इंजीनियरिंग ड्राइंग: Difference between revisions

From Vigyanwiki
No edit summary
 
(10 intermediate revisions by 4 users not shown)
Line 2: Line 2:
''"अभियांत्रिक आरेखण" यहां पुनर्निर्देश करता है। थॉमस इविंग फ्रेंच की पुस्तक के लिए, अभियांत्रिक आरेखण (पाठ्यपुस्तक) देखें।''[[File:DIN 69893 hsk 63a drawing.png|thumb|मशीन उपकरण भाग का अभियांत्रिक आरेखण]]
''"अभियांत्रिक आरेखण" यहां पुनर्निर्देश करता है। थॉमस इविंग फ्रेंच की पुस्तक के लिए, अभियांत्रिक आरेखण (पाठ्यपुस्तक) देखें।''[[File:DIN 69893 hsk 63a drawing.png|thumb|मशीन उपकरण भाग का अभियांत्रिक आरेखण]]


{{Technical drawings}}अभियांत्रिक आरेखण प्रकार की तकनीकी आरेखण है जिसका उपयोग किसी वस्तु के बारे में जानकारी देने के लिए किया जाता है। सामान्य उपयोग घटक के निर्माण के लिए आवश्यक ज्यामिति को निर्दिष्ट करना है और इसे विस्तृत चित्र कहा जाता है। सामान्य रूप से, एक सामान्य घटक को भी पूरी तरह से निर्दिष्ट करने के लिए कई रेखाचित्र आवश्यक होते हैं। चित्र मुख्य आरेखण या समन्वायोजन आरेख द्वारा एक साथ जुड़े हुए हैं जो बाद के विस्तृत घटकों, आवश्यक मात्रा, निर्माण सामग्री और संभवतः 3डी छवियों के आरेखण संख्या देते हैं जिनका उपयोग व्यक्तिगत वस्तुओं का पता लगाने के लिए किया जा सकता है। हालांकि अधिकतम चित्रात्मक निरूपण सम्मिलित हैं, अभियांत्रिक आरेखण संक्षिप्त रूप और प्रतीकों का उपयोग संक्षिप्तता के लिए किया जाता है और आवश्यक जानकारी देने के लिए अतिरिक्त शाब्दिक स्पष्टीकरण भी प्रदान किए जा सकते हैं।
{{Technical drawings}}'''''अभियांत्रिक आरेखण''''' '''''(इंजीनियरिंग आरेखण)''''' प्रकार का तकनीकी आरेखण है जिसका उपयोग किसी वस्तु के बारे में सूचना देने के लिए किया जाता है। सामान्य उपयोग घटक के निर्माण के लिए आवश्यक ज्यामिति को निर्दिष्ट करना है और इसे विस्तृत चित्र कहा जाता है। सामान्य रूप से, एक सामान्य घटक को भी पूरी तरह से निर्दिष्ट करने के लिए कई आरेख आवश्यक होते हैं। चित्र मुख्य आरेखण या समन्वायोजन आरेख द्वारा एक साथ जुड़े हुए हैं जो बाद के विस्तृत घटकों, आवश्यक मात्रा, निर्माण वस्तु और संभवतः 3D छवियों के आरेखण संख्या देते हैं जिनका उपयोग व्यक्तिगत वस्तुओं का पता लगाने के लिए किया जा सकता है। हालांकि अधिकतम चित्रात्मक निरूपण सम्मिलित हैं, अभियांत्रिक आरेखण संक्षिप्त रूप और प्रतीकों का उपयोग संक्षिप्तता के लिए किया जाता है और आवश्यक सूचना देने के लिए अतिरिक्त शाब्दिक स्पष्टीकरण भी प्रदान किए जा सकते हैं।


अभियांत्रिक आरेखण बनाने की प्रक्रिया को अक्सर तकनीकी आरेखण या प्रारूपण (ड्राफ्टिंग) कहा जाता है।<ref name=":0">{{Cite book|title=प्रैक्टिकल इंजीनियरिंग ड्राइंग|last=M. Maitra|first=Gitin|publisher=New Age International (P) Limited, Publishers|year=2000|isbn=81-224-1176-2|location=4835/24, Ansari Road, Daryaganj, New Delhi - 110002|pages=2–5; 183}}</ref> ड्रॉइंग में सामान्य रूप से घटक का [[मल्टीव्यू प्रोजेक्शन|एकाधिक दृश्य]] होता है, हालांकि अतिरिक्त स्पष्टीकरण के लिए विवरण में अतिरिक्त अस्थायी दृश्य जोड़े जा सकते हैं। केवल वही जानकारी जो एक आवश्यकता है, विशिष्ट रूप से निर्दिष्ट की जाती है। मुख्य जानकारी जैसे कि आयाम सामान्य रूप से आरेखण पर केवल समान स्थान पर निर्दिष्ट होते हैं, अतिरेक और असंगति की संभावना से मुक्त होते हैं। घटक के निर्माण और कार्य करने की स्वीकृति देने के लिए महत्वपूर्ण आयामों के लिए उपयुक्त [[इंजीनियरिंग सहिष्णुता|सहिष्णुता]] दी गई है। अभियांत्रिक आरेखण में दी गई जानकारी के आधार पर अधिक विस्तृत उत्पादन चित्र तैयार किए जा सकते हैं। आरेखण में सूचना बॉक्स या शीर्षक खंड होता है जिसमें आरेखण किसने चित्रित किया, किसने इसे स्वीकृत किया, आयामों की इकाइयां, विचारों का अर्थ, आरेखण का शीर्षक और आरेखण संख्या सम्मिलित है।
अभियांत्रिक आरेखण बनाने की प्रक्रिया को प्रायः तकनीकी आरेखण या प्रारूपण (ड्राफ्टिंग) कहा जाता है।<ref name=":0">{{Cite book|title=प्रैक्टिकल इंजीनियरिंग ड्राइंग|last=M. Maitra|first=Gitin|publisher=New Age International (P) Limited, Publishers|year=2000|isbn=81-224-1176-2|location=4835/24, Ansari Road, Daryaganj, New Delhi - 110002|pages=2–5; 183}}</ref> आरेख में सामान्य रूप से घटक का [[मल्टीव्यू प्रोजेक्शन|एकाधिक दृश्य]] होता है, हालांकि अतिरिक्त स्पष्टीकरण के लिए विवरण में अतिरिक्त अस्थायी दृश्य जोड़े जा सकते हैं। केवल वही सूचना जो एक आवश्यकता है, विशिष्ट रूप से निर्दिष्ट की जाती है। मुख्य सूचना जैसे कि आयाम सामान्य रूप से आरेखण पर केवल समान स्थान पर निर्दिष्ट होते हैं, अतिरेक और असंगति की संभावना से मुक्त होते हैं। घटक के निर्माण और कार्य करने की स्वीकृति देने के लिए महत्वपूर्ण आयामों के लिए उपयुक्त [[इंजीनियरिंग सहिष्णुता|सह्यता]] दी गई है। अभियांत्रिक आरेखण में दी गई सूचना के आधार पर अधिक विस्तृत उत्पादन चित्र निर्मित किए जा सकते हैं। आरेखण में सूचना बॉक्स या शीर्षक खंड होता है जिसमें आरेखण किसने चित्रित किया, किसने इसे स्वीकृत किया, आयामों की इकाइयां, विचारों का अर्थ, आरेखण का शीर्षक और आरेखण संख्या सम्मिलित है।


== इतिहास ==
== इतिहास ==
तकनीकी आरेखण प्राचीन काल से सम्मिलित है। लियोनार्डो दा विंची के विज्ञान और आविष्कारों जैसे पुनर्जागरण काल ​​में जटिल तकनीकी चित्र बनाए गए थे। आधुनिक अभियांत्रिक आरेखण, [[ लिखने का प्रक्षेपण |वर्णलेखन प्रक्षेपण]] और स्केल (अनुपात) के अपने परिशुद्ध सम्मेलनों के साथ, [[फ्रांस]] में उस समय उत्पन्न हुई जब [[औद्योगिक क्रांति]] अपनी प्रारंभिक अवस्था में थी। एल.टी.सी. रोल्ट की [[इसमबार्ड किंगडम ब्रुनेल]] की जीवनी<ref name="Rolt1957pp29-30">{{Harvnb|Rolt|1957|pp=29–30}}.</ref> उनके पिता, मार्क इसमबार्ड ब्रुनेल के बारे में कहती है कि, कि यह अधिकतम सीमा तक निश्चित लगता है कि मार्क के अपने ब्लॉक बनाने वाली मशीनरी के चित्र (1799 में) ने ब्रिटिश अभियांत्रिकी तकनीक में उन मशीनों की तुलना में बहुत अधिक योगदान दिया, जिनका उन्होंने प्रतिनिधित्व किया था। क्योंकि यह मान लेना सुरक्षित है कि उन्होंने त्रि-आयामी वस्तुओं को द्वि-आयामी तल में प्रस्तुत करने की कला में निपुणता प्राप्त कर ली थी जिसे अब हम यांत्रिक रेखाचित्र कहते हैं। यह 1765 में मेज़िएरेस के गैस्पर्ड मोंज द्वारा विकसित किया गया था, लेकिन एक सैन्य बना रहा था 1794 तक गुप्त और इसलिए इंग्लैंड में अज्ञात था।"<ref name="Rolt1957pp29-30"/>
तकनीकी आरेखण प्राचीन काल से सम्मिलित है। लियोनार्डो दा विंची के विज्ञान और आविष्कारों जैसे पुनर्जागरण काल ​​में जटिल तकनीकी चित्र बनाए गए थे। आधुनिक अभियांत्रिक आरेखण, [[ लिखने का प्रक्षेपण |वर्णलेखन प्रक्षेप]] और पैमाना (अनुपात) के अपने परिशुद्ध अभिसमय के साथ, [[फ्रांस]] में उस समय उत्पन्न हुई जब [[औद्योगिक क्रांति]] अपनी प्रारंभिक अवस्था में थी। एल.टी.सी. रोल्ट की [[इसमबार्ड किंगडम ब्रुनेल]] की जीवनी<ref name="Rolt1957pp29-30">{{Harvnb|Rolt|1957|pp=29–30}}.</ref> उनके पिता, मार्क इसमबार्ड ब्रुनेल के बारे में कहती है कि, कि यह अधिकतम सीमा तक अवश्य लगता है कि मार्क के अपने ब्लॉक बनाने वाले उपकरण के चित्र (1799 में) ने ब्रिटिश अभियांत्रिकी तकनीक में उन मशीनों की तुलना में बहुत अधिक योगदान दिया, जिनका उन्होंने प्रतिनिधित्व किया था। क्योंकि यह मान लेना सुरक्षित है कि उन्होंने त्रि-आयामी वस्तुओं को द्वि-आयामी तल में प्रस्तुत करने की कला में निपुणता प्राप्त कर ली थी जिसे वर्तमान मे हम यांत्रिक आरेख कहते हैं। यह 1765 में मेज़िएरेस के गैस्पर्ड मोंज द्वारा विकसित किया गया था, लेकिन 1794 तक एक सैन्य रहस्य बना रहा और इसलिए इंग्लैंड में अज्ञात था।"<ref name="Rolt1957pp29-30"/>




== मानकीकरण और असंबद्धता ==
== मानकीकरण और असंबद्धता ==


अभियांत्रिक आरेखण घटक या संयोजन की आवश्यकताओं को निर्दिष्ट करती है जो जटिल हो सकती है। मानक उनके विनिर्देश और व्याख्या के लिए नियम प्रदान करते हैं। मानकीकरण भी [[अंतर्राष्ट्रीयकरण]] में सहायता करता है, क्योंकि अलग-अलग देशों के लोग जो अलग-अलग भाषाएं बोलते हैं, ही अभियांत्रिक आरेखण को पढ़ सकते हैं और उसी तरह इसकी व्याख्या कर सकते हैं।
अभियांत्रिक आरेखण घटक या संयोजन की आवश्यकताओं को निर्दिष्ट करती है जो जटिल हो सकती है। मानक उनके विनिर्देश और व्याख्या के लिए नियम प्रदान करते हैं। मानकीकरण भी [[अंतर्राष्ट्रीयकरण]] में सहायता करता है, क्योंकि अलग-अलग देशों के लोग जो अलग-अलग भाषाएं बोलते हैं, साथ ही अभियांत्रिक आरेखण को पढ़ सकते हैं और उसी तरह इसकी व्याख्या कर सकते हैं।


