफ्रेम और जेट इंजनों में किया जाता है।<ref>{{cite web|url=http://matweb.com/search/DataSheet.aspx?MatGUID=e234a0ea74ea4680b116a1bccd59ca00|title=Titanium Ti-5Al-2.5Sn (Grade 6) - Material Web}}</ref>
; ग्रेड 7: इसमें 0.12 से 0.25% [[ दुर्ग ]] होता है। यह ग्रेड ग्रेड 2 के समान है। जोड़े गए पैलेडियम की थोड़ी मात्रा इसे कम तापमान और उच्च [[पीएच]] पर बेहतर दरार जंग प्रतिरोध देती है।<ref name="Grade7">{{cite web|url=http://www.uctend.com/products-more.asp?id%3D589%26sid%3D777 |title=Titanium Grade 7 (Titanium Palladium alloy, Ti-IIPd)-Metals, Alloys, and Sputtering Targets |access-date=2011-12-19 |url-status=dead |archive-url=https://web.archive.org/web/20120426062139/http://www.uctend.com/products-more.asp?id=589&sid=777 |archive-date=2012-04-26 }}</ref>
; ग्रेड 7: इसमें 0.12 से 0.25% [[ दुर्ग |दुर्ग]] होता है। यह ग्रेड ग्रेड 2 के समान है। जोड़े गए पैलेडियम की थोड़ी मात्रा इसे कम तापमान और उच्च [[पीएच]] पर बेहतर दरार जंग प्रतिरोध देती है।<ref name="Grade7">{{cite web|url=http://www.uctend.com/products-more.asp?id%3D589%26sid%3D777 |title=Titanium Grade 7 (Titanium Palladium alloy, Ti-IIPd)-Metals, Alloys, and Sputtering Targets |access-date=2011-12-19 |url-status=dead |archive-url=https://web.archive.org/web/20120426062139/http://www.uctend.com/products-more.asp?id=589&sid=777 |archive-date=2012-04-26 }}</ref>
; ग्रेड 7H: उन्नत संक्षारण प्रतिरोध के साथ ग्रेड 7 के समान है।<ref name="Grade7" />; ग्रेड 9: इसमें 3.0% एल्यूमीनियम और 2.5% वैनेडियम होता है। यह ग्रेड वेल्डिंग की आसानी और शुद्ध ग्रेड के निर्माण और ग्रेड 5 की उच्च शक्ति के बीच एक समझौता है। यह सामान्यतः हाइड्रोलिक्स और एथलेटिक उपकरणों के लिए विमान टयूबिंग में उपयोग किया जाता है।
; ग्रेड 7H: उन्नत संक्षारण प्रतिरोध के साथ ग्रेड 7 के समान है।<ref name="Grade7" />; ग्रेड 9: इसमें 3.0% एल्यूमीनियम और 2.5% वैनेडियम होता है। यह ग्रेड वेल्डिंग की आसानी और शुद्ध ग्रेड के निर्माण और ग्रेड 5 की उच्च बल के बीच एक समझौता है। यह सामान्यतः हाइड्रोलिक्स और एथलेटिक उपकरणों के लिए विमान टयूबिंग में उपयोग किया जाता है।
; ग्रेड 11: में 0.12 से 0.25% पैलेडियम होता है। इस ग्रेड ने संक्षारण प्रतिरोध को बढ़ाया है।<ref name="TGO">[http://www.supraalloys.com/titanium-grades.php Titanium Grade Overview]</ref>
; ग्रेड 11: में 0.12 से 0.25% पैलेडियम होता है। इस ग्रेड ने संक्षारण प्रतिरोध को बढ़ाया है।<ref name="TGO">[http://www.supraalloys.com/titanium-grades.php Titanium Grade Overview]</ref>
; ग्रेड 12: 0.3% मोलिब्डेनम और 0.8% निकल होता है।<ref name="TGO" />; <अवधि शैली = फ़ॉन्ट-वजन: सामान्य; >ग्रेड 13, 14, और 15</span>: सभी में 0.5% निकल और 0.05% [[दयाता]] होता है।
; ग्रेड 12: 0.3% मोलिब्डेनम और 0.8% निकल होता है।<ref name="TGO" />;  
; ग्रेड 16: में 0.04 से 0.08% पैलेडियम होता है। इस ग्रेड ने संक्षारण प्रतिरोध को बढ़ाया है।
 
==== ग्रेड 13, 14, और 15: ====
:सभी में 0.5% निकल और 0.05</span>% [[रूथेनियम]] होता है।
; ग्रेड 16: में 0.04 से 0.08% पैलेडियम होता ह</span>ै। इस ग्रेड ने संक्षारण प्रतिरोध को बढ़ाया है।
; ग्रेड 16H: में 0.04 से 0.08% पैलेडियम होता है।
; ग्रेड 16H: में 0.04 से 0.08% पैलेडियम होता है।
; ग्रेड 17: में 0.04 से 0.08% पैलेडियम होता है। इस ग्रेड ने संक्षारण प्रतिरोध को बढ़ाया है।{{Citation needed|date=August 2010}}
; ग्रेड 17: में 0.04 से 0.08% पैलेडियम होता है। इस ग्रेड ने संक्षारण प्रतिरोध को बढ़ाया है।{{Citation needed|date=August 2010}}
; ग्रेड 18: इसमें 3% एल्युमीनियम, 2.5% वैनेडियम और 0.04 से 0.08% पैलेडियम होता है। यह ग्रेड यांत्रिक विशेषताओं के स्थिति में ग्रेड 9 के समान है। जोड़ा गया पैलेडियम इसे संक्षारण प्रतिरोध में वृद्धि देता है।{{Citation needed|date=August 2010}}
; ग्रेड 18: इसमें 3% एल्युमीनियम, 2.5% वैनेडियम और 0.04 से 0.08% पैलेडियम होता है। यह ग्रेड यांत्रिक विशेषताओं के स्थिति में ग्रेड 9 के समान है। जोड़ा गया पैलेडियम इसे संक्षारण प्रतिरोध में वृद्धि देता है।{{Citation needed|date=August 2010}}
; ग्रेड 19: इसमें 3% एल्यूमीनियम, 8% वैनेडियम, 6% क्रोमियम, 4% जिरकोनियम और 4% मोलिब्डेनम सम्मलित हैं।
; ग्रेड 19: इसमें 3% एल्यूमीनियम, 8% वैनेडियम, 6% क्रोमियम, 4% जिरकोनियम और 4% मोलिब्डेनम के रूप में सम्मलित होता है।
; ग्रेड 20: इसमें 3% एल्यूमीनियम, 8% वैनेडियम, 6% क्रोमियम, 4% जिरकोनियम, 4% मोलिब्डेनम और 0.04% से 0.08% पैलेडियम सम्मलित हैं।
; ग्रेड 20: इसमें 3% एल्यूमीनियम, 8% वैनेडियम, 6% क्रोमियम, 4% जिरकोनियम, 4% मोलिब्डेनम और 0.04% से 0.08% पैलेडियम सम्मलित हैं।
; ग्रेड 21: इसमें 15% मोलिब्डेनम, 3% एल्यूमीनियम, 2.7% नाइओबियम और 0.25% सिलिकॉन होता है।
; ग्रेड 21: इसमें 15% मोलिब्डेनम, 3% एल्यूमीनियम, 2.7% नाइओबियम और 0.25% सिलिकॉन होता है।
; <span style="font-weight: normal;">ग्रेड 23 को Ti-6Al-4V-ELI या TAV-ELI</span> के रूप में भी जाना जाता है: इसमें 6% एल्यूमीनियम, 4% वैनेडियम, 0.13% (अधिकतम) ऑक्सीजन होता है। ELI का मतलब एक्स्ट्रा लो इंटरस्टीशियल है। अंतरालीय तत्व ऑक्सीजन और आयरन की कमी से ताकत में कुछ कमी के साथ लचीलापन और फ्रैक्चर की कठोरता में सुधार होता है।<ref name="TGO" />TAV-ELI सबसे अधिक उपयोग किया जाने वाला मेडिकल इम्प्लांट (दवा) -ग्रेड टाइटेनियम मिश्र धातु है।<ref name="TGO" /><ref name="tav-eli" />:Ti-6Al-4V-ELI मानक विनिर्देशों में सम्मलित हैं:<ref name="tav-eli">{{cite web|title=6Al-4V-ELI Titanium|url=https://performancetitanium.com/6al-4v-eli/|website=Performance Titanium Group}}</ref>
; '''ग्रेड 23 को Ti-6Al-4V-ELI या TAV-ELI के नाम से भी जाना जाता है''': इसमें 6% एल्यूमीनियम, 4% वैनेडियम, 0.13% अधिकतम ऑक्सीजन होता है। इएलआई का अर्थ एक्स्ट्रा लो इंटरस्टीशियल है। अंतरालीय तत्व ऑक्सीजन और आयरन की कमी से ताकत में कुछ कमी के साथ लचीलापन और फ्रैक्चर की कठोरता में सुधार होता है।<ref name="TGO" /> टीएवी-एली सबसे अधिक उपयोग किया जाने वाला मेडिकल इम्प्लांट के रूप में है, दवा -ग्रेड टाइटेनियम मिश्र धातु है।<ref name="TGO" /><ref name="tav-eli" />:Ti-6Al-4V-ELI मानक विनिर्देशों में सम्मलित होते है,<ref name="tav-eli">{{cite web|title=6Al-4V-ELI Titanium|url=https://performancetitanium.com/6al-4v-eli/|website=Performance Titanium Group}}</ref>
::* एम्स: 4907, 4930, 6932, T9046, T9047
::* एम्स: 4907, 4930, 6932, T9046, T9047 के रूप में सम्मलित होता है।
::* एएसटीएम: बी265, बी348, एफ136
::* एएसटीएम: बी265, बी348, एफ136 के रूप में सम्मलित होता है।
::* लाख: T9046 T9047
::* लाख: T9046 T9047 के रूप में सम्मलित होता है।
; ग्रेड 24: इसमें 6% एल्युमीनियम, 4% वैनेडियम और 0.04% से 0.08% पैलेडियम होता है।
; ग्रेड 24: इसमें 6% एल्युमीनियम, 4% वैनेडियम और 0.04% से 0.08% पैलेडियम होता है।
; ग्रेड 25: 6% एल्यूमीनियम, 4% वैनेडियम और 0.3% से 0.8% निकल और 0.04% से 0.08% पैलेडियम सम्मलित हैं।
; ग्रेड 25: 6% एल्यूमीनियम, 4% वैनेडियम और 0.3% से 0.8% निकल और 0.04% से 0.08% पैलेडियम सम्मलित हैं।
; <span style="font-weight: normal;">ग्रेड 26, 26H, और 27</span>: सभी में 0.08 से 0.14% रूथेनियम होता है।
 
==== <span style="font-weight: normal;">ग्रेड 26, 26H, और 27</span> ====
: सभी में 0.08 से 0.14% रूथेनियम होता है।
; ग्रेड 28: इसमें 3% एल्युमीनियम, 2.5% वैनेडियम और 0.08 से 0.14% रूथेनियम होता है।
; ग्रेड 28: इसमें 3% एल्युमीनियम, 2.5% वैनेडियम और 0.08 से 0.14% रूथेनियम होता है।
; ग्रेड 29: इसमें 6% एल्युमीनियम, 4% वैनेडियम और 0.08 से 0.14% रूथेनियम होता है।
; ग्रेड 29: इसमें 6% एल्युमीनियम, 4% वैनेडियम और 0.08 से 0.14% रूथेनियम होता है।
<span style="font-weight: normal;"> ग्रेड 30 और 31</span>: इसमें 0.3% कोबाल्ट और 0.05% पैलेडियम होता है।
<span style="font-weight: normal;"> ग्रेड 30 और 31</span>: इसमें 0.3% कोबाल्ट और 0.05% पैलेडियम होता है।
; ग्रेड 32: इसमें 5% एल्युमीनियम, 1% टिन, 1% जिरकोनियम, 1% वैनेडियम और 0.8% मोलिब्डेनम होता है।
; ग्रेड 32: इसमें 5% एल्युमीनियम, 1% टिन, 1% जिरकोनियम, 1% वैनेडियम और 0.8% मोलिब्डेनम होता है।
<अवधि शैली = फ़ॉन्ट-वजन: सामान्य; > ग्रेड 33 और 34: इसमें 0.4% निकल, 0.015% पैलेडियम, 0.025% रूथेनियम और 0.15% क्रोमियम होता है।{{Citation needed|date=August 2010}}
 
==== ग्रेड 33 और 34 ====
इसमें 0.4% निकल, 0.015% पैलेडियम, 0.025% रूथेनियम और 0.15% क्रोमियम होता है।{{Citation needed|date=August 2010}}
; ग्रेड 35: इसमें 4.5% एल्युमीनियम, 2% मोलिब्डेनम, 1.6% वैनेडियम, 0.5% आयरन और 0.3% सिलिकॉन होता है।
; ग्रेड 35: इसमें 4.5% एल्युमीनियम, 2% मोलिब्डेनम, 1.6% वैनेडियम, 0.5% आयरन और 0.3% सिलिकॉन होता है।
; ग्रेड 36: इसमें 45% नाइओबियम होता है।
; ग्रेड 36: इसमें 45% नाइओबियम होता है।
; ग्रेड 37: इसमें 1.5% एल्यूमीनियम होता है।
; ग्रेड 37: इसमें 1.5% एल्यूमीनियम होता है।
; ग्रेड 38: इसमें 4% एल्युमीनियम, 2.5% वैनेडियम और 1.5% आयरन होता है। यह ग्रेड 1990 के दशक में एक कवच चढ़ाना के रूप में उपयोग के लिए विकसित किया गया था। आयरन बीटा स्टेबलाइजर के रूप में आवश्यक वैनेडियम की मात्रा को कम कर देता है। इसके यांत्रिक गुण ग्रेड 5 के समान हैं, लेकिन इसमें ग्रेड 9 के समान अच्छी ठंड कार्य क्षमता है।<ref>[http://www.armycorrosion.com/past_summits/summit2007/download1.cfm?fname=Patrick%20Snow.pdf ArmyCorrosion.com<!-- Bot generated title -->] {{dead link|date=June 2016|bot=medic}}{{cbignore|bot=medic}}</ref>
; ग्रेड 38: इसमें 4% एल्युमीनियम, 2.5% वैनेडियम और 1.5% आयरन होता है। यह ग्रेड 1990 के दशक में एक कवच चढ़ाना के रूप में उपयोग के लिए विकसित किया गया था। आयरन बीटा स्टेबलाइजर के रूप में आवश्यक वैनेडियम की मात्रा को कम कर देता है। इसके यांत्रिक गुण ग्रेड 5 के समान हैं, लेकिन इसमें ग्रेड 9 के समान अच्छी ठंड कार्य क्षमता होती है।<ref>[http://www.armycorrosion.com/past_summits/summit2007/download1.cfm?fname=Patrick%20Snow.pdf ArmyCorrosion.com<!-- Bot generated title -->] {{dead link|date=June 2016|bot=medic}}{{cbignore|bot=medic}}</ref>
 
 
 
 
 
 
 
 
 
 


[[Category:All articles with dead external links]]
[[Category:All articles with unsourced statements]]
[[Category:Articles with dead external links from June 2016]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Articles with unsourced statements from August 2010]]
[[Category:Commons category link is the pagename]]
[[Category:Created On 21/03/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]


== [[गर्मी से निजात]] ==
== [[गर्मी से निजात]] ==
टाइटेनियम मिश्र धातु कई कारणों से गर्मी उपचार कर रहे हैं, मुख्य हैं समाधान उपचार और उम्र बढ़ने के साथ-साथ फ्रैक्चर क्रूरता, थकान शक्ति और उच्च तापमान रेंगना शक्ति जैसे विशेष गुणों को अनुकूलित करने के लिए ताकत बढ़ाने के लिए।
टाइटेनियम मिश्र धातु कई कारणों से गर्मी उपचार कर रहे हैं, मुख्य हैं समाधान उपचार और उम्र बढ़ने के साथ-साथ फ्रैक्चर क्रूरता, थकान बल और उच्च तापमान रेंगना बल जैसे विशेष गुणों को अनुकूलित करने के लिए ताकत बढ़ाने के लिए।
 
अल्फा और नियर-अल्फा मिश्र धातुओं को गर्मी उपचार द्वारा नाटकीय रूप से नहीं बदला जा सकता है। तनाव से राहत और एनीलिंग ऐसी प्रक्रियाएं हैं जिन्हें टाइटेनियम मिश्र धातुओं के इस वर्ग के लिए नियोजित किया जा सकता है। बीटा मिश्रधातुओं के लिए ताप उपचार चक्र अल्फा और अल्फा-बीटा मिश्र धातुओं से अधिक भिन्न होते हैं। बीटा मिश्र धातुओं को न केवल तनाव से राहत या निस्तारण किया जा सकता है, बल्कि उपचारित और वृद्ध भी किया जा सकता है। अल्फा-बीटा मिश्र धातु दो-चरण मिश्र धातु है, जिसमें कमरे के तापमान पर अल्फा और बीटा चरण दोनों के रूप में सम्मलित होती है। अल्फ़ा-बीटा मिश्रधातुओं में फ़ेज़ संघटन, आकार और फ़ेज़ के वितरण को ताप उपचार द्वारा कुछ सीमाओं के भीतर हेरफेर किया जा सकता है, इस प्रकार गुणों की सिलाई की अनुमति मिलती है।
 
==== अल्फा और नियर-अल्फा एलॉय: ====
अल्फा एलॉय की सूक्ष्म संरचना को गर्मी उपचार द्वारा दृढ़ता से हेरफेर नहीं किया जाता है क्योंकि अल्फा एलॉय में कोई महत्वपूर्ण चरण परिवर्तन नहीं होता है। परिणाम स्वरुप गर्मी ट्रीटमेंट द्वारा अल्फा मिश्र धातुओं के लिए उच्च बल प्राप्त नहीं की जा सकती। फिर भी अल्फा और नियर-अल्फा टाइटेनियम मिश्रधातुओं को तनाव से मुक्त किया जा सकता है और एनील किया जा सकता है।