अभियांत्रिक आरेखण मानकों का प्रमुख सेट यांत्रिक इंजीनियरों की अमरीकी संस्था Y14.5 और Y14.5M (हाल ही में 2009 में संशोधित) है। ये संयुक्त राज्य अमेरिका में व्यापक रूप से प्रयुक्त होते हैं, हालांकि [https://www.iso.org/obp/ui/#iso:std:iso:8015:ed-2:v1:en अंतर्राष्ट्रीय मानक संगठन 8015 (ज्यामितीय उत्पाद विनिर्देश (जीपीएस) - मौलिक - अवधारणाएं, सिद्धांत और नियम)] अब भी महत्वपूर्ण है। 2018 में, [[यांत्रिक इंजीनियरों का अमरीकी समुदाय|यांत्रिक इंजीनियरों की अमरीकी संस्था]] वैमानिक और उन्नत अभियांत्रिक आरेखण-1 को वैमानिक और अन्य उद्योगों के लिए अद्वितीय उन्नत विधि को विकसित करने और Y14.5 मानकों के पूरक के लिए बनाया गया था।
अभियांत्रिक आरेखण मानकों का प्रमुख समूह यांत्रिक इंजीनियरों की अमरीकी संस्था Y14.5 और Y14.5M (हाल ही में 2009 में संशोधित) है। ये संयुक्त राज्य अमेरिका में व्यापक रूप से प्रयुक्त होते हैं, हालांकि [https://www.iso.org/obp/ui/#iso:std:iso:8015:ed-2:v1:en अंतर्राष्ट्रीय मानक संगठन 8015 (ज्यामितीय उत्पाद विनिर्देश (जीपीएस) - मौलिक - अवधारणाएं, सिद्धांत और नियम)] वर्तमान मे भी महत्वपूर्ण है। 2018 में, [[यांत्रिक इंजीनियरों का अमरीकी समुदाय|यांत्रिक इंजीनियरों की अमरीकी संस्था]] वैमानिक और उन्नत अभियांत्रिक आरेखण-1 को वैमानिक और अन्य उद्योगों के लिए अद्वितीय उन्नत विधि को विकसित करने और Y14.5 मानकों के पूरक के लिए बनाया गया था।


2011 में, [https://www.iso.org/obp/ui/#iso:std:iso:8015:ed-2:v1:en अंतर्राष्ट्रीय मानक संगठन 8015 (ज्यामितीय उत्पाद विनिर्देश (जीपीएस) - मौलिक) का नया संशोधन अवधारणाएं, सिद्धांत और नियम)] उत्क्रियण सिद्धांत युक्त प्रकाशित किया गया था। इसमें कहा गया है कि, यांत्रिक अभियांत्रिकी उत्पाद प्रलेखन में अंतर्राष्ट्रीय मानक संगठन ज्यामितीय उत्पाद विनिर्देश (जीपीएस) प्रणाली के हिस्से को प्रयुक्त किया जाता है, तो संपूर्ण अंतर्राष्ट्रीय मानक संगठन ज्यामितीय उत्पाद विनिर्देश प्रणाली प्रयुक्त हो जाती है। यह भी कहा जाता है कि आरेखण सहिष्णुता अंतर्राष्ट्रीय मानक संगठन 8015 को चिह्नित करना वैकल्पिक है। इसका तात्पर्य यह है कि अंतर्राष्ट्रीय मानक संगठन प्रतीकों का उपयोग करने वाले किसी भी आरेखण को केवल अंतर्राष्ट्रीय मानक संगठन ज्यामितीय उत्पाद विनिर्देश नियमों में ही समझा जा सकता है। अंतर्राष्ट्रीय मानक संगठन ज्यामितीय उत्पाद विनिर्देश प्रणाली को प्रयुक्त नहीं करने का एकमात्र तरीका राष्ट्रीय या अन्य मानक प्रयुक्त करना है। ब्रिटेन, [[बीएस 8888]] (तकनीकी उत्पाद विशिष्टता) में 2010 के दशक में महत्वपूर्ण संशोधन किए गए हैं।
2011 में, [https://www.iso.org/obp/ui/#iso:std:iso:8015:ed-2:v1:en अंतर्राष्ट्रीय मानक संगठन 8015 (ज्यामितीय उत्पाद विनिर्देश (जीपीएस) - मौलिक) का नया संशोधन अवधारणाएं, सिद्धांत और नियम)] उत्क्रियण सिद्धांत युक्त प्रकाशित किया गया था। इसमें कहा गया है कि यांत्रिक अभियांत्रिकी उत्पाद प्रलेखन में अंतर्राष्ट्रीय मानक संगठन ज्यामितीय उत्पाद विनिर्देश (जीपीएस) प्रणाली के भाग को प्रयुक्त किया जाता है, तो संपूर्ण अंतर्राष्ट्रीय मानक संगठन ज्यामितीय उत्पाद विनिर्देश प्रणाली प्रयुक्त हो जाती है। यह भी कहा जाता है कि आरेखण सह्यता अंतर्राष्ट्रीय मानक संगठन 8015 को चिह्नित करना वैकल्पिक है। इसका तात्पर्य यह है कि अंतर्राष्ट्रीय मानक संगठन प्रतीकों का उपयोग करने वाले किसी भी आरेखण को केवल अंतर्राष्ट्रीय मानक संगठन ज्यामितीय उत्पाद विनिर्देश नियमों में ही समझा जा सकता है। अंतर्राष्ट्रीय मानक संगठन ज्यामितीय उत्पाद विनिर्देश प्रणाली को प्रयुक्त नहीं करने का एकमात्र तरीका राष्ट्रीय या अन्य मानक प्रयुक्त करना है। ब्रिटेन, [[बीएस 8888]] (तकनीकी उत्पाद विशिष्टता) में 2010 के दशक में महत्वपूर्ण संशोधन किए गए हैं।


==मीडिया==
==मीडिया==


सदियों से, 1970 के दशक तक, सभी अभियांत्रिक आरेखण को पेपर या अन्य कार्यद्रव (जैसे, [[ ऊन | चर्म पत्र]] , [[ mylar | माइलर]] ) पर पेंसिल और पेन का उपयोग करके मैन्युअल रूप से किया जाता था। [[कंप्यूटर एडेड डिजाइन]] (सीएडी) के आगमन के बाद से, प्रत्येक गुजरते दशक के साथ इलेक्ट्रॉनिक माध्यम में अभियांत्रिक आरेखण अधिक से अधिक किया जाने लगा है। आज अधिकतम अभियांत्रिक आरेखण कंप्यूटर एडेड डिजाइन के साथ की जाती है, लेकिन पेंसिल और पेपर पूरी तरह से अनुपस्थित नहीं हुए हैं।
कई वर्षों से, 1970 के दशक तक, सभी अभियांत्रिक आरेखण को पेपर या अन्य सबस्ट्रेट (जैसे, [[ ऊन |चर्म पत्र]], [[ mylar |माइलर]]) पर पेंसिल और पेन का उपयोग करके मैन्युअल रूप से किया जाता था। [[कंप्यूटर एडेड डिजाइन]] (सीएडी) के आगमन के बाद से, प्रत्येक गुजरते दशक के साथ इलेक्ट्रॉनिक माध्यम में अभियांत्रिक आरेखण अधिक से अधिक किया जाने लगा है। आज अधिकतम अभियांत्रिक आरेखण कंप्यूटर एडेड डिजाइन के साथ की जाती है, लेकिन पेंसिल और पेपर पूरी तरह से अनुपस्थित नहीं हुए हैं।


कुछ [[तकनीकी ड्राइंग उपकरण|तकनीकी आरेखण उपकरण]] में पेंसिल, पेन और उनकी स्याही, सीधे कोर, [[टी-स्कवार|टी-वर्गों]], [[ फ़्रांसीसी वक्र | फ़्रांसीसी वक्र]], त्रिकोण, [[शासक|रूलर]], [[चांदा|कोणमापक]], परकार, [[ कम्पास (ड्राफ्टिंग) ]], पैमाना, इरेज़र और आरेख पिन या पुश पिन सम्मिलित हैं। ([[स्लाइड नियम|स्लाइड रूल]] भी आपूर्ति के बीच संख्या के लिए उपयोग किए जाते हैं, लेकिन आजकल भी मैनुअल ड्राफ्टिंग, जब ऐसा होता है, पॉकेट [[कैलकुलेटर]] या इसके ऑनस्क्रीन समकक्ष से लाभ होता है।) और निश्चित रूप से टूल में आरेखण बोर्ड (ड्राफ्टिंग बोर्ड) या टेबल भी सम्मिलित होते हैं। आरेखण बोर्ड पर वापस जाने के लिए अंग्रेजी मुहावरा, जो आलंकारिक वाक्यांश है जिसका अर्थ है किसी चीज़ पर पूरी तरह से पुनर्विचार करना, उत्पादन के दौरान डिज़ाइन त्रुटियों की खोज करने और अभियांत्रिक आरेखण को संशोधित करने के लिए आरेखण बोर्ड पर लौटने के शाब्दिक कार्य से प्रेरित था। [[ मसौदा मशीन ]] ऐसे उपकरण हैं जो आरेखण बोर्ड, [[ सीधे बढ़त ]], [[ किसी भी नाप का नक्शा इत्यादि खींचने का यंत्र ]] और अन्य टूल्स को एकीकृत आरेखण वातावरण में जोड़कर मैन्युअल ड्राफ्टिंग में सहायता करते हैं। कंप्यूटर एडेड डिजाइन उनके आभासी समकक्ष प्रदान करता है।
कुछ [[तकनीकी ड्राइंग उपकरण|तकनीकी आरेखण उपकरण]] में पेंसिल, पेन और उनकी स्याही, सीधे कोर, T[[टी-स्कवार|-वर्गों]], [[ फ़्रांसीसी वक्र |फ़्रांसीसी वक्र]], त्रिकोण, [[शासक|मापक]], [[चांदा|कोणमापक]], परकार, [[ कम्पास (ड्राफ्टिंग) |कम्पास (दिशासूचक)]], पैमाना, रबड़ और आरेख पिन या पुशपिन (नक़्शे की पिन) सम्मिलित हैं। ([[स्लाइड नियम|विसर्पी गणक]] भी संभरण  के बीच संख्या के लिए उपयोग किए जाते हैं, लेकिन वर्तमान मे भी मैनुअल आलेखन भी होता है, जब पॉकेट [[कैलकुलेटर]] (परिकलक) या इसके स्क्रीन पर समकक्ष से लाभ होता है।) और निश्चित रूप से उपकरण में आरेखण बोर्ड (आलेखन बोर्ड) या पटल भी सम्मिलित होते हैं। आरेखण बोर्ड पर वापस जाने के लिए अंग्रेजी वाक्पद्धति, जो आलंकारिक वाक्यांश है जिसका अर्थ है किसी वस्तु पर पूरी तरह से पुनर्विचार करना, उत्पादन के समय डिज़ाइन त्रुटियों की खोज करने और अभियांत्रिक आरेखण को संशोधित करने के लिए आरेखण बोर्ड पर प्रतिगमन के शाब्दिक कार्य से प्रेरित था। [[ मसौदा मशीन |आरेखण मशीन]] ऐसे उपकरण हैं जो आरेखण बोर्ड, [[ सीधे बढ़त |सीधी कोर]], [[ किसी भी नाप का नक्शा इत्यादि खींचने का यंत्र |आलेखित्र]] और अन्य उपकरण को एकीकृत आरेखण वातावरण में जोड़कर मैन्युअल आलेखन में सहायता करते हैं। कंप्यूटर एडेड डिजाइन उनके आभासी समकक्ष प्रदान करता है।


चित्र बनाने में सामान्य रूप से मूल बनाना सम्मिलित होता है जिसे फिर से पुन: प्रस्तुत किया जाता है, दुकान के फर्श, विक्रेताओं, कंपनी अभिलेखागार, और इसी तरह वितरित करने के लिए कई प्रतियां तैयार की जाती हैं। क्लासिक प्रजनन विधियों में नीले और सफेद दिखावे सम्मिलित थे (चाहे [[ खाका ]]|व्हाइट-ऑन-ब्लू या [[ सफेद छाप ]]|ब्लू-ऑन-व्हाइट), यही कारण है कि अभियांत्रिक आरेखण को लंबे समय तक कहा जाता था, और आज भी अक्सर ब्लूप्रिंट या व्हाइटप्रिंट कहा जाता है, यहां तक ​​कि हालांकि ये शब्द शाब्दिक दृष्टिकोण से कालानुक्रम हैं, क्योंकि आज अभियांत्रिक आरेखण की अधिकांश प्रतियां अधिक आधुनिक तरीकों (अक्सर [[इंकजेट प्रिंटर]] या [[ लेज़र प्रिंटर ]] प्रिंटिंग) द्वारा बनाई जाती हैं, जो सफेद पेपर पर काली या बहुरंगी रेखाएं उत्पन्न करती हैं। अधिक सामान्य शब्द प्रिंट अब यू.एस. में आम उपयोग में है, जिसका अर्थ अभियांत्रिक आरेखण की किसी भी कागजी प्रति से है। कंप्यूटर एडेड डिजाइन रेखाचित्रों के मामले में, मूल कंप्यूटर एडेड डिजाइन फ़ाइल होती है, और उस फ़ाइल के [[ प्रिंट आउट ]] प्रिंट होते हैं।
चित्र बनाने में सामान्य रूप से मूल बनाना सम्मिलित होता है जिसे पुन: प्रस्तुत किया जाता है, और दुकान के फर्श, विक्रेताओं, कंपनी संग्रह, और इसी तरह वितरित करने के लिए कई प्रतिलिपियां निर्मित की जाती हैं। उत्कृष्ट प्रतिलिपि विधियों में नीले और सफेद स्वरूप सम्मिलित थे (चाहे सफेद पर नीला या नीला-पर-सफेद), यही कारण है कि अभियांत्रिक आरेखण को लंबे समय तक कहा जाता था, और आज भी प्रायः ब्लूप्रिंट या व्हाइटप्रिंट कहा जाता है, यहां तक ​​कि हालांकि ये शब्द शाब्दिक दृष्टिकोण से कालानुक्रम हैं, क्योंकि आज अभियांत्रिक आरेखण की अधिकांश प्रतिलिपियां अधिक आधुनिक तरीकों (प्रायः [[इंकजेट प्रिंटर]] या [[ लेज़र प्रिंटर |लेज़र प्रिंटर]] प्रिंटिंग) द्वारा बनाई जाती हैं, जो सफेद पेपर पर काली या बहुरंगी रेखाएं उत्पन्न करती हैं। अधिक सामान्य शब्द <nowiki>''प्रिंट''</nowiki> अब अमेरिका में सामान्य उपयोग में है, जिसका अर्थ अभियांत्रिक आरेखण की किसी भी पेपर प्रतिलिपि से है। कंप्यूटर एडेड डिजाइन आरेखण की स्थिति में, मूल कंप्यूटर एडेड डिजाइन फ़ाइल होती है, और उस फ़ाइल के [[ प्रिंट आउट |मुद्रित अभिलेख]] प्रिंट होते हैं।