अल्फा और नियर-अल्फा मिश्र धातुओं को गर्मी उपचार द्वारा नाटकीय रूप से नहीं बदला जा सकता है। तनाव से राहत और एनीलिंग ऐसी प्रक्रियाएं हैं जिन्हें टाइटेनियम मिश्र धातुओं के इस वर्ग के लिए नियोजित किया जा सकता है। बीटा मिश्रधातुओं के लिए ताप उपचार चक्र अल्फा और अल्फा-बीटा मिश्र धातुओं से अधिक  भिन्न होते हैं। बीटा मिश्र धातुओं को न केवल तनाव से राहत या निस्तारण किया जा सकता है, बल्कि उपचारित और वृद्ध भी किया जा सकता है। अल्फा-बीटा मिश्र धातु दो-चरण मिश्र धातु है, जिसमें कमरे के तापमान पर अल्फा और बीटा चरण दोनों सम्मलित  हैं। अल्फ़ा-बीटा मिश्रधातुओं में फ़ेज़ संघटन, आकार और फ़ेज़ के वितरण को ताप उपचार द्वारा कुछ सीमाओं के भीतर हेरफेर किया जा सकता है, इस प्रकार गुणों की सिलाई की अनुमति मिलती है।
==== अल्फा-बीटा मिश्र धातु: ====
अल्फा-बीटा पारगमन तापमान के नीचे या ऊपर अल्फा-बीटा मिश्र धातुओं के काम के साथ-साथ गर्मी उपचार से बड़े सूक्ष्म संरचनात्मक परिवर्तन प्राप्त किए जा सकते हैं। यह सामग्री को अधिक सख्त बना सकता है। समाधान उपचार और उम्र बढ़ने का उपयोग अल्फा-बीटा मिश्र धातुओं में अधिकतम ताकत उत्पन्न करने के लिए किया जाता है। इसके अतिरिक्त , टाइटेनियम मिश्र धातुओं के इस समूह के लिए तनाव-राहत ताप उपचार सहित अन्य ताप उपचारों का भी अभ्यास किया जाता है।


अल्फा और नियर-अल्फा एलॉय: अल्फा एलॉय की सूक्ष्म संरचना को गर्मी उपचार द्वारा दृढ़ता से हेरफेर नहीं किया जा सकता है क्योंकि अल्फा एलॉय में कोई महत्वपूर्ण चरण परिवर्तन नहीं होता है। परिणाम स्वरुप , गर्मी उपचार द्वारा अल्फा मिश्र धातुओं के लिए उच्च शक्ति प्राप्त नहीं की जा सकती। फिर भी, अल्फा और नियर-अल्फा टाइटेनियम मिश्रधातुओं को तनाव से मुक्त किया जा सकता है और एनील किया जा सकता है।
==== बीटा मिश्रधातु: ====
अल्फा-बीटा मिश्र धातु: अल्फा-बीटा संक्रमण तापमान के नीचे या ऊपर अल्फा-बीटा मिश्र धातुओं के काम के साथ-साथ गर्मी उपचार से बड़े सूक्ष्म संरचनात्मक परिवर्तन प्राप्त किए जा सकते हैं। यह सामग्री को अधिक  सख्त बना सकता है। समाधान उपचार और उम्र बढ़ने का उपयोग अल्फा-बीटा मिश्र धातुओं में अधिकतम ताकत उत्पन्न  करने के लिए किया जाता है। इसके अतिरिक्त , टाइटेनियम मिश्र धातुओं के इस समूह के लिए तनाव-राहत ताप उपचार सहित अन्य ताप उपचारों का भी अभ्यास किया जाता है।
वाणिज्यिक बीटा मिश्रधातुओं में, तनाव-राहत और उम्र बढ़ने के उपचारों को जोड़ा जा सकता है।
बीटा मिश्रधातु: वाणिज्यिक बीटा मिश्रधातुओं में, तनाव-राहत और उम्र बढ़ने के उपचारों को जोड़ा जा सकता है।


== अनुप्रयोग ==
== अनुप्रयोग ==


=== एयरोस्पेस संरचनाएं ===
=== एयरोस्पेस संरचनाएं ===
जंग और गर्मी के प्रतिरोध और इसकी उच्च शक्ति-से-भार अनुपात के लिए टाइटेनियम का नियमित रूप से विमानन में उपयोग किया जाता है। स्टील की तुलना में हल्का होने पर टाइटेनियम मिश्र धातु सामान्यतः एल्यूमीनियम मिश्र धातु से अधिक मजबूत होते हैं।
जंग और गर्मी के प्रतिरोध और इसकी उच्च शक्ति-से-भार अनुपात के लिए टाइटेनियम का नियमित रूप से विमानन में उपयोग किया जाता है। स्टील की तुलना में हल्का होने पर टाइटेनियम मिश्र धातु सामान्यतः एल्यूमीनियम मिश्र धातु से अधिक मजबूत होती है।


=== बायोमेडिकल ===
=== बायोमेडिकल ===
[[File:Titanium plaatje voor pols.jpg|thumb|कलाई के लिए टाइटेनियम प्लेट]]धातु आर्थोपेडिक संयुक्त प्रतिस्थापन और हड्डी प्लेट सर्जरी के निर्माण के लिए टाइटेनियम मिश्र धातुओं का बड़े पैमाने पर उपयोग किया गया है। वे सामान्यतः [[संख्यात्मक नियंत्रण]], [[कंप्यूटर एडेड डिजाइन]] मशीनिंग, या पाउडर धातु विज्ञान उत्पादन द्वारा गढ़ा या कास्ट बार स्टॉक से उत्पादित होते हैं। इनमें से प्रत्येक तकनीक निहित फायदे और नुकसान के साथ आती है। गढ़ा हुआ उत्पाद मशीनिंग के दौरान उत्पाद के अंतिम आकार में व्यापक सामग्री हानि के साथ आता है और कास्ट नमूनों के लिए किसी उत्पाद को उसके अंतिम आकार में प्राप्त करना कुछ सीमा तक आगे की प्रक्रिया और उपचार (जैसे वर्षा सख्त) को सीमित करता है, फिर भी कास्टिंग अधिक सामग्री प्रभावी है। पारंपरिक पाउडर धातु विज्ञान के विधियों भी अधिक सामग्री कुशल हैं, फिर भी पूरी तरह से सघन उत्पाद प्राप्त करना एक सामान्य मुद्दा हो सकता है।<ref name=":0" />
[[File:Titanium plaatje voor pols.jpg|thumb|कलाई के लिए टाइटेनियम प्लेट]]धातु विकलांग विज्ञान संयुक्त प्रतिस्थापन और हड्डी प्लेट सर्जरी के निर्माण के लिए टाइटेनियम मिश्र धातुओं का बड़े पैमाने पर उपयोग किया गया है। वे सामान्यतः [[संख्यात्मक नियंत्रण]], [[कंप्यूटर एडेड डिजाइन]] मशीनिंग या पाउडर धातु विज्ञान उत्पादन द्वारा गढ़ा या कास्ट बार स्टॉक के रूप में उत्पादित होते हैं। इनमें से प्रत्येक प्रदयोगिकीय निहित लाभप्रद और नुकसान के साथ आती है। गढ़ा हुआ उत्पाद मशीनिंग के समय उत्पाद के अंतिम आकार में व्यापक सामग्री हानि के साथ आता है और कास्ट नमूनों के लिए किसी उत्पाद को उसके अंतिम आकार में प्राप्त करना कुछ सीमा तक आगे की प्रक्रिया और ट्रीटमेंट के रूप में होता है, जैसे वर्षा सख्त को सीमित करता है, फिर भी कास्टिंग अधिक सामग्री प्रभावी होता है। पारंपरिक पाउडर धातु विज्ञान के विधियों से भी अधिक सामग्री कुशल रूप में होती है, फिर भी पूरी तरह से सघन उत्पाद प्राप्त करना एक सामान्य विषय हो सकता है।<ref name=":0" />