== आयाम और सहिष्णुता की प्रणाली ==
== आयाम और सह्यता की प्रणाली ==


लगभग सभी अभियांत्रिकी चित्र (शायद संदर्भ-मात्र विचारों या प्रारंभिक रेखाचित्रों को छोड़कर) न केवल ज्यामिति (आकार और स्थान) का संचार करते हैं बल्कि आयाम और अभियांत्रिकी सहिष्णुता का भी संचार करते हैं<ref name=":0" />उन विशेषताओं के लिए। आयाम और सहनशीलता की कई प्रणालियाँ विकसित हुई हैं। सबसे सरल आयाम प्रणाली केवल बिंदुओं के बीच की दूरी निर्दिष्ट करती है (जैसे किसी वस्तु की लंबाई या चौड़ाई, या छेद केंद्र स्थान)। अच्छी तरह से विकसित [[विनिमेय भागों]] के आगमन के बाद से, इन दूरियों को प्लस-या-माइनस या न्यूनतम-और-अधिकतम-सीमा प्रकार की सहनशीलता के साथ जोड़ा गया है। समन्वय आयाम में कार्टेशियन निर्देशांक के संदर्भ में सामान्य मूल के साथ सभी बिंदुओं, रेखाओं, विमानों और प्रोफाइल को परिभाषित करना सम्मिलित है। द्वितीय विश्व युद्ध के बाद के युग में जब तक [[ज्यामितीय आयाम और सहनशीलता]] (जीडी एंड टी) के विकास को देखा गया था, तब तक समन्वय आयाम एकमात्र सबसे अच्छा विकल्प था, जो समन्वय आयाम (उदाहरण के लिए, आयताकार-केवल सहिष्णुता क्षेत्र, सहिष्णुता स्टैकिंग) की सीमाओं से निकल जाता है। ज्यामिति और आयाम दोनों की सबसे तार्किक सहनशीलता (अर्थात, दोनों रूप [आकार/स्थान] और आकार)
लगभग सभी अभियांत्रिकी चित्र (संभव्यता संदर्भ-मात्र विचारों या प्रारंभिक आरेखण को छोड़कर) न केवल ज्यामिति (आकार और स्थान) का संचार करते हैं बल्कि उन विशेषताओं के लिए आयाम और अभियांत्रिकी सह्यता का भी संचार करते हैं<ref name=":0" /> आयाम और सहनशीलता की कई प्रणालियाँ विकसित हुई हैं। सबसे सरल आयाम प्रणाली केवल बिंदुओं के बीच की दूरी निर्दिष्ट करती है (जैसे किसी वस्तु की लंबाई या चौड़ाई, या सम्पूर्ण केंद्र स्थान करते है)। अच्छी तरह से विकसित [[विनिमेय भागों]] के आगमन के बाद से, इन दूरियों को वृद्धि तथा कमी या न्यूनतम-और-अधिकतम-सीमा प्रकार की सहनशीलता के साथ जोड़ा गया है। समन्वय आयाम में कार्टेशियन निर्देशांक के संदर्भ में सामान्य मूल के साथ सभी बिंदुओं, रेखाओं, तलों और प्रोफाइल को परिभाषित करना सम्मिलित है। द्वितीय विश्व युद्ध के बाद के युग में जब तक [[ज्यामितीय आयाम और सहनशीलता]] (जीडी और टी) के विकास को देखा गया था, तब तक समन्वय आयाम एकमात्र सबसे अच्छा विकल्प था, जो समन्वय आयाम (उदाहरण के लिए, आयताकार-केवल सह्यता क्षेत्र, सह्यता चितिकरण) की सीमाओं से हटकर सबसे अधिक ज्यामिति और आयाम दोनों की तार्किक सहनशीलता (अर्थात, दोनों रूप [आकार/स्थान] और आकार) स्वीकृति देता है।


== सामान्य विशेषताएं ==
== सामान्य विशेषताएं ==
चित्र निम्नलिखित महत्वपूर्ण जानकारी देते हैं:
चित्र निम्नलिखित महत्वपूर्ण सूचना देते हैं:


* ज्यामिति - वस्तु का आकार; विचारों के रूप में प्रतिनिधित्व; किसी वस्तु को विभिन्न कोणों से देखने पर वह कैसी दिखेगी, जैसे सामने, ऊपर, बगल आदि।
* ज्यामिति - वस्तु का आकार; विचारों के रूप में प्रतिनिधित्व; किसी वस्तु को विभिन्न कोणों से देखने पर वह कैसी दिखेगी, जैसे सामने, ऊपर, दायें, बाएं आदि।
* आयाम - वस्तु का आकार स्वीकृत इकाइयों में लिया जाता है।
* आयाम - वस्तु का आकार स्वीकृत इकाइयों में लिया जाता है।
* [[सहिष्णुता (इंजीनियरिंग)|सहिष्णुता (अभियांत्रिकी)]] - प्रत्येक आयाम के लिए स्वीकार्य विविधताएं।
* [[सहिष्णुता (इंजीनियरिंग)|सह्यता (अभियांत्रिकी)]] - प्रत्येक आयाम के लिए स्वीकार्य विविधताएं।
* सामग्री - यह दर्शाता है कि वस्तु किस चीज से बनी है।
* वस्तु - यह दर्शाता है कि वस्तु किस वस्तु से बनी है।
* समाप्त - आइटम, कार्यात्मक या कॉस्मेटिक की सतह की गुणवत्ता निर्दिष्ट करता है। उदाहरण के लिए, बड़े पैमाने पर विपणन किए गए उत्पाद को सामान्य रूप से औद्योगिक मशीनरी के अंदर जाने वाले घटक की तुलना में बहुत अधिक सतह की गुणवत्ता की आवश्यकता होती है।
* परिरूपण - वस्तु, कार्यात्मक या प्रसाधन की सतह की गुणवत्ता निर्दिष्ट करता है। उदाहरण के लिए, बड़े पैमाने पर विक्रय किए गए उत्पाद को सामान्य रूप से औद्योगिक तंत्र के अंदर जाने वाले घटक की तुलना में बहुत अधिक सतह की गुणवत्ता की आवश्यकता होती है।


=== रेखा शैली और प्रकार ===
=== रेखा शैली और प्रकार ===
[[File:Line types.svg|right|thumb|210px|मानक अभियांत्रिक आरेखण लाइन प्रकार]]विभिन्न प्रकार की रेखा शैलियाँ ग्राफिक रूप से भौतिक वस्तुओं का प्रतिनिधित्व करती हैं। लाइनों के प्रकार में निम्न सम्मिलित हैं:
[[File:Line types.svg|right|thumb|210px|मानक अभियांत्रिक आरेखण रेखा प्रकार]]विभिन्न प्रकार की रेखा शैलियाँ ग्राफिक रूप से भौतिक वस्तुओं का प्रतिनिधित्व करती हैं। रेखाओ के प्रकार में निम्न सम्मिलित हैं:
* दृश्यमान - विशेष कोण से सीधे दिखाई देने वाले किनारों को दर्शाने के लिए उपयोग की जाने वाली निरंतर रेखाएँ हैं।
* दृश्यमान - विशेष कोण से सीधे दिखाई देने वाले कोरों को दर्शाने के लिए उपयोग की जाने वाली सतत रेखाएँ हैं।
* छुपी हुई - छोटी धराशायी रेखाएँ हैं जिनका उपयोग उन किनारों को दर्शाने के लिए किया जा सकता है जो सीधे दिखाई नहीं दे रहे हैं।
* अदृष्ट - छोटी सतत रेखाएँ हैं जिनका उपयोग उन कोरों को दर्शाने के लिए किया जा सकता है जो सीधे दिखाई नहीं दे रहे हैं।
* केंद्र - बारी-बारी से लंबी- और छोटी-धराशायी रेखाएँ होती हैं जिनका उपयोग वृत्ताकार सुविधाओं के अक्षों को दर्शाने के लिए किया जा सकता है।
* केंद्र - वैकल्पिक रूप से लंबी- और छोटी-सतत रेखाएँ होती हैं जिनका उपयोग वृत्ताकार सुविधाओं के अक्षों को दर्शाने के लिए किया जा सकता है।
* कटिंग प्लेन - पतली, मध्यम-धराशायी रेखाएँ, या बारी-बारी से लंबी- और डबल शॉर्ट-डैश वाली मोटी होती हैं जिनका उपयोग [[क्रॉस सेक्शन (ज्यामिति)]] के लिए अनुभागों को परिभाषित करने के लिए किया जा सकता है।
* कर्तन तल - पतली, मध्यम-सतत रेखाएँ, या वैकल्पिक रूप से लंबी- और दोहरी छोटी-सतत रेखाए हैं जिनका उपयोग अनुभाग दृश्यों के लिए अनुभागों को परिभाषित करने के लिए किया जा सकता है।
* खंड - पैटर्न में पतली रेखाएं होती हैं (काटे जाने या खंडित होने वाली सामग्री द्वारा निर्धारित पैटर्न) का उपयोग काटने के परिणामस्वरूप अनुभाग दृश्यों में सतहों को इंगित करने के लिए किया जाता है। अनुभाग रेखाओं को सामान्य रूप से क्रॉस-हैचिंग के रूप में जाना जाता है।
* ब्लॉक - पैटर्न में पतली रेखाएं होती हैं (अलग किए जाने या खंडित होने वाली वस्तु द्वारा निर्धारित पैटर्न) का उपयोग सम्पादन के परिणामस्वरूप अनुभाग दृश्यों में सतहों को इंगित करने के लिए किया जाता है। अनुभाग रेखाओं को सामान्य रूप से तिर्यक रेखन के रूप में जाना जाता है।
* प्रेत - (दिखाया नहीं गया) वैकल्पिक रूप से लंबी- और डबल छोटी-धराशायी पतली रेखाएं हैं जो किसी विशेषता या घटक का प्रतिनिधित्व करने के लिए उपयोग की जाती हैं जो निर्दिष्ट भाग या संयोजन का हिस्सा नहीं है। उदा. बिलेट सिरों का परीक्षण के लिए उपयोग किया जा सकता है, या मशीनी उत्पाद जो टूलिंग आरेखण का फोकस है।
* काल्पनिक- (दिखाया नहीं गया) वैकल्पिक रूप से लंबी- और द्विक छोटी-सतत पतली रेखाएं हैं जो किसी विशेषता या घटक का प्रतिनिधित्व करने के लिए उपयोग की जाती हैं जो निर्दिष्ट भाग या संयोजन का भाग नहीं है। उदाहरण बिलेट सिरों का परीक्षण के लिए उपयोग किया जा सकता है, या मशीनी उत्पाद जो उपकरण आरेखण का केंद्र है।