सॉलिड फ़्रीफ़ॉर्म फैब्रिकेशन ([[ 3 डी प्रिंटिग ]]) के उद्भव के साथ कस्टम-डिज़ाइन किए गए बायोमेडिकल इम्प्लांट्स (जैसे हिप जॉइंट्स) के उत्पादन की संभावना महसूस की गई है। चूंकि यह वर्तमान में बड़े पैमाने पर लागू नहीं किया जाता है, मुक्त निर्माण विधि अपशिष्ट पाउडर (निर्माण प्रक्रिया से) को रीसायकल करने की क्षमता प्रदान करती है और चयनात्मकता के लिए वांछनीय गुण बनाती है और इस प्रकार इम्प्लांट का प्रदर्शन करती है। [[इलेक्ट्रॉन बीम योज्य निर्माण]] (ईबीएम) और [[चयनात्मक लेजर पिघलने]] (एसएलएम) दो विधियों  े हैं जो टीआई-अलॉयज के फ्रीफॉर्म फैब्रिकेशन के लिए लागू होते हैं। विनिर्माण पैरामीटर उत्पाद के माइक्रोस्ट्रक्चर को बहुत प्रभावित करते हैं, जहां उदा। एसएलएम में पिघलने की कम डिग्री के संयोजन में एक तेज शीतलन दर, मार्टेंसिटिक अल्फा-प्राइम चरण के प्रमुख गठन की ओर ले जाती है, जिससे एक बहुत ही कठोर उत्पाद मिलता है।<ref name=":0">{{Cite journal|title = Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications|journal = Journal of the Mechanical Behavior of Biomedical Materials|date = 2009-01-01|pages = 20–32|volume = 2|issue = 1|doi = 10.1016/j.jmbbm.2008.05.004|pmid = 19627804|first1 = L. E.|last1 = Murr|first2 = S. A.|last2 = Quinones|first3 = S. M.|last3 = Gaytan|first4 = M. I.|last4 = Lopez|first5 = A.|last5 = Rodela|first6 = E. Y.|last6 = Martinez|first7 = D. H.|last7 = Hernandez|first8 = E.|last8 = Martinez|first9 = F.|last9 = Medina}}</ref>
सॉलिड फ़्रीफ़ॉर्म फैब्रिकेशन [[ 3 डी प्रिंटिग |3 डी प्रिंटिग]] के उद्भव के साथ कस्टम-डिज़ाइन किए गए बायोमेडिकल इम्प्लांट्स के रूप में होते है जैसे हिप जॉइंट्स के उत्पादन की संभावना महसूस की गई है। चूंकि, यह वर्तमान में बड़े पैमाने पर लागू नहीं किया जाता है और निर्माण प्रक्रिया से मुक्त निर्माण विधि अपशिष्ट पाउडर को रीसायकल करने की क्षमता प्रदान करती है और चयनात्मकता के लिए वांछनीय गुण बनाती है और इस प्रकार इम्प्लांट का प्रदर्शन करती है। [[इलेक्ट्रॉन बीम योज्य निर्माण]] ईबीएम और [[चयनात्मक लेजर पिघलने]] (एसएलएम) के रूप में दो विधिया होती है, जो टीआई-अलॉयज के फ्रीफॉर्म फैब्रिकेशन के लिए लागू होते हैं। विनिर्माण पैरामीटर उत्पाद के माइक्रोस्ट्रक्चर को बहुत प्रभावित करते हैं, जहां उदाहरण एसएलएम में पिघलने की कम कोटि के संयोजन में एक तेज शीतलन दर, मार्टेंसिटिक अल्फा-प्राइम चरण के प्रमुख गठन की ओर ले जाती है, जिससे एक बहुत ही कठोर उत्पाद मिलता है।<ref name=":0">{{Cite journal|title = Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications|journal = Journal of the Mechanical Behavior of Biomedical Materials|date = 2009-01-01|pages = 20–32|volume = 2|issue = 1|doi = 10.1016/j.jmbbm.2008.05.004|pmid = 19627804|first1 = L. E.|last1 = Murr|first2 = S. A.|last2 = Quinones|first3 = S. M.|last3 = Gaytan|first4 = M. I.|last4 = Lopez|first5 = A.|last5 = Rodela|first6 = E. Y.|last6 = Martinez|first7 = D. H.|last7 = Hernandez|first8 = E.|last8 = Martinez|first9 = F.|last9 = Medina}}</ref>
; Ti-6Al-4V / Ti-6Al-4V-ELI: इस मिश्रधातु की जैव-अनुकूलता अच्छी है, और यह न तो साइटोटॉक्सिक है और न ही जीनोटॉक्सिक।<ref>{{cite journal|last=Velasco-Ortega|first=E|title=दंत प्रत्यारोपण के लिए एक वाणिज्यिक टाइटेनियम मिश्र धातु के साइटोटॉक्सिसिटी और जीनोटॉक्सिसिटी का इन विट्रो मूल्यांकन|journal=Mutat. Res. |doi= 10.1016/j.mrgentox.2010.06.013|pmid=20615479|volume=702|issue=1|date=Sep 2010|pages=17–23}}</ref> Ti-6Al-4V कुछ लोडिंग स्थितियों में खराब कतरनी ताकत और खराब सतह पहनने के गुणों से ग्रस्त है:<ref name="asm" /><blockquote>जैव संगतता: उत्कृष्ट, खासकर जब ऊतक या हड्डी के साथ सीधे संपर्क की आवश्यकता होती है। Ti-6Al-4V की खराब अपरूपण शक्ति इसे हड्डी के शिकंजे या प्लेटों के लिए अवांछनीय बनाती है। इसमें खराब सतह पहनने के गुण भी होते हैं और फिसलने पर स्वयं और अन्य धातुओं के संपर्क में आने पर जब्त हो जाता है। सतह के उपचार जैसे नाइट्राइडिंग और ऑक्सीकरण सतह पहनने के गुणों में सुधार कर सकते हैं।<ref name="asm" /></ब्लॉककोट>
; Ti-6Al-4V / Ti-6Al-4V-ELI: इस मिश्रधातु की जैव-अनुकूलता अच्छी होती है और यह न तो साइटोटॉक्सिक है और न ही जीनोटॉक्सिक है।<ref>{{cite journal|last=Velasco-Ortega|first=E|title=दंत प्रत्यारोपण के लिए एक वाणिज्यिक टाइटेनियम मिश्र धातु के साइटोटॉक्सिसिटी और जीनोटॉक्सिसिटी का इन विट्रो मूल्यांकन|journal=Mutat. Res. |doi= 10.1016/j.mrgentox.2010.06.013|pmid=20615479|volume=702|issue=1|date=Sep 2010|pages=17–23}}</ref> Ti-6Al-4V कुछ लोडिंग स्थितियों में खराब कतरनी बल और खराब सतह के गुणों से ग्रस्त होते है<ref name="asm" /><blockquote>जैव संगतता: उत्कृष्ट, खासकर जब ऊतक या हड्डी के साथ सीधे संपर्क की आवश्यकता होती है। Ti-6Al-4V की खराब अपरूपण बल इसे हड्डी के शिकंजे या प्लेटों के लिए अवांछनीय बनाती है। इसमें खराब सतह के गुण भी होते हैं और फिसलने पर स्वयं और अन्य धातुओं के संपर्क में आने पर जब्त हो जाता है। सतह के उपचार जैसे नाइट्राइडिंग और ऑक्सीकरण सतह के गुणों में सुधार कर सकते हैं।<ref name="asm" />
; Ti-6Al-7Nb: इस मिश्र धातु को Ti-6Al-4V के बायोमेडिकल प्रतिस्थापन के रूप में विकसित किया गया था, क्योंकि Ti-6Al-4V में वैनेडियम होता है, एक ऐसा तत्व जो पृथक होने पर साइटोटॉक्सिक परिणामों का प्रदर्शन करता है।<ref name="Ti-6Al-4VMaliPal">[http://tobias-lib.uni-tuebingen.de/volltexte/2003/844/pdf/palanuwech_complete.pdf ''The fatigue resistance of commercially pure titanium(grade II), titanium alloy (Ti6Al7Nb) and conventional cobalt-chromium cast clasps'' by Mali Palanuwech; Inaugural-Dissertation zur Erlangung des Doktorgrades der Zahnheilkunde der Medizinschen Fakultät der Eberhard-Karls-Universität zu Tübingenvorgelegt; Munich (2003). Retrieved 8 September 2012]</ref>{{rp|1}} Ti-6Al-7Nb में 6% एल्यूमीनियम और 7% नाइओबियम होता है।<ref name="Ti-6Al-4VMaliPal" />{{rp|18}<blockquote>Ti6Al7Nb सर्जिकल इम्प्लांट्स के लिए उत्कृष्ट जैव अनुकूलता के साथ समर्पित उच्च शक्ति टाइटेनियम मिश्र धातु है। कूल्हे के जोड़ों को बदलने के लिए उपयोग किया जाता है, यह 1986 की शुरुआत से नैदानिक ​​​​उपयोग में है।<ref name="azomTi6Al7Nb">[http://www.azom.com/article.aspx?ArticleID=2064 Titanium Alloys – Ti6Al7Nb Properties and Applications. Retrieved 8 September 2012]</ref></ब्लॉककोट>
; Ti-6Al-7Nb: इस मिश्र धातु को Ti-6Al-4V के बायोमेडिकल प्रतिस्थापन के रूप में विकसित किया गया था, क्योंकि Ti-6Al-4V में वैनेडियम होता है, एक ऐसा तत्व जो पृथक होने पर साइटोटॉक्सिक परिणामों का प्रदर्शन करता है।<ref name="Ti-6Al-4VMaliPal">[http://tobias-lib.uni-tuebingen.de/volltexte/2003/844/pdf/palanuwech_complete.pdf ''The fatigue resistance of commercially pure titanium(grade II), titanium alloy (Ti6Al7Nb) and conventional cobalt-chromium cast clasps'' by Mali Palanuwech; Inaugural-Dissertation zur Erlangung des Doktorgrades der Zahnheilkunde der Medizinschen Fakultät der Eberhard-Karls-Universität zu Tübingenvorgelegt; Munich (2003). Retrieved 8 September 2012]</ref>{{rp|1}} Ti-6Al-7Nb में 6% एल्यूमीनियम और 7% नाइओबियम होता है।<ref name="Ti-6Al-4VMaliPal" />{{rp|18}<blockquote>Ti6Al7Nb सर्जिकल इम्प्लांट्स के लिए उत्कृष्ट जैव अनुकूलता के साथ समर्पित उच्च बल टाइटेनियम मिश्र धातु के रूप में होती है। कूल्हे के जोड़ों को बदलने के लिए उपयोग किया जाता है, यह 1986 की शुरुआत से नैदानिक ​​​​उपयोग में है।<ref name="azomTi6Al7Nb">[http://www.azom.com/article.aspx?ArticleID=2064 Titanium Alloys – Ti6Al7Nb Properties and Applications. Retrieved 8 September 2012]</ref>


== संदर्भ ==
== संदर्भ ==
Line 145: Line 155:


{{Authority control}}
{{Authority control}}
[[Category: टाइटेनियम मिश्र | टाइटेनियम मिश्र ]] [[Category: विषमदंत]]


 
[[Category:All articles with dead external links]]
 
[[Category:All articles with unsourced statements]]
[[Category: Machine Translated Page]]
[[Category:Articles with dead external links from June 2016]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Articles with unsourced statements from August 2010]]
[[Category:Commons category link is the pagename]]
[[Category:Created On 21/03/2023]]
[[Category:Created On 21/03/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with reference errors]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:टाइटेनियम मिश्र| टाइटेनियम मिश्र ]]
[[Category:विषमदंत]]