रेखाओं को वर्ण वर्गीकरण द्वारा भी वर्गीकृत किया जा सकता है जिसमें प्रत्येक पंक्ति को अक्षर दिया जाता है।
रेखाओं को वर्ण वर्गीकरण द्वारा भी वर्गीकृत किया जा सकता है जिसमें प्रत्येक पंक्ति को अक्षर दिया जाता है।
* 'प्रकार ए' रेखाएँ किसी वस्तु की विशेषता की रूपरेखा दर्शाती हैं। वे आरेखण पर सबसे मोटी रेखाएं हैं और एचबी की तुलना में नरम पेंसिल के साथ की जाती हैं।
* ''''टाइप A'''<nowiki/>' रेखाएँ किसी वस्तु की विशेषता की रूपरेखा दर्शाती हैं। वे आरेखण पर सबसे स्थूल रेखाएं हैं और एचबी की तुलना में नरम पेंसिल के साथ बनाई गई हैं।
* 'टाइप बी' रेखाएँ आयाम रेखाएँ हैं और इनका उपयोग आयाम, प्रक्षेपण, विस्तार या नेताओं के लिए किया जाता है। कठिन पेंसिल का उपयोग किया जाना चाहिए, जैसे कि 2H पेंसिल।
* ''''टाइप''' '''B'''<nowiki/>' रेखाएँ आयाम रेखाएँ हैं और इनका उपयोग आयाम, प्रक्षेप, विस्तार या अग्रलेख के लिए किया जाता है। कठोर पेंसिल का उपयोग किया जाना चाहिए, जैसे कि 2H पेंसिल।
* 'टाइप सी' लाइनों का उपयोग ब्रेक के लिए किया जाता है जब पूरी वस्तु नहीं दिखाई जाती है। ये फ्रीहैंड ड्रॉइंग हैं और केवल छोटे ब्रेक के लिए हैं। 2H पेंसिल
* ''''टाइप C'''' रेखाओ का उपयोग विराम के लिए किया जाता है जब पूरी वस्तु नहीं दिखाई जाती है। ये मुक्तहस्त आरेखित हैं और केवल अल्प विराम के लिए हैं। 2H पेंसिल
* 'टाइप डी' लाइनें टाइप सी के समान हैं, सिवाय इसके कि ये टेढ़े-मेढ़े हैं और केवल लंबे ब्रेक के लिए हैं। 2H पेंसिल
* ''''टाइप D'''<nowiki/>' रेखाएँ टाइप C के समान हैं, इसके अतिरिक्त कि ये घुमावदार हैं और केवल लंबे विराम के लिए हैं। 2H पेंसिल
* 'प्रकार ई' रेखाएँ किसी वस्तु की आंतरिक विशेषताओं की छिपी हुई रूपरेखा दर्शाती हैं। ये बिंदीदार रेखाएँ हैं। 2H पेंसिल
* ''''टाइप E'''<nowiki/>' रेखाएँ किसी वस्तु की आंतरिक विशेषताओं की अप्रत्यक्ष रूपरेखा दर्शाती हैं। ये बिंदुयुक्त रेखाएँ हैं। 2H पेंसिल
* 'टाइप एफ' लाइनें टाइप ई लाइनें हैं, सिवाय इसके कि इनका उपयोग इलेक्ट्रोटेक्नोलॉजी में आरेखण के लिए किया जाता है। 2H पेंसिल
* ''''टाइप F'''<nowiki/>' रेखाएँ टाइप E रेखाएँ हैं, इसके अतिरिक्त कि इनका उपयोग विद्युत-प्रौद्योगिकी में आरेखण के लिए किया जाता है। 2H पेंसिल
* 'टाइप जी' लाइनों का उपयोग मध्य रेखाओं के लिए किया जाता है। ये बिंदीदार रेखाएँ हैं, लेकिन 10–20 मिमी की लंबी रेखा, फिर 1 मिमी का अंतर, फिर 2 मिमी की छोटी रेखा। 2H पेंसिल
* ''''टाइप G'''<nowiki/>' रेखाओ का उपयोग मध्य रेखाओं के लिए किया जाता है। ये बिंदुयुक्त रेखाएँ हैं, लेकिन 10–20 मिमी की लंबी रेखा, फिर 1 मिमी का अंतर, फिर 2 मिमी की छोटी रेखा है। 2H पेंसिल
* 'टाइप एच' लाइनें टाइप जी के समान हैं, सिवाय इसके कि हर दूसरी लंबी लाइन मोटी होती है। ये किसी वस्तु के काटने वाले तल को इंगित करते हैं। 2H पेंसिल
* ''''टाइप H'''<nowiki/>' रेखाएँ टाइप G के समान हैं, सिवाय इसके कि प्रत्येक दूसरी लंबी रेखा स्थूल होती है। ये किसी वस्तु के कर्तन वाले तल को इंगित करते हैं। 2H पेंसिल
* 'टाइप K' रेखाएँ किसी वस्तु की वैकल्पिक स्थिति और उस वस्तु द्वारा ली गई रेखा को दर्शाती हैं। इन्हें 10–20 मिमी की लंबी लाइन, फिर छोटा गैप, फिर 2 मिमी की छोटी लाइन, फिर गैप, फिर और छोटी लाइन के साथ चित्रित किया जाता है। 2H पेंसिल।
* ''''टाइप K'''<nowiki/>' रेखाएँ किसी वस्तु की वैकल्पिक स्थिति और उस वस्तु द्वारा ली गई रेखा को दर्शाती हैं। इन्हें 10–20 मिमी की लंबी रेखा, फिर छोटा अन्तराल, फिर 2 मिमी की छोटी रेखा, फिर अन्तराल, फिर अधिक छोटी रेखा के साथ चित्रित किया जाता है। 2H पेंसिल।  


=== एकाधिक विचार और अनुमान ===
=== एकाधिक दृश्य और प्रक्षेप ===
{{Main|Graphical projection}}
{{Main|चित्रमय  चित्र प्रदर्शन}}
[[File:First angle projection.svg|thumb|right|प्रथम-कोण प्रक्षेपण में दर्शाए गए भाग की छवि]]
[[File:First angle projection.svg|thumb|right|प्रथम-कोण प्रक्षेप में दर्शाए गए भाग की छवि]]
[[File:Conventions of placing vues in technical drawings.svg|thumb|right|प्रतीक यह परिभाषित करने के लिए उपयोग किया जाता है कि प्रक्षेपण या तो प्रथम-कोण (बाएं) या तीसरा-कोण (दाएं) है।]]
[[File:Conventions of placing vues in technical drawings.svg|thumb|right|प्रतीक यह परिभाषित करने के लिए उपयोग किया जाता है कि प्रक्षेप या तो प्रथम-कोण (बाएं) या तीसरा-कोण (दाएं) है।]]
[[File:Graphical projection comparison.png|thumb|right|कई प्रकार के चित्रमय प्रक्षेपण की तुलना]]
[[File:Graphical projection comparison.png|thumb|right|कई प्रकार के चित्रमय प्रक्षेप की तुलना]]
[[File:Various projections of cube above plane.svg|thumb|विभिन्न अनुमान और वे कैसे उत्पन्न होते हैं]]
[[File:Various projections of cube above plane.svg|thumb|विभिन्न प्रक्षेप और वे कैसे उत्पन्न होते हैं]]
[[File:Engineering drawing isometric.svg|thumb|right|अभियांत्रिकी आरेखण में दिखाई गई वस्तु का सममितीय दृश्य #उदाहरण।]]अधिकतम मामलों में, सभी आवश्यक सुविधाओं को दिखाने के लिए दृश्य पर्याप्त नहीं होता है, और कई दृश्यों का उपयोग किया जाता है। विचारों के प्रकार में निम्न सम्मिलित हैं:
[[File:Engineering drawing isometric.svg|thumb|right|अभियांत्रिकी आरेखण में दिखाई गई वस्तु का सममितीय दृश्य।]]अधिकतम स्थितियों में, सभी आवश्यक सुविधाओं को दिखाने के लिए दृश्य पर्याप्त नहीं होता है, और कई दृश्यों का उपयोग किया जाता है। दृश्यों के प्रकार में निम्न सम्मिलित हैं:


==== मल्टीव्यू प्रोजेक्शन ====
==== बहुदृश्य प्रक्षेप ====
मल्टीविव प्रोजेक्शन प्रकार का ऑर्थोग्राफ़िक प्रोजेक्शन है जो ऑब्जेक्ट को सामने, दाएं, बाएं, ऊपर, नीचे या पीछे (जैसे प्राथमिक दृश्य) से दिखता है, और सामान्य रूप से नियमों के अनुसार दूसरे के सापेक्ष स्थित होता है। या तो मल्टीव्यू प्रोजेक्शन | फर्स्ट-एंगल या थर्ड-एंगल प्रोजेक्शन। प्रोजेक्टर (जिसे प्रोजेक्शन लाइन भी कहा जाता है) की उत्पत्ति और वेक्टर दिशा अलग-अलग होती है, जैसा कि नीचे बताया गया है।
बहुदृश्य प्रक्षेप प्रकार का लंबकोणीय प्रक्षेप है जो वस्तु को सामने, दाएं, बाएं, ऊपर, नीचे या पीछे (जैसे प्राथमिक दृश्य) से दिखता है, और सामान्य रूप से पहले-कोण या तीसरे-कोण प्रक्षेपण के नियमों के अनुसार एक-दूसरे के सापेक्ष स्थित होते हैं।  प्रक्षेपित्र (जिसे प्रक्षेप रेखा भी कहा जाता है) की उत्पत्ति और वेक्टर दिशा अलग-अलग होती है, जैसा कि नीचे बताया गया है।
* प्रथम-कोण प्रक्षेपण में, समानांतर प्रोजेक्टर ऐसे उत्पन्न होते हैं जैसे कि दर्शक के पीछे से विकीर्ण होते हैं और 3D ऑब्जेक्ट से होकर उसके पीछे ओर्थोगोनल तल पर 2D छवि प्रोजेक्ट करते हैं। 3D ऑब्जेक्ट को 2D पेपर स्पेस में प्रक्षेपित किया जाता है जैसे कि आप ऑब्जेक्ट के [[रेडियोग्राफ़]] को देख रहे हों: शीर्ष दृश्य सामने के दृश्य के नीचे है, दायां दृश्य सामने के दृश्य के बाईं ओर है। प्रथम-कोण प्रक्षेपण [[आईएसओ 128|अंतर्राष्ट्रीय मानक संगठन 128]] है और इसका मुख्य रूप से यूरोप में उपयोग किया जाता है।
* प्रथम-कोण प्रक्षेप में, समानांतर प्रोजेक्टर (प्रक्षेपक यंत्र) ऐसे उत्पन्न होते हैं जैसे कि दर्शक के पीछे से विकीर्ण होते हैं और 3D वस्तु से होकर उसके पीछे लंबकोणीय तल पर 2D छवि प्रस्तुत करते हैं। 3D वस्तु को 2D पेपर अंतराल में प्रक्षेपित किया जाता है जैसे कि आप वस्तु के [[रेडियोग्राफ़]] (विकिरण चित्र) को देख रहे हों: शीर्ष दृश्य सामने के दृश्य के नीचे है, दायां दृश्य सामने के दृश्य के बाईं ओर है। प्रथम-कोण प्रक्षेपण आईएसओ मानक है और इसका मुख्य रूप से यूरोप में उपयोग किया जाता है।
* तीसरे-कोण प्रक्षेपण में, समानांतर प्रोजेक्टर उत्पन्न होते हैं जैसे कि वस्तु के दूर की ओर से विकीर्ण होते हैं और 3डी वस्तु के माध्यम से उसके सामने ओर्थोगोनल तल पर 2डी छवि पेश करने के लिए गुजरते हैं। 3डी ऑब्जेक्ट के दृश्य बॉक्स के पैनल की तरह होते हैं जो ऑब्जेक्ट को कवर करते हैं, और पैनल धुरी के रूप में वे आरेखण के विमान में फ्लैट खोलते हैं।<ref name="French_Vierck_1953_pp99-105">{{Harvnb|French|Vierck|1953|pp=99–105}</ref> इस प्रकार बायाँ दृश्य बाईं ओर और शीर्ष दृश्य शीर्ष पर रखा जाता है; और 3D ऑब्जेक्ट के सामने की सबसे नज़दीकी विशेषताएं आरेखण में सामने के दृश्य के सबसे करीब दिखाई देंगी। तृतीय-कोण प्रक्षेपण मुख्य रूप से संयुक्त राज्य अमेरिका और कनाडा में उपयोग किया जाता है, जहां यह [[ASME|यांत्रिक इंजीनियरों की अमरीकी संस्था]] मानक यांत्रिक इंजीनियरों की अमरीकी संस्था Y14.3M के अनुसार डिफ़ॉल्ट प्रक्षेपण प्रणाली है।
* तीसरे-कोण प्रक्षेप में, समानांतर प्रोजेक्टर उत्पन्न होते हैं जैसे कि वस्तु के दूर की ओर से विकीर्ण होते हैं और 3D वस्तु के माध्यम से उसके सामने लंबकोणीय तल पर 2D छवि प्रस्तुत करने के लिए गुजरते हैं। 3D वस्तु के दृश्य बॉक्स के पैनल (फलक) की तरह होते हैं जो वस्तु को आवृत करते हैं, और पैनल धुरी के रूप में वे आरेखण के तल में समतल होते हैं।<ref name="French_Vierck_1953_pp99-105">{{Harvnb|French|Vierck|1953|pp=99–105}</ref> इस प्रकार बायाँ दृश्य बाईं ओर और शीर्ष दृश्य शीर्ष पर रखा जाता है; और 3D वस्तु के सामने की सबसे समीप आकृति आरेखण में सामने के दृश्य के सबसे समीप दिखाई देंगी। तृतीय-कोण प्रक्षेप मुख्य रूप से संयुक्त राज्य अमेरिका और कनाडा में उपयोग किया जाता है, जहां यह [[ASME|यांत्रिक इंजीनियरों की अमरीकी संस्था]] मानक यांत्रिक इंजीनियरों की अमरीकी संस्था Y14.3M के अनुसार डिफ़ॉल्ट प्रक्षेप प्रणाली है।


19वीं शताब्दी के अंत तक, उत्तरी अमेरिका के साथ-साथ यूरोप में प्रथम-कोण प्रक्षेपण आदर्श था; रेफरी नाम= फ़्रेंच1918पी78 >{{Harvnb|French|1918}}, [https://books.google.com/books?id=6R5DAAAAIAAJ&pg=PA78 p. 78].</ref><ref name="French_Vierck_1953_pp111-114">{{Harvnb|French|Vierck|1953|pp=111–114}</ref> लेकिन 1890 के आसपास, उत्तरी अमेरिकी अभियांत्रिकी और विनिर्माण समुदायों में व्यापक रूप से पालन किए जाने वाले सम्मेलन बनने के बिंदु पर तीसरे कोण प्रक्षेपण फैल गया,<ref name="French1918p78"/><ref name="French_Vierck_1953_pp111-114"/>और यह 1950 के दशक तक एएसए मानक था।<ref name="French_Vierck_1953_pp111-114"/>लगभग प्रथम विश्व युद्ध, ब्रिटिश अभ्यास अक्सर दोनों प्रक्षेपण विधियों के उपयोग को मिला रहा था।<ref name="French1918p78"/>
19वीं शताब्दी के अंत तक, उत्तरी अमेरिका के साथ-साथ यूरोप में प्रथम-कोण प्रक्षेप मानक था; <ref name="French_Vierck_1953_pp111-114">{{Harvnb|French|Vierck|1953|pp=111–114}</ref><ref>https://en.wikipedia.org/wiki/Engineering_drawing#Relationship_to_model-based_definition_(MBD/DPD):~:text=Europe%3B%5B4%5D-,%5B5%5D,-but%20circa%20the</ref> लेकिन 1890 के आसपास, उत्तरी अमेरिकी अभियांत्रिकी और विनिर्माण समुदायों में व्यापक रूप से अनुसरण किए जाने वाले सम्मेलन बनने के बिंदु पर तृतीय-कोण प्रक्षेप विस्तृत हो गया,<ref name="French1918p78"/><ref name="French_Vierck_1953_pp111-114"/> और यह 1950 के दशक तक एएसए मानक था।<ref name="French_Vierck_1953_pp111-114"/> लगभग प्रथम विश्व युद्ध, ब्रिटिश अभ्यास मे प्रायः दोनों प्रक्षेप विधियों के उपयोग को मिला रहा था।<ref name="French1918p78"/>


जैसा कि ऊपर दिखाया गया है, उपयोग की गई प्रक्षेपण विधि के आधार पर सामने, पीछे, ऊपर और नीचे की सतह का निर्धारण अलग-अलग होता है।
जैसा कि ऊपर दिखाया गया है, उपयोग की गई प्रक्षेप विधि के आधार पर सामने, पीछे, ऊपर और नीचे की सतह का निर्धारण अलग-अलग होता है।


सभी दृश्यों का उपयोग आवश्यक नहीं है।<ref name="French_Vierck_1953_pp97-114">{{Harvnb|French|Vierck|1953|pp=97–114}}</ref> आम तौर पर केवल उतने ही दृश्यों का उपयोग किया जाता है जितने कि सभी आवश्यक जानकारी को स्पष्ट रूप से और आर्थिक रूप से संप्रेषित करने के लिए आवश्यक होते हैं।<ref name="French_Vierck_1953_pp108-111">{{Harvnb|French|Vierck|1953|pp=108–111}}</ref> आम तौर पर सामने, ऊपर और दाईं ओर के दृश्यों को डिफ़ॉल्ट रूप से सम्मिलित किए गए दृश्यों का मुख्य समूह माना जाता है,<ref name="French_Vierck_1953_p102">{{Harvnb|French|Vierck|1953|p=102}}.</ref> लेकिन विशेष डिजाइन की जरूरतों के आधार पर दृश्यों के किसी भी संयोजन का उपयोग किया जा सकता है। छह प्रमुख विचारों (सामने, पीछे, ऊपर, नीचे, दाएं तरफ, बाएं तरफ) के अलावा, किसी भी सहायक विचार या अनुभागों को भाग परिभाषा और इसके संचार के उद्देश्यों के रूप में सम्मिलित किया जा सकता है। व्यू लाइन्स या सेक्शन लाइन्स (-, बी-बी, आदि चिह्नित तीर वाली लाइनें) देखने या सेक्शनिंग की दिशा और स्थान को परिभाषित करती हैं। कभी-कभी नोट पाठक को आरेखण के किस क्षेत्र (क्षेत्रों) में दृश्य या अनुभाग खोजने के लिए कहता है।
सभी दृश्यों का उपयोग आवश्यक नहीं है।<ref name="French_Vierck_1953_pp97-114">{{Harvnb|French|Vierck|1953|pp=97–114}}</ref> सामान्य रूप से केवल उतने ही दृश्यों का उपयोग किया जाता है जितने कि सभी आवश्यक सूचना को स्पष्ट रूप से और आर्थिक रूप से संप्रेषित करने के लिए आवश्यक होते हैं।<ref name="French_Vierck_1953_pp108-111">{{Harvnb|French|Vierck|1953|pp=108–111}}</ref> सामान्य रूप से सामने, ऊपर और दाईं ओर के दृश्यों को डिफ़ॉल्ट रूप से सम्मिलित किए गए दृश्यों का मुख्य समूह माना जाता है,<ref name="French_Vierck_1953_p102">{{Harvnb|French|Vierck|1953|p=102}}.</ref> लेकिन विशेष डिजाइन की आवश्यकताओ के आधार पर दृश्यों के किसी भी संयोजन का उपयोग किया जा सकता है। छह प्रमुख विचारों (सामने, पीछे, ऊपर, नीचे, दाएं तरफ, बाएं तरफ) के अतिरिक्त, किसी भी सहायक विचार या अनुभागों को भाग परिभाषा और इसके संचार के उद्देश्यों के रूप में सम्मिलित किया जा सकता है। दृश्य रेखाए या अनुभाग रेखाए ( "A-A", "B-B", आदि चिह्नित तीर वाली रेखाए) देखने या अनुभागीकरण की दिशा और स्थान को परिभाषित करती हैं। कभी-कभी नोट रीडर (प्रवाचक) को आरेखण के किस क्षेत्र (क्षेत्रों) में दृश्य या अनुभाग खोजने के लिए कहता है।


==== सहायक विचार ====
==== सहायक दृश्य ====
सहायक दृश्य ऑर्थोग्राफ़िक दृश्य है जिसे छह प्राथमिक दृश्यों में से किसी के अलावा किसी भी विमान में प्रक्षेपित किया जाता है।<ref>Bertoline, Gary R. ''Introduction to Graphics Communications for Engineers (4th Ed.).'' New York, NY. 2009</ref> ये दृश्य सामान्य रूप से तब उपयोग किए जाते हैं जब किसी वस्तु में किसी प्रकार का झुका हुआ विमान होता है। सहायक दृश्य का उपयोग करने से उस आनत समतल (और अन्य महत्वपूर्ण विशेषताओं) को उनके वास्तविक आकार और आकार में प्रक्षेपित किया जा सकता है। अभियांत्रिक आरेखण में किसी भी फीचर का सही आकार और आकार केवल तभी जाना जा सकता है जब दृष्टि रेखा (LOS) संदर्भित किए जा रहे विमान के लंबवत हो।
सहायक दृश्य ऑर्थोग्राफ़िक दृश्य है जिसे छह प्राथमिक दृश्यों में से किसी के अतिरिक्त किसी भी तल में प्रक्षेपित किया जाता है।<ref>Bertoline, Gary R. ''Introduction to Graphics Communications for Engineers (4th Ed.).'' New York, NY. 2009</ref> ये दृश्य सामान्य रूप से तब उपयोग किए जाते हैं जब किसी वस्तु में किसी प्रकार का आनत तल होता है। सहायक दृश्य का उपयोग करने से उस आनत समतल (और अन्य महत्वपूर्ण विशेषताओं) को उनके वास्तविक आकार और आकार में प्रक्षेपित किया जा सकता है। अभियांत्रिक आरेखण में किसी भी महत्वपूर्ण लेख का सही आकार और आकृति केवल तभी जाना जा सकता है जब दृष्टि रेखा (एलओएस) संदर्भित किए जा रहे तल के लंबवत हो। इसे त्रि-आयामी वस्तु की तरह दिखाया गया है। सहायक दृश्य[[ एक्सोनोमेट्रिक प्रक्षेपण | अक्षमितीय प्रक्षेप]] का उपयोग करते हैं। जब सभी स्वयं सम्मिलित होते हैं, सहायक दृश्य कभी-कभी चित्रमय रूप में जाने जाते हैं।
इसे त्रि-आयामी वस्तु की तरह दिखाया गया है। सहायक विचार [[ एक्सोनोमेट्रिक प्रक्षेपण ]] का उपयोग करते हैं। जब सभी स्वयं सम्मिलित होते हैं, सहायक दृश्य कभी-कभी सचित्र के रूप में जाने जाते हैं।


==== [[ सममितीय प्रक्षेपण ]] ====
==== [[ सममितीय प्रक्षेपण |सममितीय प्रक्षेप]] ====
आइसोमेट्रिक प्रोजेक्शन ऑब्जेक्ट को कोणों से दिखाता है जिसमें ऑब्जेक्ट के प्रत्येक अक्ष के साथ स्केल बराबर होते हैं। आइसोमेट्रिक प्रोजेक्शन ऊर्ध्वाधर अक्ष के बारे में ± 45° द्वारा ऑब्जेक्ट के घूर्णन से मेल खाता है, इसके बाद लगभग ± 35.264° [= आर्क्सिन(टैन(30°))] क्षैतिज अक्ष के बारे में ऑर्थोग्राफ़िक प्रोजेक्शन व्यू से शुरू होता है। आइसोमेट्रिक ही माप के लिए ग्रीक से आता है। चीज़ जो आइसोमेट्रिक आरेखण को इतना आकर्षक बनाती है, वह है आसानी से 60° कोणों का निर्माण केवल कम्पास-एंड-स्ट्रेटेज निर्माण के साथ किया जा सकता है।
सममितीय प्रक्षेप वस्तु को कोणों से दिखाता है जिसमें वस्तु के प्रत्येक अक्ष के साथ पैमाने बराबर होते हैं। सममितीय प्रक्षेप ऊर्ध्वाधर अक्ष के बारे में ± 45° द्वारा वस्तु के घूर्णन से अनुरूप है, इसके बाद लगभग ± 35.264° [= arcSine(tan(30°))] क्षैतिज अक्ष के बारे में लंबकोणीय प्रक्षेप दृश्य से प्रारंभ होता है। सममितीय ही माप के लिए ग्रीक से आता है। वस्तु जो सममितीय आरेखण को इतना आकर्षक बनाती है, वह आसानी से 60° कोणों का केवल कम्पास-और-सीधे कोर के साथ निर्माण किया जा सकता है।


आइसोमेट्रिक प्रोजेक्शन प्रकार का एक्सोनोमेट्रिक प्रोजेक्शन है। अन्य दो प्रकार के एक्सोनोमेट्रिक प्रोजेक्शन हैं:
सममितीय प्रक्षेप प्रकार का अक्षमितीय प्रक्षेप है। अन्य दो प्रकार के अक्षमितीय प्रक्षेप हैं:
* [[डिमेट्रिक प्रोजेक्शन]]
* [[डिमेट्रिक प्रोजेक्शन|द्विमितीय प्रक्षेपण]]
* [[त्रिमितीय प्रक्षेपण]]
* [[त्रिमितीय प्रक्षेपण|त्रिमितीय प्रक्षेप]]


==== [[तिरछा प्रक्षेपण]] ====
==== [[तिरछा प्रक्षेपण|तिर्यक प्रक्षेप]] ====
तिरछा प्रक्षेपण सरल प्रकार का चित्रमय प्रक्षेपण है जिसका उपयोग त्रि-आयामी वस्तुओं की सचित्र, द्वि-आयामी [[छवि]]यों के निर्माण के लिए किया जाता है:
तिर्यक प्रक्षेप सरल प्रकार का चित्रमय प्रक्षेप है जिसका उपयोग त्रि-आयामी वस्तुओं की सचित्र, द्वि-आयामी [[छवि]]यों के निर्माण के लिए किया जाता है:
* यह समानांतर किरणों (प्रोजेक्टर) को काटकर छवि पेश करता है
* यह समानांतर किरणों (प्रोजेक्टर) को काटकर छवि प्रस्तुत करता है
* आरेखण सतह (प्रक्षेपण योजना) के साथ त्रि-आयामी स्रोत वस्तु से।
* आरेखण सतह (प्रक्षेप योजना) के साथ त्रि-आयामी स्रोत वस्तु से।
तिरछा प्रक्षेपण और ऑर्थोग्राफ़िक प्रक्षेपण दोनों में, स्रोत वस्तु की समानांतर रेखाएँ अनुमानित छवि में समानांतर रेखाएँ उत्पन्न करती हैं।
तिर्यक प्रक्षेप और लंबकोणीय प्रक्षेप दोनों में, स्रोत वस्तु की समानांतर रेखाएँ अनुमानित छवि में समानांतर रेखाएँ उत्पन्न करती हैं।


==== परिप्रेक्ष्य प्रक्षेपण ====
==== संदर्श प्रक्षेप ====
परिप्रेक्ष्य (ग्राफ़िकल) छवि की सपाट सतह पर अनुमानित प्रतिनिधित्व है, जैसा कि यह आँख से माना जाता है। परिप्रेक्ष्य की दो सबसे विशिष्ट विशेषताएं हैं कि वस्तुओं को चित्रित किया जाता है:
परिप्रेक्ष्य (चित्रमय) छवि की समतल सतह पर अनुमानित प्रतिनिधित्व है, जैसा कि यह दृश्य से माना जाता है। परिप्रेक्ष्य की दो सबसे विशिष्ट विशेषताएं हैं कि वस्तुओं को चित्रित किया जाता है:
* प्रेक्षक से उनकी दूरी बढ़ने के साथ-साथ छोटा होता जाता है
* प्रेक्षक से उनकी दूरी बढ़ने के साथ-साथ छोटा होता जाता है
* अग्रसंक्षिप्त: दृष्टि रेखा के साथ-साथ किसी वस्तु के आयामों का आकार दृष्टि की रेखा के आयामों की तुलना में अपेक्षाकृत छोटा होता है।
* अग्रसंक्षिप्त: दृष्टि रेखा के साथ-साथ किसी वस्तु के आयामों का आकार दृष्टि की रेखा के आयामों की तुलना में अपेक्षाकृत छोटी होती है।