Latest revision as of 13:00, 7 April 2023

टाइटेनियम मिश्र धातु वे धातु होती है, जिनमें टाइटेनियम और अन्य रासायनिक तत्वों का मिश्रण होता है। इस तरह के मिश्र धातुओं में अत्यधिक तापमान पर भी बहुत अधिक तन्य बल और कठोरता होती है। वे वजन में हल्के होते हैं, यह असाधारण संक्षारण प्रतिरोध और अत्यधिक तापमान का सामना करने की क्षमता रखते हैं। चूंकि, कच्चे माल और प्रसंस्करण दोनों की उच्च लागत उनके उपयोग को सैन्य अनुप्रयोगों, विमान अंतरिक्ष यान साइकिल चिकित्सा उपकरणों, गहनों अत्यधिक तनाव वाले घटकों जैसे महंगी स्पोर्ट्स कारो पर कनेक्टिंग छड़ और कुछ प्रीमियम खेल उपकरण और उपभोक्ता इलेक्ट्रॉनिक्स तक सीमित करती है।

चूंकि, व्यावसायिक रूप से शुद्ध टाइटेनियम में स्वीकार्य यांत्रिक गुण होते है और अधिकांश अनुप्रयोगों के लिए विकलांग विज्ञान और दंत प्रत्यारोपण के लिए उपयोग किया जाता है। अधिकांश अनुप्रयोगों के लिए टाइटेनियम को कम मात्रा में एल्यूमीनियम और वैनेडियम के साथ क्रमशः 6% और 4% वजन के साथ मिश्रित किया जाता है। इस ठोस मिश्रण में एक घुलनशीलता होती है, जो तापमान के साथ नाटकीय रूप से बदलती रहती है, जिससे इसे अवक्षेपण को मजबूत करने की अनुमति मिलती है। यह ऊष्मा परिशोधन प्रक्रिया मिश्र धातु के अंतिम रूप में बनाये जाने के बाद की आती है, लेकिन इससे पहले इसे उपयोग में लाया जाता है जिससे उच्च बल वाले उत्पाद को अधिक आसानी से बनाया जा सके।

श्रेणियां

टाइटेनियम मिश्र धातुओं को सामान्यतः चार मुख्य श्रेणियों में वर्गीकृत किया जाता है[1]

  • अल्फा मिश्र धातु जिसमें टिन और अल्फा स्थिरक जैसे एल्यूमीनियम या ऑक्सीजन जैसे तटस्थ मिश्र धातु के तत्व होते हैं। ये ऊष्मा उपचार योग्य नहीं होते है। उदाहरणों के रूप में,[2] टीआई-5एएल-2एसएन-इएलआई, टीआई-8एएल-1एमओ-1वी.इत्यादि के रूप में होते है।
  • निकट-अल्फ़ा मिश्र धातुओं में तन्य बीटा-चरण की थोड़ी मात्रा होती है। अल्फा-चरण स्थिरक के अतिरिक्त निकट-अल्फा मिश्र धातुओं को मोलिब्डेनम, सिलिकॉन या वैनेडियम जैसे बीटा चरण स्थिरक के 1-2% के साथ मिश्रित किया जाता है। उदाहरणों के रूप में,[2] टीआई-6एएल-2एसएन-4जेडआर-2एमओ, टीआई-5एएल-5एसएन-2जेडआर-2एमओ, आईएमआई 685, टीआई-1100.इत्यादि के रूप में होते है।
  • अल्फा और बीटा मिश्र धातु के रूप में होते है, जो मेटास्टेबल होते हैं और सामान्यतः अल्फा और बीटा स्थिरक दोनों के संयोजन के रूप में सम्मलित होते है और और जिनका ताप उपचार किया जा सकता है। उदाहरणों के रूप में[2] टीआई-6एएल-4वी, टीआई-6एएल-4वी-इएलआई, टीआई-6एएल-6वी-2एसएन, टीआई-6एएल-7एनबी.इत्यादि के रूप में होते है।
  • बीटा और निकट बीटा मिश्रधातु, जो मेटास्टेबल होते हैं और जिनमें पर्याप्त बीटा स्थिरक जैसे मोलिब्डेनम, सिलिकॉन और वैनेडियम होते हैं, जो बुझने पर बीटा चरण को बनाए रखने की अनुमति देते हैं और जिसे शक्ति में सुधार के लिए उपचारित और वृद्ध भी किया जा सकता है।[2] टीआई-10वी-2एफइ-3एएल, टीआई–29एनबी–13टीए-4.6जेडआर,[3] टीआई-13वी-11सीआर-3एएल, टीआई-8एमओ-8वी-2एफइ-3एएल बीटा सी, टीआई-15-3.इत्यादि के रूप में होते है।







बीटा-टाइटेनियम

बीटा टाइटेनियम मिश्र धातु टाइटेनियम के बीसीसी एलोोट्रोपिक बहुरूपी रूप को बीटा कहते हैं। इस मिश्र धातु में उपयोग किये जाने वाले तत्व अलग-अलग मात्रा में टाइटेनियम के अतिरिक्त इस मिश्रधातु में प्रयुक्त होते हैं। ये मोलिब्डेनम, वैनेडियम, नाइओबियम, टैंटलम, ज़िरकोनियम, मैंगनीज, लोहा, क्रोमियम, कोबाल्ट, निकल और तांबा के रूप में होते है।

टाइटेनियम मिश्र धातुओं में उत्कृष्ट फॉर्मैबिलिटी होती है और इसे आसानी से वेल्ड किया जा सकता है।[4]

बीटा टाइटेनियम आजकल बड़े पैमाने पर दंत संशोधन क्षेत्र में उपयोग किया जाता है और 1980 के दशक में दंत संशोधन में प्रयोग के लिए अपनाया गया था। इस प्रकार के मिश्र धातु ने कुछ उपयोगों के लिए स्टेनलेस स्टील को बदल दिया, क्योंकि 1960 के दशक से स्टेनलेस स्टील दंत संशोधन पर पूरी तरह से हावी हो गया था। इसमें 18-8 ऑस्टेनिटिक स्टेनलेस स्टील की तुलना में लगभग दो बार लोच अनुपात की बल / मापांक के रूप में होते है, स्प्रिंग्स में बड़ा लोचदार विक्षेपण और स्टेनलेस स्टील के उपकरणों की तुलना में प्रति यूनिट विस्थापन 2.2 गुना कम बल के रूप में होते है

कुछ बीटा टाइटेनियम मिश्र धातु क्रायोजेनिक तापमान पर कठिन और भंगुर हेक्सागोनल क्रिस्टल फैमली ओमेगा-टाइटेनियम में परिवर्तित हो सकते हैं[5] या आयनीकरण विकिरण के प्रभाव में में परिवर्तित हो सकते हैं।[6]

पारगमन तापमान

परिवेश के तापमान और दबाव पर टाइटेनियम की क्रिस्टल संरचना 1.587 के एसी/ए अनुपात के साथ क्लोज-पैक हेक्सागोनल α चरण के रूप में होता है। लगभग 890 कोटि सेल्सियस पर, टाइटेनियम एक बॉडी -केंद्रित क्यूबिक β चरण में एक अपररूपता परिवर्तन से गुजरता है, जो पिघलने के तापमान पर स्थिर रहता है।

कुछ मिश्र धातु तत्व, जिन्हें अल्फा स्थिरक कहा जाता है, इस प्रकार अल्फा टू बीटा पारगमन तापमान बढ़ाते हैं,[lower-roman 1] जबकि अन्य बीटा स्थिरक पारगमन तापमान को कम करते हैं। एल्यूमीनियम, गैलियम, जर्मेनियम, कार्बन, ऑक्सीजन और नाइट्रोजन अल्फा स्थिरक के रूप में होते है। मोलिब्डेनम, वैनेडियम, टैंटलम, नाइओबियम, मैंगनीज, लोहा, क्रोमियम, कोबाल्ट, निकल, तांबा और सिलिकॉन बीटा स्थिरक के रूप में होते है।[7]

गुण

सामान्यतः, बीटा चरण टाइटेनियम अधिक नमनीय चरण के रूप में होता है और एचसीपी अल्फा-चरण की तुलना में बीटा-चरण की बीसीसी संरचना में स्लिप विमानों की बड़ी संख्या के कारण अल्फा-चरण मजबूत होता है, लेकिन कम नमनीय होता है। अल्फा-बीटा-चरण टाइटेनियम में एक यांत्रिक गुण है जो दोनों के बीच में होता है।

उच्च तापमान पर धातु में टाइटेनियम डाइऑक्साइड घुल जाता है और इसका गठन बहुत प्रभावी रूप में होता है। इन दो कारकों का अर्थ है कि सावधानी से शुद्ध किए गए टाइटेनियम को छोड़कर सभी टाइटेनियम में घुलित ऑक्सीजन की एक महत्वपूर्ण मात्रा होती है और इसलिए इसे टीआई-ओ मिश्र धातु के रूप में माना जाता है। ऑक्साइड अवक्षेप कुछ बल प्रदान करते हैं जैसा कि ऊपर चर्चा की गई है, लेकिन हीट उपचार के लिए बहुत प्रतिक्रियाशील नहीं होते है और मिश्र धातु की कठोरता को अधिक सीमा तक कम कर सकते हैं।

कई मिश्र धातुओं में सामान्य योजक के रूप में टाइटेनियम भी होता है, लेकिन चूंकि मिश्र धातुओं को सामान्यतः वर्गीकृत किया जाता है, जिसके अनुसार तत्व अधिकांश सामग्री बनाते हैं, इन्हें सामान्यतः टाइटेनियम मिश्र धातु नहीं माना जाता है। टाइटेनियम अनुप्रयोगों पर उप लेख पर देख सकते है।