==== अनुभाग दृश्य ====
==== अनुभाग दृश्य ====
अनुमानित दृश्य (या तो सहायक या मल्टीव्यू) जो निर्दिष्ट कट विमान के साथ स्रोत वस्तु का क्रॉस सेक्शन दिखाते हैं। इन दृश्यों का उपयोग सामान्य रूप से आंतरिक विशेषताओं को अधिक स्पष्टता के साथ दिखाने के लिए किया जाता है, जो नियमित अनुमानों या छिपी हुई रेखाओं का उपयोग करके उपलब्ध हो सकता है। संयोजन ड्रॉइंग में, हार्डवेयर घटक (जैसे नट, स्क्रू, वाशर) सामान्य रूप से खंडित नहीं होते हैं। सेक्शन व्यू ऑब्जेक्ट का आधा साइड व्यू है।
अनुमानित दृश्य (या तो सहायक या बहुदृश्य) जो निर्दिष्ट कट तल के साथ स्रोत वस्तु का अनुप्रस्थ परिच्छेद दिखाते हैं। इन दृश्यों का उपयोग सामान्य रूप से आंतरिक विशेषताओं को अधिक स्पष्टता के साथ दिखाने के लिए किया जाता है, जो नियमित अनुमानों या अप्रत्‍यक्ष रेखाओं का उपयोग करके उपलब्ध हो सकता है। संयोजन आरेख में, हार्डवेयर घटक (जैसे नट, स्क्रू, वाशर) सामान्य रूप से खंडित नहीं होते हैं। अनुभाग दृश्य वस्तु का आधा पार्श्व दृश्य है।


=== पैमाना ===
=== पैमाना ===
{{Main|Architect's scale|Engineer's scale|Metric scale}}
{{Main|निर्माणकार का पैमाना, यांत्रिकी का पैमाना और मीटरी पैमाना}}
योजनाएं आम तौर पर स्केल आरेखण होती हैं, जिसका अर्थ है कि योजनाएं स्थान या वस्तु के वास्तविक आकार के सापेक्ष विशिष्ट [[अनुपात]] में खींची जाती हैं। सेट में अलग-अलग आरेखण के लिए अलग-अलग पैमानों का इस्तेमाल किया जा सकता है। उदाहरण के लिए, फ्लोर प्लान 1:50 (1:48 या {{frac|4}}″ = 1′ 0″) जबकि विस्तृत दृश्य 1:25 (1:24 या {{frac|2}}″ = 1′ 0″). साइट प्लान अक्सर 1:200 या 1:100 पर बनाए जाते हैं।


स्केल अभियांत्रिक आरेखण के उपयोग में अति सूक्ष्म विषय है। ओर, यह अभियांत्रिकी आरेखण का सामान्य सिद्धांत है कि उन्हें मानकीकृत, गणितीय रूप से निश्चित प्रक्षेपण विधियों और नियमों का उपयोग करके प्रक्षेपित किया जाता है। इस प्रकार, अभियांत्रिक आरेखण को परिशुद्ध रूप से आकार, आकार, रूप, सुविधाओं के बीच पहलू अनुपात, और इसी तरह चित्रित करने में बहुत प्रयास किया जाता है। और फिर भी, दूसरी ओर, अभियांत्रिक आरेखण का और सामान्य सिद्धांत है जो लगभग सभी प्रयासों और मंशा का विरोध करता है - वह सिद्धांत है कि उपयोगकर्ताओं को आरेखण को स्केल नहीं करना है ताकि लेबल न किए गए आयाम का अनुमान लगाया जा सके। यह कड़ी चेतावनी अक्सर ड्रॉइंग पर दोहराई जाती है, शीर्षक खंड में बॉयलरप्लेट नोट के माध्यम से उपयोगकर्ता को बताते हैं, ड्रॉइंग स्केल न करें।
योजनाएं सामान्य रूप से आरेखण-पैमाना होती हैं, जिसका अर्थ है कि योजनाएं स्थान या वस्तु के वास्तविक आकार के सापेक्ष विशिष्ट [[अनुपात]] में चित्रित की जाती हैं। समूह में अलग-अलग आरेखण के लिए अलग-अलग पैमानों का उपयोग किया जा सकता है। उदाहरण के लिए, फर्श आरेख 1:50 (1:48 या {{frac|4}}″ = 1′ 0″) जबकि विस्तृत दृश्य 1:25 (1:24 या {{frac|2}}″ = 1′ 0″). स्थल-आरेख प्रायः 1:200 या 1:100 पर बनाए जाते हैं।


ये दो लगभग विपरीत सिद्धांत सह-अस्तित्व में क्यों हो सकते हैं, इसकी व्याख्या इस प्रकार है। पहला सिद्धांत - कि चित्र इतनी सावधानी से और परिशुद्ध रूप से बनाए जाएंगे - मुख्य लक्ष्य की सेवा करता है कि अभियांत्रिक आरेखण क्यों सम्मिलित है, जो भाग की परिभाषा और स्वीकृति मानदंड को सफलतापूर्वक संप्रेषित कर रहा है - जिसमें यह भी सम्मिलित है कि यदि आपने इसे सही तरीके से बनाया है तो भाग कैसा दिखना चाहिए। इस लक्ष्य की सेवा वह है जो रेखाचित्र बनाती है जिसे कोई माप भी सकता है और जिससे परिशुद्ध आयाम प्राप्त हो सकता है। और इस प्रकार ऐसा करने का बड़ा प्रलोभन, जब आयाम चाहता था लेकिन उसे लेबल नहीं किया गया था। दूसरा सिद्धांत - भले ही आरेखण को स्केल करना आम तौर पर काम करेगा, फिर भी किसी को ऐसा कभी नहीं करना चाहिए - कई लक्ष्यों को पूरा करता है, जैसे कि डिजाइन के इरादे को समझने का अधिकार किसके पास है, और आरेखण के गलत स्केलिंग को रोकने के बारे में पूरी स्पष्टता को प्रयुक्त करना, जो कभी भी तैयार नहीं किया गया था। शुरू करने के लिए स्केल करने के लिए (जिसे आम तौर पर स्केल या स्केल नहीं करने के लिए आरेखण लेबल किया जाता है: एनटीएस)। जब किसी उपयोगकर्ता को आरेखण को स्केल करने से मना किया जाता है, तो उसे इसके बजाय इंजीनियर की ओर मुड़ना चाहिए (उत्तरों के लिए जो स्केलिंग की तलाश होगी), और वह कभी भी गलत तरीके से स्केल नहीं करेगा जो स्वाभाविक रूप से परिशुद्ध रूप से स्केल करने में असमर्थ है।
पैमाना अभियांत्रिक आरेखण के उपयोग में अति सूक्ष्म विषय है। एक ओर, यह अभियांत्रिकी आरेखण का सामान्य सिद्धांत है कि उन्हें मानकीकृत, गणितीय रूप से निश्चित प्रक्षेप विधियों और नियमों का उपयोग करके प्रक्षेपित किया जाता है। इस प्रकार, अभियांत्रिक आरेखण को परिशुद्ध रूप से आकार, आकार, रूप, सुविधाओं के बीच स्वरूप अनुपात, और इसी तरह चित्रित करने में अधिक प्रयास किया जाता है। और फिर भी, दूसरी ओर, अभियांत्रिक आरेखण का और सामान्य सिद्धांत है जो लगभग सभी प्रयासों और प्रयोजन का विरोध करता है - वह सिद्धांत है कि उपयोगकर्ताओं को आरेखण को मापन नहीं करना है ताकि लेबल न किए गए आयाम का अनुमान लगाया जा सके। यह दृढ़ चेतावनी प्रायः आरेख पर पुनरावृत की जाती है, शीर्षक खंड में बॉयलरप्लेट टिप्पणी के माध्यम से उपयोगकर्ता को यह कहते हुए, <nowiki>''</nowiki>आरेख मापन न करें<nowiki>''</nowiki>।


लेकिन कुछ मायनों में, कंप्यूटर-एडेड डिज़ाइन और मॉडल-आधारित परिभाषा युग का आगमन इन धारणाओं को चुनौती देता है जो कई दशकों पहले बनाई गई थीं। जब ठोस मॉडल के माध्यम से भाग की परिभाषा को गणितीय रूप से परिभाषित किया जाता है, तो यह दावा कि कोई मॉडल से पूछताछ नहीं कर सकता है - आरेखण को स्केल करने का प्रत्यक्ष एनालॉग - हास्यास्पद हो जाता है; क्योंकि जब भाग परिभाषा को इस तरह से परिभाषित किया जाता है, तो आरेखण या मॉडल के लिए स्केल नहीं करना संभव नहीं है। 2D पेंसिल आरेखण को गलत तरीके से पूर्वसंक्षिप्त और तिरछा किया जा सकता है (और इस प्रकार स्केल नहीं किया जा सकता है), फिर भी यह पूरी तरह से मान्य भाग परिभाषा हो सकती है जब तक कि लेबल किए गए आयाम केवल उपयोग किए जाने वाले आयाम हैं, और उपयोगकर्ता द्वारा आरेखण का कोई स्केलिंग नहीं होता है। ऐसा इसलिए है क्योंकि रेखाचित्र और लेबल जो व्यक्त करते हैं, वह वास्तव में वांछित वस्तु का प्रतीक होता है, न कि उसकी वास्तविक प्रतिकृति। (उदाहरण के लिए, छेद का स्केच जो स्पष्ट रूप से गोल नहीं है, फिर भी सही गोल छेद के रूप में भाग को परिशुद्ध रूप से परिभाषित करता है, जब तक कि लेबल 10 मिमी डीआईए कहता है, क्योंकि डीआईए स्पष्ट रूप से लेकिन निष्पक्ष रूप से उपयोगकर्ता को बताता है कि तिरछा चित्रित किया गया चक्र है पूर्ण वृत्त का प्रतिनिधित्व करने वाला प्रतीक।) लेकिन अगर गणितीय मॉडल - अनिवार्य रूप से वेक्टर ग्राफिक - को भाग की आधिकारिक परिभाषा घोषित किया जाता है, तो आरेखण को स्केल करने की कोई भी मात्रा समझ में आ सकती है; मॉडल में अभी भी त्रुटि हो सकती है, इस अर्थ में कि जो इरादा था वह चित्रित नहीं किया गया है (मॉडलिंग); लेकिन स्केल न करने के प्रकार की कोई त्रुटि नहीं हो सकती है - क्योंकि गणितीय वैक्टर और वक्र भाग सुविधाओं के प्रतीक नहीं, प्रतिकृतियां हैं।
ये दो लगभग विपरीत सिद्धांत सह-अस्तित्व में क्यों हो सकते हैं, इसकी व्याख्या इस प्रकार है। पहला सिद्धांत - कि चित्र इतनी सावधानी से और परिशुद्ध रूप से बनाए जाएंगे - मुख्य लक्ष्य में कार्य करता है कि अभियांत्रिक आरेखण क्यों सम्मिलित है, जो भाग की परिभाषा और स्वीकृति मानदंड को सफलतापूर्वक संप्रेषित कर रहा है - जिसमें यह भी सम्मिलित है कि यदि आपने इसे सही तरीके से बनाया है तो भाग कैसा दिखना चाहिए। इस लक्ष्य का कार्य वह है जो आरेख बनाता है जिसे कोई माप भी सकता है और जिससे परिशुद्ध आयाम प्राप्त हो सकता है। और इस प्रकार ऐसा करने का बड़ा प्रलोभन, जब आयाम चाहता था लेकिन उसे लेबल नहीं किया गया था। दूसरा सिद्धांत - तथापि आरेखण को मापन करना सामान्य रूप से काम करेगा, फिर भी किसी को ऐसा कभी नहीं करना चाहिए - कई लक्ष्यों को पूरा करता है, जैसे कि डिजाइन के उद्देश्य को समझने का अधिकार किसके पास है, और आरेखण के गलत मापन करने को रोकने के बारे में पूरी स्पष्टता को प्रयुक्त करना, जिसे प्रारंभ करने के लिए मापन करने के लिए (जिसे सामान्य रूप से <nowiki>''</nowiki>आरेखण नॉट टू स्केल" या "स्केल एनटीएस<nowiki>''</nowiki> कहा जाता है।) जो कभी भी निर्मित नहीं किया गया था। जब किसी उपयोगकर्ता को आरेखण को मापन करने से मना किया जाता है, तो उसे इसके अतिरिक्त अभियांत्रिक की ओर बढ़ना चाहिए (उत्तरों के लिए जो मापन की जांच होगी), और वह कभी भी गलत तरीके से मापन नहीं करेगा जो स्वाभाविक रूप से परिशुद्ध रूप से मापन करने में असमर्थ है।


यहां तक ​​कि 2डी रेखांकन से निपटने में, निर्माण की दुनिया उन दिनों से बदल गई है जब लोग प्रिंट पर दावा किए गए पैमाने अनुपात पर ध्यान देते थे, या इसकी सटीकता पर भरोसा करते थे। अतीत में, प्लॉटर पर परिशुद्ध स्केल अनुपात के लिए प्रिंट प्लॉट किए गए थे, और उपयोगकर्ता यह जान सकता था कि 15 मिमी लंबी आरेखण पर रेखा 30 मिमी भाग आयाम के अनुरूप है क्योंकिड्राइंग ने टाइटल ब्लॉक के स्केल बॉक्स में 1:2 कहा। आज, सर्वव्यापी डेस्कटॉप प्रिंटिंग के युग में, जहां मूल चित्र या स्केल किए गए प्रिंट अक्सर स्कैनर पर स्कैन किए जाते हैं और पीडीएफ फाइल के रूप में सहेजे जाते हैं, जिसे बाद में किसी भी प्रतिशत आवर्धन पर मुद्रित किया जाता है, जो उपयोगकर्ता को आसान लगता है (जैसे पेपर के आकार के लिए उपयुक्त) , उपयोगकर्ताओं ने शीर्षक खंड के स्केल बॉक्स में किस पैमाने के अनुपात का दावा किया है, इसकी परवाह करना बहुत छोड़ दिया है। जो, ड्रॉइंग स्केल न करने के नियम के तहत, वैसे भी वास्तव में उनके लिए इतना कुछ नहीं किया।
लेकिन कुछ तरीकों में, कंप्यूटर-एडेड डिज़ाइन और मॉडल-आधारित परिभाषा युग का आगमन इन धारणाओं को चुनौती देता है जो कई दशकों पहले बनाई गई थीं। जब ठोस मॉडल के माध्यम से भाग की परिभाषा को गणितीय रूप से परिभाषित किया जाता है, तो यह दावा कि कोई मॉडल से जांच नहीं कर सकता है - आरेखण को मापन करने का प्रत्यक्ष एनालॉग - विकृति हो जाता है; क्योंकि जब भाग परिभाषा को इस तरह से परिभाषित किया जाता है, तो आरेखण या मॉडल के लिए मापन नहीं करना संभव नहीं है। 2D पेंसिल आरेखण को गलत तरीके से पूर्वसंक्षिप्त और तिर्यक किया जा सकता है (और इस प्रकार मापन नहीं किया जा सकता है), फिर भी यह पूरी तरह से मान्य भाग परिभाषा हो सकती है जब तक कि लेबल किए गए आयाम केवल उपयोग किए जाने वाले आयाम हैं, और उपयोगकर्ता द्वारा आरेखण का कोई मापन नहीं होता है। ऐसा इसलिए है क्योंकि आरेख और लेबल जो व्यक्त करते हैं, वह वास्तव में वांछित वस्तु का प्रतीक होता है, न कि उसकी वास्तविक प्रतिकृति होती है। (उदाहरण के लिए, स्केच जो स्पष्ट रूप से पूर्ण नहीं है, फिर भी सही पूर्ण रूप में भाग को परिशुद्ध रूप से परिभाषित करता है, जब तक कि लेबल 10 मिमी डीआईए कहता है, क्योंकि डीआईए स्पष्ट रूप से लेकिन निष्पक्ष रूप से उपयोगकर्ता को बताता है कि तिर्यक चित्रित किया गया चक्र है पूर्ण वृत्त का प्रतिनिधित्व करने वाला प्रतीक है।) लेकिन अगर गणितीय मॉडल - अनिवार्य रूप से वेक्टर ग्राफिक - को भाग की आधिकारिक परिभाषा घोषित किया जाता है, तो आरेखण को मापन करने की कोई भी मात्रा समझ में आ सकती है; मॉडल में अभी भी त्रुटि हो सकती है, इस अर्थ में कि जो विचार था वह चित्रित नहीं किया गया है (मॉडलिंग); लेकिन मापन न करने के प्रकार की कोई त्रुटि नहीं हो सकती है - क्योंकि गणितीय वेक्टर और वक्र भाग सुविधाओं के प्रतीक नहीं, प्रतिकृतियां हैं।


=== आयाम दिखा रहा है ===
यहां तक ​​कि 2D रेखांकन से प्रस्तुत करने में, निर्माण की विश्व उन दिनों से परिवर्तित गई है जब लोग प्रिंट पर दावा किए गए पैमाने अनुपात पर ध्यान देते थे, या इसकी परिशुद्ध पर निर्भर करते थे। अतीत में, आलेखक पर परिशुद्ध अनुपात मापन के लिए प्रिंट आलेखित किए गए थे, और उपयोगकर्ता यह जान सकता था कि 15 मिमी लंबी आरेखण पर रेखा 30 मिमी भाग आयाम के अनुरूप है क्योंकि आरेख ने शीर्षक खंड के "स्केल" बॉक्स में "1:2" कहा था। आज, सर्वव्यापी डेस्कटॉप प्रिंटिंग के युग में, जहां मूल चित्र या मापन किए गए प्रिंट प्रायः स्कैनर पर स्कैन किए जाते हैं और पीडीएफ फाइल के रूप में संग्रहीत किए जाते हैं, जिसे बाद में किसी भी प्रतिशत आवर्धन पर मुद्रित किया जाता है, जो उपयोगकर्ता को आसान लगता है (जैसे पेपर के आकार के लिए उपयुक्त) शीर्षक खंड के पैमाना बॉक्स में किस पैमाने के अनुपात का दावा किया है, उपयोगकर्ताओं ने बहुत अधिक ध्यान दिया है। जो, आरेख पैमाना न करने के नियम के अंतर्गत, वैसे भी वास्तव में उनके लिए इतना कुछ नहीं किया।


=== रेखाचित्रों का आकार ===
=== आयाम प्रदर्शन ===
{{Main|Paper size}}
 
=== आरेखण का आकार ===
{{Main|पेपर आकार}}
[[File:A size illustration.svg|thumb|अंतर्राष्ट्रीय मानक संगठन पेपर आकार]]
[[File:A size illustration.svg|thumb|अंतर्राष्ट्रीय मानक संगठन पेपर आकार]]
[[File:ANSI_size_illustration.svg|thumb|एएनएसआई पेपर आकार]]आरेखण के आकार सामान्य रूप से दो अलग-अलग मानकों, [[आईएसओ मानक|अंतर्राष्ट्रीय मानक संगठन मानक]] (विश्व मानक) या एएनएसआई/यांत्रिक इंजीनियरों की अमरीकी संस्था वाई14.1 (अमेरिकी) का अनुपालन करते हैं।
[[File:ANSI_size_illustration.svg|thumb|अमेरिकन राष्ट्रीय मानक संस्थान पेपर आकार]]आरेखण के आकार सामान्य रूप से दो अलग-अलग मानकों, [[आईएसओ मानक|अंतर्राष्ट्रीय मानक संगठन मानक]] (विश्व मानक) या अमेरिकन राष्ट्रीय मानक संस्थान/यांत्रिक इंजीनियरों की अमरीकी संस्था वाई14.1 (अमेरिकी) का अनुसरण करते हैं।


मीट्रिक आरेखण आकार अंतर्राष्ट्रीय पेपर आकारों के अनुरूप होते हैं। बीसवीं शताब्दी के उत्तरार्ध में इनमें और सुधार हुआ, जब [[फोटोकॉपी]] सस्ती हो गई। अभियांत्रिक आरेखण को आसानी से आकार में दोगुना (या आधा) किया जा सकता है और जगह की बर्बादी के बिना अगले बड़े (या क्रमशः, छोटे) आकार के पेपर पर रखा जा सकता है। और मीट्रिक [[तकनीकी कलम]]ों को आकारों में चुना गया था ताकि कोई व्यक्ति 2 के वर्गमूल के लगभग कारक द्वारा बदलते हुए कलम की चौड़ाई के साथ विवरण या आलेखन परिवर्तन जोड़ सके। कलमों के पूर्ण सेट में निम्नलिखित निब आकार होंगे: 0.13, 0.18, 0.25, 0.35, 0.5, 0.7, 1.0, 1.5 और 2.0 मिमी। हालाँकि, मानकीकरण के लिए अंतर्राष्ट्रीय संगठन (अंतर्राष्ट्रीय मानक संगठन) ने चार पेन चौड़ाई के लिए कहा और प्रत्येक के लिए रंग कोड निर्धारित किया: 0.25 (सफेद), 0.35 (पीला), 0.5 (भूरा), 0.7 (नीला); इन निब्स ने ऐसी लाइनें बनाईं जो विभिन्न टेक्स्ट कैरेक्टर हाइट्स और अंतर्राष्ट्रीय मानक संगठन [[ पेपर का आकार ]] से संबंधित थीं।
मापीय आरेखण आकार अंतर्राष्ट्रीय पेपर आकारों के अनुरूप होते हैं। बीसवीं शताब्दी के उत्तरार्ध में इनमें और संशोधन हुआ, जब [[फोटोकॉपी]] सस्ती हो गई। अभियांत्रिक आरेखण को आसानी से आकार में दोगुना (या आधा) किया जा सकता है और स्थान के क्षय के बिना अगले बड़े (या क्रमशः, छोटे) आकार के पेपर पर रखा जा सकता है। और मापीय [[तकनीकी कलम|तकनीकी]] पेनों को आकारों में चयन किया गया था ताकि कोई व्यक्ति 2 के वर्गमूल के लगभग कारक द्वारा बदलते हुए पेन की चौड़ाई के साथ विवरण या आलेखन परिवर्तन जोड़ सके। पेनों के पूर्ण समूह में निम्नलिखित निब आकार : 0.13, 0.18, 0.25, 0.35, 0.5, 0.7, 1.0, 1.5 और 2.0 मिमी होंगे। हालाँकि, मानकीकरण के लिए अंतर्राष्ट्रीय संगठन (अंतर्राष्ट्रीय मानक संगठन) ने चार पेन चौड़ाई के लिए कहा और प्रत्येक के लिए रंग कोड: 0.25 (सफेद), 0.35 (पीला), 0.5 (भूरा), 0.7 (नीला) निर्धारित किया; इन निब्स ने ऐसी रेखाए बनाईं जो विभिन्न पाठ वर्ण ऊंचाई और अंतर्राष्ट्रीय मानक संगठन [[ पेपर का आकार |पेपर के आकार]] से संबंधित थीं।


सभी अंतर्राष्ट्रीय मानक संगठन पेपर आकारों में समान पहलू अनुपात होता है, से [[2 का वर्गमूल]], जिसका अर्थ है कि किसी दिए गए आकार के लिए डिज़ाइन किए गए दस्तावेज़ को किसी अन्य आकार में बड़ा या घटाया जा सकता है और यह पूरी तरह से फिट होगा। आकार बदलने की इस आसानी को देखते हुए, किसी दिए गए दस्तावेज़ को कागज़ के विभिन्न आकारों पर कॉपी करना या प्रिंट करना आम बात है, विशेष रूप से श्रृंखला के भीतर, उदा। A3 पर आरेखण को A2 तक बढ़ाया जा सकता है या A4 तक घटाया जा सकता है।
सभी अंतर्राष्ट्रीय मानक संगठन पेपर आकारों में समान स्वरूप अनुपात होता है, एक से [[2 का वर्गमूल]], जिसका अर्थ है कि किसी दिए गए आकार के लिए डिज़ाइन किए गए प्रलेख को किसी अन्य आकार में बड़ा या कम किया जा सकता है और यह पूरी तरह से निर्धारित होगा। आकार बदलने की इस आसानी को देखते हुए, विशेष रूप से श्रृंखला के अंदर किसी दिए गए प्रलेख को पेपर के विभिन्न आकारों पर प्रतिलिपि बनाना या प्रिंट करना सामान्य बात है, उदाहरण A3 पर आरेखण को A2 तक बढ़ाया जा सकता है या A4 तक घटाया जा सकता है।


यूएस प्रथागत ए-आकार अक्षर आकार से मेल खाता है, और बी-आकार खाता बही या टैब्लॉइड आकार से मेल खाता है। बार ब्रिटिश पेपर आकार भी थे, जो अल्फ़ान्यूमेरिक पदनामों के बजाय नामों से जाने जाते थे।
अमेरिका प्रचलित A-आकार अक्षर आकार से अनुरूप है, और B-आकार लेजर या पत्रिका आकार से अनुरूप है। एक बार ब्रिटिश पेपर आकार भी थे, जो अक्षरांकीय पदनामों के अतिरिक्त नामों से जाने जाते थे।


अमेरिकन सोसायटी ऑफ यांत्रिक इंजीनियर्स (यांत्रिक इंजीनियरों की अमरीकी संस्था) ANSI/यांत्रिक इंजीनियरों की अमरीकी संस्था Y14.1, Y14.2, Y14.3, और Y14.5 यू.एस. में सामान्यतः संदर्भित मानक हैं।
यांत्रिक इंजीनियरों की अमरीकी संस्था अमेरिकन राष्ट्रीय मानक संस्थान/यांत्रिक इंजीनियरों की अमरीकी संस्था Y14.1, Y14.2, Y14.3, और Y14.5 अमेरिका में सामान्यतः संदर्भित मानक हैं।