अकेले टाइटेनियम एक मजबूत हल्की धातु के रूप में होती है। यह सामान्य निम्न-कार्बन स्टील्स से अधिक मजबूत होती है, लेकिन 45% हल्का है। यह कमजोर एल्यूमीनियम मिश्र धातुओं की तुलना में दोगुना मजबूत है लेकिन केवल 60% भारी है। टाइटेनियम में समुद्री जल के लिए उत्कृष्ट संक्षारण प्रतिरोध है, और इस प्रकार इसका उपयोग प्रोपेलर शाफ्ट, हेराफेरी और नावों के अन्य भागों में किया जाता है जो समुद्री जल के संपर्क में आते हैं। टाइटेनियम और इसकी मिश्र धातुओं का उपयोग हवाई जहाजों, मिसाइलों और रॉकेटों में किया जाता है जहां ताकत, कम वजन और उच्च तापमान का प्रतिरोध महत्वपूर्ण होता है। इसके अतिरिक्त , चूंकि टाइटेनियम मानव शरीर के भीतर प्रतिक्रिया नहीं करता है, यह और इसके मिश्र धातुओं का उपयोग कृत्रिम जोड़ों, शिकंजा और फ्रैक्चर के लिए प्लेट और अन्य जैविक प्रत्यारोपण के लिए किया जाता है। देखें: टाइटेनियम#ऑर्थोपेडिक इम्प्लांट्स।

टाइटेनियम ग्रेड

टाइटेनियम और टाइटेनियम मिश्र धातु सीमलेस पाइप पर एएसटीएम अंतर्राष्ट्रीय मानक निम्नलिखित मिश्र धातुओं को संदर्भित करता है, जिसके लिए निम्नलिखित उपचार की आवश्यकता होती है,

मिश्र धातुओं की आपूर्ति निम्नलिखित स्थितियों में की जा सकती है: ग्रेड 5, 23, 24, 25, 29, 35, या 36 एनीलेड या वृद्ध; ग्रेड 9, 18, 28, या 38 ठंडे काम और तनाव से राहत या एनीलेड; ग्रेड 9, 18, 23, 28, या 29 रूपांतरित-बीटा स्थिति और ग्रेड 19, 20, या 21 समाधान-उपचारित और वृद्ध के रूप में होते है।[8]

नोट 1—एच ग्रेड सामग्री उच्च गारंटी वाली न्यूनतम अत्यंत सहनबल को छोड़कर संबंधित न्यूमेरिक ग्रेड अर्थात् ग्रेड 2एच = ग्रेड 2 के समान है, और सदैव अपने संबंधित न्यूमेरिक ग्रेड की आवश्यकताओं को पूरा करने के रूप में प्रमाणित हो सकती है। . ग्रेड 2H, 7H, 16H और 26H मुख्य रूप से प्रेशर वेसल के उपयोग के लिए होते है।[8]

5200 से अधिक वाणिज्यिक ग्रेड 2, 7, 16, और 26 परीक्षण रिपोर्ट के अध्ययन के आधार पर उपयोगकर्ता एसोसिएशन अनुरोध के उत्तर में एच ग्रेड जोड़े गए थे, जहां 99% से अधिक 58 केएसआई न्यूनतम यूटीएस से मिले थे।[8]

ग्रेड 1
सबसे डुकटाइल और सबसे नरम टाइटेनियम मिश्र धातु के रूप में होती है । यह ठंड बनाने और संक्षारक वातावरण के लिए एक अच्छा उपाय है। एएसटीएम/एएसएमई एसबी-265 व्यावसायिक रूप से शुद्ध टाइटेनियम शीट और प्लेट के लिए मानक प्रदान करता है।[9]
ग्रेड 2
बेरोजगार टाइटेनियम, मानक ऑक्सीजन के रूप में होता है।
ग्रेड 2एच
बिना मिला हुआ टाइटेनियम 58 केएसआई न्यूनतम यूटीएस के साथ ग्रेड 2 के रूप में होता है।
ग्रेड 3
बेरोजगार टाइटेनियम, मध्यम ऑक्सीजन के रूप में होता है।
ग्रेड 1-4 शुद्ध हैं और व्यावसायिक रूप से शुद्ध या सीपी माने जाते हैं। सामान्यतः तन्यता और उपज बल इन शुद्ध ग्रेड के लिए ग्रेड संख्या के साथ बढ़ जाती है। उनके भौतिक गुणों में अंतर मुख्य रूप से अंतरालीय तत्वों की मात्रा के कारण होता है। वे संक्षारण प्रतिरोध अनुप्रयोगों के लिए उपयोग किए जाते हैं जहां लागत, निर्माण में आसानी और वेल्डिंग महत्वपूर्ण हैं।
ग्रेड 5 को Ti6Al4V, Ti-6Al-4V या Ti 6-4 के नाम से भी जाना जाता है
Ti-6Al-4V-ELI (ग्रेड 23) के साथ भ्रमित नहीं होना चाहिए, सबसे अधिक उपयोग किया जाने वाला मिश्र धातु है। इसमें 6% एल्यूमीनियम, 4% वैनेडियम, 0.25% अधिकतम आयरन, 0.2% अधिकतम ऑक्सीजन और शेष टाइटेनियम की रासायनिक संरचना के रूप में होती है।[10] यह व्यावसायिक रूप से शुद्ध टाइटेनियम ग्रेड 1-4 की तुलना में अधिक मजबूत होती है, तापीय चालकता को छोड़कर समान कठोरता और तापीय गुण होते है, जो CP Ti की तुलना में ग्रेड 5 Ti में लगभग 60% कम होते है ।[11] इसके कई लाभ में से है, यह उष्मा उपचार योग्य है। यह ग्रेड ताकत, संक्षारण प्रतिरोध वेल्ड और निर्माण क्षमता का एक उत्कृष्ट संयोजन के रूप में होता है।

यह अल्फा-बीटा मिश्र धातु टाइटेनियम उद्योग का वर्कहॉर्स मिश्र धातु के रूप में होती है। मिश्रधातु 15 मिमी तक के अनुभाग आकार में पूरी तरह से उपचार योग्य होती है और इसका उपयोग लगभग 400 डिग्री सेल्सियस 750 डिग्री फारेनहाइट तक किया जाता है। चूंकि यह सबसे अधिक उपयोग किया जाने वाला मिश्र धातु है, पिघले हुए सभी मिश्र धातुओं के 70% से अधिक Ti6Al4V के एक उप-ग्रेड के रूप में होते है, इसका उपयोग कई एयरोस्पेस एयरफ्रेम और इंजन घटक का उपयोग करता है और समुद्री, अपतटीय और बिजली उत्पादन में प्रमुख गैर-एयरोस्पेस अनुप्रयोग भी करता है। विशेष रूप से उद्योग में भी इनका उपयोग किया जाता है।[12]

अनुप्रयोग: ब्लेड, डिस्क, अंगूठियां, एयरफ्रेम, फास्टनर, घटक वेसल्स, केस, हब, फोर्जिंग। बायोमेडिकल प्रत्यारोपण में भी इनका उपयोग किया जाता है।।[10]

सामान्यतः , Ti-6Al-4V का उपयोग 400 कोटि सेल्सियस तक के अनुप्रयोगों में किया जाता है। इसका घनत्व लगभग 4420 किग्रा/मीटर है3, यंग का 120 GPa का मापांक, और 1000 MPa की तन्य शक्ति।[13] तुलनात्मक रूप से, एनीलेड टाइप 316 स्टेनलेस स्टील का घनत्व 8000 किलोग्राम/मीटर है3, 193 GPa का मापांक, और 570 MPa की तन्य शक्ति।[14] टेम्पर्ड 6061 एल्यूमीनियम मिश्र धातु का घनत्व 2700 किग्रा/मीटर है3, 69 GPa का मापांक, और 310 MPa की तन्य शक्ति, क्रमशः।[15]
Ti-6Al-4V मानक विनिर्देशों में सम्मलित हैं:[16]
  • AMS: 4911, 4928, 4965, 4967, 6930, 6931, T-9046, T9047
  • एएसटीएम: बी265, बी348, एफ1472
  • लाख: T9046 T9047
  • डीएमएस: 1592, 1570
ग्रेड 6
इसमें 5% एल्यूमीनियम और 2.5% टिन होता है। इसे Ti-5Al-2.5Sn के नाम से भी जाना जाता है। उच्च तापमान पर इसकी अच्छी वेल्डेबिलिटी, स्थिरता और ताकत के कारण इस मिश्र धातु का उपयोग एयरफ्रेम और जेट इंजनों में किया जाता है।[17]
ग्रेड 7
इसमें 0.12 से 0.25% दुर्ग होता है। यह ग्रेड ग्रेड 2 के समान है। जोड़े गए पैलेडियम की थोड़ी मात्रा इसे कम तापमान और उच्च पीएच पर बेहतर दरार जंग प्रतिरोध देती है।[18]
ग्रेड 7H
उन्नत संक्षारण प्रतिरोध के साथ ग्रेड 7 के समान है।[18]; ग्रेड 9: इसमें 3.0% एल्यूमीनियम और 2.5% वैनेडियम होता है। यह ग्रेड वेल्डिंग की आसानी और शुद्ध ग्रेड के निर्माण और ग्रेड 5 की उच्च बल के बीच एक समझौता है। यह सामान्यतः हाइड्रोलिक्स और एथलेटिक उपकरणों के लिए विमान टयूबिंग में उपयोग किया जाता है।
ग्रेड 11
में 0.12 से 0.25% पैलेडियम होता है। इस ग्रेड ने संक्षारण प्रतिरोध को बढ़ाया है।[19]
ग्रेड 12
0.3% मोलिब्डेनम और 0.8% निकल होता है।[19];

ग्रेड 13, 14, और 15:

सभी में 0.5% निकल और 0.05% रूथेनियम होता है।
ग्रेड 16
में 0.04 से 0.08% पैलेडियम होता है। इस ग्रेड ने संक्षारण प्रतिरोध को बढ़ाया है।
ग्रेड 16H
में 0.04 से 0.08% पैलेडियम होता है।
ग्रेड 17
में 0.04 से 0.08% पैलेडियम होता है। इस ग्रेड ने संक्षारण प्रतिरोध को बढ़ाया है।[citation needed]
ग्रेड 18
इसमें 3% एल्युमीनियम, 2.5% वैनेडियम और 0.04 से 0.08% पैलेडियम होता है। यह ग्रेड यांत्रिक विशेषताओं के स्थिति में ग्रेड 9 के समान है। जोड़ा गया पैलेडियम इसे संक्षारण प्रतिरोध में वृद्धि देता है।[citation needed]
ग्रेड 19
इसमें 3% एल्यूमीनियम, 8% वैनेडियम, 6% क्रोमियम, 4% जिरकोनियम और 4% मोलिब्डेनम के रूप में सम्मलित होता है।
ग्रेड 20
इसमें 3% एल्यूमीनियम, 8% वैनेडियम, 6% क्रोमियम, 4% जिरकोनियम, 4% मोलिब्डेनम और 0.04% से 0.08% पैलेडियम सम्मलित हैं।
ग्रेड 21
इसमें 15% मोलिब्डेनम, 3% एल्यूमीनियम, 2.7% नाइओबियम और 0.25% सिलिकॉन होता है।
ग्रेड 23 को Ti-6Al-4V-ELI या TAV-ELI के नाम से भी जाना जाता है
इसमें 6% एल्यूमीनियम, 4% वैनेडियम, 0.13% अधिकतम ऑक्सीजन होता है। इएलआई का अर्थ एक्स्ट्रा लो इंटरस्टीशियल है। अंतरालीय तत्व ऑक्सीजन और आयरन की कमी से ताकत में कुछ कमी के साथ लचीलापन और फ्रैक्चर की कठोरता में सुधार होता है।[19] टीएवी-एली सबसे अधिक उपयोग किया जाने वाला मेडिकल इम्प्लांट के रूप में है, दवा -ग्रेड टाइटेनियम मिश्र धातु है।[19][20]:Ti-6Al-4V-ELI मानक विनिर्देशों में सम्मलित होते है,[20]
  • एम्स: 4907, 4930, 6932, T9046, T9047 के रूप में सम्मलित होता है।
  • एएसटीएम: बी265, बी348, एफ136 के रूप में सम्मलित होता है।
  • लाख: T9046 T9047 के रूप में सम्मलित होता है।
ग्रेड 24
इसमें 6% एल्युमीनियम, 4% वैनेडियम और 0.04% से 0.08% पैलेडियम होता है।
ग्रेड 25
6% एल्यूमीनियम, 4% वैनेडियम और 0.3% से 0.8% निकल और 0.04% से 0.08% पैलेडियम सम्मलित हैं।

ग्रेड 26, 26H, और 27

सभी में 0.08 से 0.14% रूथेनियम होता है।
ग्रेड 28
इसमें 3% एल्युमीनियम, 2.5% वैनेडियम और 0.08 से 0.14% रूथेनियम होता है।
ग्रेड 29
इसमें 6% एल्युमीनियम, 4% वैनेडियम और 0.08 से 0.14% रूथेनियम होता है।

ग्रेड 30 और 31: इसमें 0.3% कोबाल्ट और 0.05% पैलेडियम होता है।

ग्रेड 32
इसमें 5% एल्युमीनियम, 1% टिन, 1% जिरकोनियम, 1% वैनेडियम और 0.8% मोलिब्डेनम होता है।

ग्रेड 33 और 34

इसमें 0.4% निकल, 0.015% पैलेडियम, 0.025% रूथेनियम और 0.15% क्रोमियम होता है।[citation needed]

ग्रेड 35
इसमें 4.5% एल्युमीनियम, 2% मोलिब्डेनम, 1.6% वैनेडियम, 0.5% आयरन और 0.3% सिलिकॉन होता है।
ग्रेड 36
इसमें 45% नाइओबियम होता है।
ग्रेड 37
इसमें 1.5% एल्यूमीनियम होता है।
ग्रेड 38
इसमें 4% एल्युमीनियम, 2.5% वैनेडियम और 1.5% आयरन होता है। यह ग्रेड 1990 के दशक में एक कवच चढ़ाना के रूप में उपयोग के लिए विकसित किया गया था। आयरन बीटा स्टेबलाइजर के रूप में आवश्यक वैनेडियम की मात्रा को कम कर देता है। इसके यांत्रिक गुण ग्रेड 5 के समान हैं, लेकिन इसमें ग्रेड 9 के समान अच्छी ठंड कार्य क्षमता होती है।[21]







गर्मी से निजात

टाइटेनियम मिश्र धातु कई कारणों से गर्मी उपचार कर रहे हैं, मुख्य हैं समाधान उपचार और उम्र बढ़ने के साथ-साथ फ्रैक्चर क्रूरता, थकान बल और उच्च तापमान रेंगना बल जैसे विशेष गुणों को अनुकूलित करने के लिए ताकत बढ़ाने के लिए।

अल्फा और नियर-अल्फा मिश्र धातुओं को गर्मी उपचार द्वारा नाटकीय रूप से नहीं बदला जा सकता है। तनाव से राहत और एनीलिंग ऐसी प्रक्रियाएं हैं जिन्हें टाइटेनियम मिश्र धातुओं के इस वर्ग के लिए नियोजित किया जा सकता है। बीटा मिश्रधातुओं के लिए ताप उपचार चक्र अल्फा और अल्फा-बीटा मिश्र धातुओं से अधिक भिन्न होते हैं। बीटा मिश्र धातुओं को न केवल तनाव से राहत या निस्तारण किया जा सकता है, बल्कि उपचारित और वृद्ध भी किया जा सकता है। अल्फा-बीटा मिश्र धातु दो-चरण मिश्र धातु है, जिसमें कमरे के तापमान पर अल्फा और बीटा चरण दोनों के रूप में सम्मलित होती है। अल्फ़ा-बीटा मिश्रधातुओं में फ़ेज़ संघटन, आकार और फ़ेज़ के वितरण को ताप उपचार द्वारा कुछ सीमाओं के भीतर हेरफेर किया जा सकता है, इस प्रकार गुणों की सिलाई की अनुमति मिलती है।

अल्फा और नियर-अल्फा एलॉय:

अल्फा एलॉय की सूक्ष्म संरचना को गर्मी उपचार द्वारा दृढ़ता से हेरफेर नहीं किया जाता है क्योंकि अल्फा एलॉय में कोई महत्वपूर्ण चरण परिवर्तन नहीं होता है। परिणाम स्वरुप गर्मी ट्रीटमेंट द्वारा अल्फा मिश्र धातुओं के लिए उच्च बल प्राप्त नहीं की जा सकती। फिर भी अल्फा और नियर-अल्फा टाइटेनियम मिश्रधातुओं को तनाव से मुक्त किया जा सकता है और एनील किया जा सकता है।

अल्फा-बीटा मिश्र धातु:

अल्फा-बीटा पारगमन तापमान के नीचे या ऊपर अल्फा-बीटा मिश्र धातुओं के काम के साथ-साथ गर्मी उपचार से बड़े सूक्ष्म संरचनात्मक परिवर्तन प्राप्त किए जा सकते हैं। यह सामग्री को अधिक सख्त बना सकता है। समाधान उपचार और उम्र बढ़ने का उपयोग अल्फा-बीटा मिश्र धातुओं में अधिकतम ताकत उत्पन्न करने के लिए किया जाता है। इसके अतिरिक्त , टाइटेनियम मिश्र धातुओं के इस समूह के लिए तनाव-राहत ताप उपचार सहित अन्य ताप उपचारों का भी अभ्यास किया जाता है।

बीटा मिश्रधातु:

वाणिज्यिक बीटा मिश्रधातुओं में, तनाव-राहत और उम्र बढ़ने के उपचारों को जोड़ा जा सकता है।

अनुप्रयोग

एयरोस्पेस संरचनाएं

जंग और गर्मी के प्रतिरोध और इसकी उच्च शक्ति-से-भार अनुपात के लिए टाइटेनियम का नियमित रूप से विमानन में उपयोग किया जाता है। स्टील की तुलना में हल्का होने पर टाइटेनियम मिश्र धातु सामान्यतः एल्यूमीनियम मिश्र धातु से अधिक मजबूत होती है।

बायोमेडिकल

कलाई के लिए टाइटेनियम प्लेट

धातु विकलांग विज्ञान संयुक्त प्रतिस्थापन और हड्डी प्लेट सर्जरी के निर्माण के लिए टाइटेनियम मिश्र धातुओं का बड़े पैमाने पर उपयोग किया गया है। वे सामान्यतः संख्यात्मक नियंत्रण, कंप्यूटर एडेड डिजाइन मशीनिंग या पाउडर धातु विज्ञान उत्पादन द्वारा गढ़ा या कास्ट बार स्टॉक के रूप में उत्पादित होते हैं। इनमें से प्रत्येक प्रदयोगिकीय निहित लाभप्रद और नुकसान के साथ आती है। गढ़ा हुआ उत्पाद मशीनिंग के समय उत्पाद के अंतिम आकार में व्यापक सामग्री हानि के साथ आता है और कास्ट नमूनों के लिए किसी उत्पाद को उसके अंतिम आकार में प्राप्त करना कुछ सीमा तक आगे की प्रक्रिया और ट्रीटमेंट के रूप में होता है, जैसे वर्षा सख्त को सीमित करता है, फिर भी कास्टिंग अधिक सामग्री प्रभावी होता है। पारंपरिक पाउडर धातु विज्ञान के विधियों से भी अधिक सामग्री कुशल रूप में होती है, फिर भी पूरी तरह से सघन उत्पाद प्राप्त करना एक सामान्य विषय हो सकता है।[22]

सॉलिड फ़्रीफ़ॉर्म फैब्रिकेशन 3 डी प्रिंटिग के उद्भव के साथ कस्टम-डिज़ाइन किए गए बायोमेडिकल इम्प्लांट्स के रूप में होते है जैसे हिप जॉइंट्स के उत्पादन की संभावना महसूस की गई है। चूंकि, यह वर्तमान में बड़े पैमाने पर लागू नहीं किया जाता है और निर्माण प्रक्रिया से मुक्त निर्माण विधि अपशिष्ट पाउडर को रीसायकल करने की क्षमता प्रदान करती है और चयनात्मकता के लिए वांछनीय गुण बनाती है और इस प्रकार इम्प्लांट का प्रदर्शन करती है। इलेक्ट्रॉन बीम योज्य निर्माण ईबीएम और चयनात्मक लेजर पिघलने (एसएलएम) के रूप में दो विधिया होती है, जो टीआई-अलॉयज के फ्रीफॉर्म फैब्रिकेशन के लिए लागू होते हैं। विनिर्माण पैरामीटर उत्पाद के माइक्रोस्ट्रक्चर को बहुत प्रभावित करते हैं, जहां उदाहरण एसएलएम में पिघलने की कम कोटि के संयोजन में एक तेज शीतलन दर, मार्टेंसिटिक अल्फा-प्राइम चरण के प्रमुख गठन की ओर ले जाती है, जिससे एक बहुत ही कठोर उत्पाद मिलता है।[22]

Ti-6Al-4V / Ti-6Al-4V-ELI
इस मिश्रधातु की जैव-अनुकूलता अच्छी होती है और यह न तो साइटोटॉक्सिक है और न ही जीनोटॉक्सिक है।[23] Ti-6Al-4V कुछ लोडिंग स्थितियों में खराब कतरनी बल और खराब सतह के गुणों से ग्रस्त होते है[10]

जैव संगतता: उत्कृष्ट, खासकर जब ऊतक या हड्डी के साथ सीधे संपर्क की आवश्यकता होती है। Ti-6Al-4V की खराब अपरूपण बल इसे हड्डी के शिकंजे या प्लेटों के लिए अवांछनीय बनाती है। इसमें खराब सतह के गुण भी होते हैं और फिसलने पर स्वयं और अन्य धातुओं के संपर्क में आने पर जब्त हो जाता है। सतह के उपचार जैसे नाइट्राइडिंग और ऑक्सीकरण सतह के गुणों में सुधार कर सकते हैं।[10]

Ti-6Al-7Nb
इस मिश्र धातु को Ti-6Al-4V के बायोमेडिकल प्रतिस्थापन के रूप में विकसित किया गया था, क्योंकि Ti-6Al-4V में वैनेडियम होता है, एक ऐसा तत्व जो पृथक होने पर साइटोटॉक्सिक परिणामों का प्रदर्शन करता है।[24]: 1  Ti-6Al-7Nb में 6% एल्यूमीनियम और 7% नाइओबियम होता है।[24]{{rp|18}

Ti6Al7Nb सर्जिकल इम्प्लांट्स के लिए उत्कृष्ट जैव अनुकूलता के साथ समर्पित उच्च बल टाइटेनियम मिश्र धातु के रूप में होती है। कूल्हे के जोड़ों को बदलने के लिए उपयोग किया जाता है, यह 1986 की शुरुआत से नैदानिक ​​​​उपयोग में है।[25]

संदर्भ

Notes
  1. In a titanium or titanium alloy, alpha-to-beta transition temperature is the temperature above which the beta phase becomes thermodynamically favorable.
Sources
  1. Characteristics of Alpha, Alpha Beta and Beta Titanium Alloys
  2. 2.0 2.1 2.2 2.3 Titanium – A Technical Guide. ASM International. 2000. ISBN 9781615030620.
  3. Najdahmadi, A.; Zarei-Hanzaki, A.; Farghadani, E. (1 February 2014). "Mechanical properties enhancement in Ti–29Nb–13Ta–4.6Zr alloy via heat treatment with no detrimental effect on its biocompatibility". Materials & Design. 54: 786–791. doi:10.1016/j.matdes.2013.09.007. ISSN 0261-3069.
  4. Goldberg, Jon; Burstone, Charles J. (1979). "ऑर्थोडोंटिक उपकरणों में उपयोग के लिए बीटा टाइटेनियम मिश्र धातुओं का मूल्यांकन". Journal of Dental Research. 58 (2): 593–599. doi:10.1177/00220345790580020901. PMID 283089. S2CID 29064479.
  5. De Fontaine§§, D.; Paton, N.E.; Williams, J.C. (November 1971). "ट्रांसफॉर्मेशन डे ला फेज ओमेगा डन्स लेस एलियेजेज डी टाइटेन कॉमे उदाहरण डे रिएक्शन कंट्रोलर्स पर डिसप्लेसमेंटओमेगा फेज ट्रांसफॉर्मेशन इन टाइटेनियम अलॉयज ए उदाहरण ऑफ़ द डिसप्लेसमेंट-नियंत्रित रिएक्शन". Acta Metallurgica. 19 (11): 1153–1162. doi:10.1016/0001-6160(71)90047-2. Retrieved 27 April 2020.
  6. Ishida, Taku; Wakai, Eiichi; Makimura, Shunsuke; Casella, Andrew M.; Edwards, Danny J.; Senor, David J.; Ammigan, Kavin; Hurh, Patrick G.; Densham, Christopher J.; Fitton, Michael D.; Bennett, Joe M.; Kim, Dohyun; Simos, Nikolaos; Hagiwara, Masayuki; Kawamura, Naritoshi; Meigo, Shin-ichiro; Yohehara, Katsuya (2020). "Tensile behavior of dual-phase titanium alloys under high-intensity proton beam exposure: Radiation-induced omega phase transformation in Ti-6Al-4V". Journal of Nuclear Materials. 541: 152413. arXiv:2004.11562. doi:10.1016/j.jnucmat.2020.152413. S2CID 216144772.
  7. Vydehi Arun Joshi. Titanium Alloys: An Atlas of Structures and Fracture Features. CRC Press, 2006.
  8. 8.0 8.1 8.2 ASTM B861 – 10 Standard Specification for Titanium and Titanium Alloy Seamless Pipe (Grades 1 to 38)
  9. Titanium Grades, Application
  10. 10.0 10.1 10.2 10.3 "Titanium-6-4". Retrieved 2009-02-19.
  11. Compare Materials: Commercially Pure Titanium and 6Al-4V (Grade 5) Titanium
  12. Titanium Alloys – Ti6Al4V Grade 5
  13. Material Properties Data: 6Al-4V (Grade 5) Titanium Alloy
  14. Material Properties Data: Marine Grade Stainless Steel
  15. Material Properties Data: 6061-T6 Aluminum
  16. "6Al-4V Titanium". Performance Titanium Group.
  17. "Titanium Ti-5Al-2.5Sn (Grade 6) - Material Web".
  18. 18.0 18.1 "Titanium Grade 7 (Titanium Palladium alloy, Ti-IIPd)-Metals, Alloys, and Sputtering Targets". Archived from the original on 2012-04-26. Retrieved 2011-12-19.
  19. 19.0 19.1 19.2 19.3 Titanium Grade Overview
  20. 20.0 20.1 "6Al-4V-ELI Titanium". Performance Titanium Group.
  21. ArmyCorrosion.com[dead link]
  22. 22.0 22.1 Murr, L. E.; Quinones, S. A.; Gaytan, S. M.; Lopez, M. I.; Rodela, A.; Martinez, E. Y.; Hernandez, D. H.; Martinez, E.; Medina, F. (2009-01-01). "Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications". Journal of the Mechanical Behavior of Biomedical Materials. 2 (1): 20–32. doi:10.1016/j.jmbbm.2008.05.004. PMID 19627804.
  23. Velasco-Ortega, E (Sep 2010). "दंत प्रत्यारोपण के लिए एक वाणिज्यिक टाइटेनियम मिश्र धातु के साइटोटॉक्सिसिटी और जीनोटॉक्सिसिटी का इन विट्रो मूल्यांकन". Mutat. Res. 702 (1): 17–23. doi:10.1016/j.mrgentox.2010.06.013. PMID 20615479.
  24. 24.0 24.1 The fatigue resistance of commercially pure titanium(grade II), titanium alloy (Ti6Al7Nb) and conventional cobalt-chromium cast clasps by Mali Palanuwech; Inaugural-Dissertation zur Erlangung des Doktorgrades der Zahnheilkunde der Medizinschen Fakultät der Eberhard-Karls-Universität zu Tübingenvorgelegt; Munich (2003). Retrieved 8 September 2012
  25. Titanium Alloys – Ti6Al7Nb Properties and Applications. Retrieved 8 September 2012


बाहरी संबंध