=== तकनीकी अभिलेख ===
=== तकनीकी अभिलेख ===
[[तकनीकी लेटरिंग]] तकनीकी आरेखण में अक्षर, अंक और अन्य वर्ण (कंप्यूटिंग) बनाने की प्रक्रिया है। इसका उपयोग किसी वस्तु का वर्णन करने या विस्तृत विवरण प्रदान करने के लिए किया जाता है। पठनीयता और एकरूपता के लक्ष्यों के साथ, शैलियों को मानकीकृत किया जाता है और अक्षरों की क्षमता का सामान्य लेखन क्षमता से बहुत कम संबंध होता है। अभियांत्रिकी ड्रॉइंग में [[सान्स सेरिफ़]] का इस्तेमाल होता है। [[मशीन]]ों के अधिकांश आरेखणों में लोअर केस अक्षर दुर्लभ हैं। अंतर्राष्ट्रीय मानक संगठन लेटरिंग टेम्प्लेट, तकनीकी पेन और पेंसिल के साथ उपयोग के लिए डिज़ाइन किए गए हैं, और अंतर्राष्ट्रीय मानक संगठन पेपर के आकार के अनुरूप हैं, अंतरराष्ट्रीय मानक के लिए लेटरिंग कैरेक्टर तैयार करते हैं। स्ट्रोक की मोटाई कैरेक्टर की ऊंचाई से संबंधित होती है (उदाहरण के लिए, 2.5 मिमी ऊंचे कैरेक्टर में स्ट्रोक की मोटाई होगी - पेन निब का आकार - 0.25 मिमी, 3.5 में 0.35 मिमी पेन और इसी तरह आगे)। अंतर्राष्ट्रीय मानक संगठन कैरेक्टर सेट (फ़ॉन्ट) में सेरिफ़ वाला, वर्जित सात, एक [[ खुला चार ]], छह और नौ, और राउंड टॉप तीन होता है, जो सुपाठ्यता में सुधार करता है, उदाहरण के लिए, A0 आरेखण को A1 या A3 तक कम कर दिया गया है (और शायद वापस बड़ा या पुन: प्रस्तुत/फैक्स/माइक्रोफिल्म और सी)। जब कंप्यूटर एडेड डिजाइन चित्र अधिक लोकप्रिय हो गए, विशेष रूप से ऑटोकैड जैसे अमेरिकी अमेरिकी सॉफ्टवेयर का उपयोग करते हुए, इस अंतर्राष्ट्रीय मानक संगठन मानक फ़ॉन्ट का निकटतम फ़ॉन्ट रोमांटिक सिम्पलेक्स (रोमनएस) था - मालिकाना shx फ़ॉन्ट) मैन्युअल रूप से समायोजित चौड़ाई कारक (ओवर राइड) के साथ इसे बनाने के लिए आरेखण बोर्ड के लिए अंतर्राष्ट्रीय मानक संगठन लेटरिंग के करीब देखें। हालांकि, क्लोज्ड फोर और आर्क सिक्स और नौ के साथ, romans.shx टाइपफेस को रिडक्शन में पढ़ना मुश्किल हो सकता है। सॉफ़्टवेयर पैकेजों के हाल के संशोधनों में, [[ट्रू टाइप]] फ़ॉन्ट ISOCPEUR विश्वसनीय रूप से मूल आरेखण बोर्ड लेटरिंग स्टैंसिल शैली को पुन: उत्पन्न करता है, हालाँकि, कई चित्र सर्वव्यापी Arial.ttf पर स्विच किए गए हैं।
[[तकनीकी लेटरिंग|तकनीकी अभिलेख]] तकनीकी आरेखण में अक्षर, अंक और अन्य वर्ण (कंप्यूटिंग) बनाने की प्रक्रिया है। इसका उपयोग किसी वस्तु का वर्णन करने या विस्तृत विवरण प्रदान करने के लिए किया जाता है। पठनीयता और एकरूपता के लक्ष्यों के साथ, शैलियों को मानकीकृत किया जाता है और अक्षरों की क्षमता का सामान्य लेखन क्षमता से बहुत कम संबंध होता है। अभियांत्रिकी आरेख में [[सान्स सेरिफ़|गॉथिक सैंस-सेरिफ़ लिपि]] का उपयोग होता है। [[मशीन]] के अधिकांश आरेखणों में छोटे अक्षर अक्षर दुर्लभ हैं। अंतर्राष्ट्रीय मानक संगठन अभिलेख प्रतिदर्श, तकनीकी पेन और पेंसिल के साथ उपयोग के लिए डिज़ाइन किए गए हैं, और अंतर्राष्ट्रीय मानक संगठन पेपर के आकार के अनुरूप हैं, अंतरराष्ट्रीय मानक के लिए अभिलेख वर्ण निर्मित करते हैं। रेखा की संघनता वर्ण की ऊंचाई से संबंधित होती है (उदाहरण के लिए, 2.5 मिमी अत्यधिक अक्षरों में स्ट्रोक की संघनता होगी - पेन निब का आकार - 0.25 मिमी, 3.5 में 0.35 मिमी पेन और इसी तरह आगे है)। अंतर्राष्ट्रीय मानक संगठन वर्ण समूह ( लिपि) में सेरिफ़, सात,[[ खुला चार | चार]], छह और नौ, और चक्र शीर्ष तीन होता है, जो सुपाठ्यता में संशोधन करता है, उदाहरण के लिए, A0 आरेखण को A1 या A3 तक कम कर दिया गया है (और संभव्यता वापस बड़ा या पुन: प्रस्तुत/फैक्स/ सूक्ष्मफिल्मांकन और c)। जब कंप्यूटर एडेड डिजाइन चित्र अधिक लोकप्रिय हो गए, विशेष रूप से स्व-कंप्यूटर एडेड डिजाइन जैसे अमेरिकी अमेरिकी सॉफ्टवेयर का उपयोग करते हुए, इस अंतर्राष्ट्रीय मानक संगठन मानक अक्षर का निकटतम अक्षर अव्यवहारिक प्रसमुच्चय (रोमनएस) था - ट्रेडमार्क युक्त एसएचएक्स अक्षर) मैन्युअल रूप से समायोजित चौड़ाई कारक ( प्रत्यादिष्ट ) के साथ इसे बनाने के लिए आरेखण बोर्ड के लिए अंतर्राष्ट्रीय मानक संगठन अभिलेख के समीप देखें। हालांकि, चार संवृत और आर्क छह और नौ के साथ, romans.shx अक्षराकृति को अवनति में पढ़ना कठिन हो सकता है। सॉफ़्टवेयर पैकेजों के हाल के संशोधनों में, [[ट्रू टाइप|दो प्रकार]] अक्षर आईएसोपीईयूआर विश्वसनीय रूप से मूल आरेखण बोर्ड अभिलेख निकृंत शैली को पुन: उत्पन्न करता है, हालाँकि, कई चित्र सर्वव्यापी Arial.ttf पर स्विच किए गए हैं।


== पारंपरिक भाग (क्षेत्र) ==
== पारंपरिक भाग (क्षेत्र) ==


=== शीर्षक खंड ===
=== शीर्षक खंड ===
हर अभियांत्रिक आरेखण में टाइटल ब्लॉक होना चाहिए।<ref>
प्रत्येक अभियांत्रिक आरेखण में शीर्षक खंड होना चाहिए।<ref>
United States Bureau of Naval Personnel.
United States Bureau of Naval Personnel.
[https://www.google.com/books/edition/Engineering_Aid_1_C/rzw7AQAAIAAJ "Engineering Aid 1 & C."].
[https://www.google.com/books/edition/Engineering_Aid_1_C/rzw7AQAAIAAJ "Engineering Aid 1 & C."].
Line 151: Line 151:
p. 2-5.
p. 2-5.
</ref>
</ref>
टाइटल ब्लॉक (टी/बी, टीबी) आरेखण का क्षेत्र है जो आरेखण के बारे में [[हेडर (कंप्यूटिंग)]]-प्रकार की जानकारी देता है, जैसे:
 
शीर्षक खंड (टी/बी, टीबी) आरेखण का क्षेत्र है जो आरेखण के बारे में [[हेडर (कंप्यूटिंग)]]-प्रकार की सूचना देता है, जैसे:
* आरेखण शीर्षक (इसलिए नाम शीर्षक खंड)
* आरेखण शीर्षक (इसलिए नाम शीर्षक खंड)
* आरेखण संख्या
* आरेखण संख्या
* [[भाग संख्या]]एँ)
* [[भाग संख्या]]एँ)
* डिजाइन गतिविधि का नाम (निगम, सरकारी एजेंसी, आदि)
* डिजाइन गतिविधि का नाम (निगम, सरकारी संस्था, आदि)
* डिजाइन गतिविधि का पहचान कोड (जैसे [[वाणिज्यिक और सरकारी संस्था]])
* डिजाइन गतिविधि का पहचान कोड (जैसे [[वाणिज्यिक और सरकारी संस्था|व्यवसायिक और सरकारी संस्था]])
* डिजाइन गतिविधि का पता (जैसे शहर, राज्य/प्रांत, देश)
* डिजाइन गतिविधि का पता (जैसे शहर, राज्य/प्रांत, देश)
* आरेखण की माप इकाइयाँ (उदाहरण के लिए, इंच, मिलीमीटर)
* आरेखण की माप इकाइयाँ (उदाहरण के लिए, इंच, मिलीमीटर)
Line 163: Line 164:
* [[बौद्धिक संपदा]] अधिकार चेतावनी
* [[बौद्धिक संपदा]] अधिकार चेतावनी


[[आईएसओ 7200|अंतर्राष्ट्रीय मानक संगठन 7200]] शीर्षक ब्लॉकों में उपयोग किए जाने वाले डेटा फ़ील्ड्स को निर्दिष्ट करता है।
[[आईएसओ 7200|अंतर्राष्ट्रीय मानक संगठन 7200]] शीर्षक ब्लॉकों में उपयोग किए जाने वाले डेटा क्षेत्रों को निर्दिष्ट करता है। यह आठ अनिवार्य डेटा क्षेत्रों का मानकीकरण करता है:<ref name="fg_title_block">फरहाद घोरानी.
यह आठ अनिवार्य डेटा क्षेत्रों का मानकीकरण करता है:<ref name="fg_title_block" >फरहाद घोरानी.
[http://tolerancing.net/engineering-drawing/title-block.html टाइटल ब्लॉक]।
[http://tolerancing.net/engineering-drawing/title-block.html टाइटल ब्लॉक]।
2015.
2015.
</रेफरी>
</ref>
* शीर्षक (इसलिए नाम शीर्षक ब्लॉक)
*शीर्षक (इसलिए नाम शीर्षक खंड)
* द्वारा बनाया गया (ड्राफ्ट्समैन का नाम)
*द्वारा बनाया गया (ड्राफ्ट्समैन का नाम)
*के द्वारा अनुमोदित
*वैधानिक स्वामी (कंपनी या संगठन का नाम)
*प्रलेख का प्रकार
*आरेखण संख्या (इस प्रलेख की प्रत्येक शीट के लिए समान, संगठन के प्रत्येक तकनीकी प्रलेख के लिए अद्वितीय)
*शीट संख्या और शीट की संख्या (उदाहरण के लिए, शीट 5/7)
*जारी करने की तारीख (जब आरेखण बनाया गया था)
 
शीर्षक खंड के लिए पारंपरिक स्थान नीचे दाईं ओर (सामान्य रूप से) या ऊपर दाईं ओर या बीच में होते हैं।
 
===संशोधन ब्लॉक===
संशोधन ब्लॉक (रेव ब्लॉक) आरेखण के संशोधन (संस्करण) की एक सारणीबद्ध सूची है, जो [[संशोधन नियंत्रण]] का दस्तावेजीकरण करता है।
 
संशोधन ब्लॉक के लिए पारंपरिक स्थान शीर्ष दाएं (सामान्य रूप से) या किसी तरह से शीर्षक खंड से लगे होते हैं।
 
===अगली संयोजन===
अगला संयोजन ब्लॉक, जिसे प्रायः उपयोग किया जाता है या कभी-कभी प्रभावशीलता ब्लॉक के रूप में संदर्भित किया जाता है, उच्च संयोजन की एक सूची है जहां वर्तमान आरेखण पर उत्पाद का उपयोग किया जाता है। यह ब्लॉक सामान्य रूप से टाइटल ब्लॉक के निकट पाया जाता है।
 
===नोट्स सूची===
नोट्स सूची आरेखण के उपयोगकर्ता को नोट्स प्रदान करती है, किसी भी सूचना को बताती है कि आरेखण के क्षेत्र के कॉलआउट में नहीं था। इसमें सामान्य नोट्स, फ़्लैगनोट्स या दोनों का मिश्रण सम्मिलित हो सकता है।
 
नोट्स सूची के लिए पारंपरिक स्थान आरेखण के क्षेत्र के किनारों के साथ कहीं भी हैं।
 
====सामान्य नोट्स====
सामान्य नोट्स (जी/एन, जीएन) सामान्य रूप से आरेखण की सामग्री पर प्रयुक्त होते हैं, केवल कुछ भाग संख्याओं या कुछ सतहों या विशेषताओं पर प्रयुक्त होने के विपरीत है।
 
====फ्लैगनोट्स====
फ़्लैगनोट्स या फ़्लैग नोट्स (एफएल, एफ/एल) वे नोट होते हैं जो केवल प्रस्तारिक किए गए कॉलआउट बिंदुओं पर प्रयुक्त होते हैं, जैसे कि विशेष सतहों, सुविधाओं या भाग संख्याओं पर है। सामान्य रूप से कॉलआउट में एक चिन्ह प्रतिरूप सम्मिलित होता है। कुछ कंपनियां ऐसे नोटों को डेल्टा नोट्स कहती हैं, और नोट संख्या एक त्रिकोणीय प्रतीक ([[डेल्टा (पत्र)|डेल्टा]] Δ [[डेल्टा (पत्र)|(पत्र)]] अक्षर के समान) के अंदर संलग्न होती है। FL5 (फ्लैगनोट 5) और D5 (डेल्टा नोट 5) केवल [[एएससीआईआई]] संदर्भों में संक्षिप्त करने के विशिष्ट तरीके हैं।
 
===आरेखण का क्षेत्र===
आरेखण का क्षेत्र (एफ/डी, एफडी) आरेखण का मुख्य भाग या मुख्य क्षेत्र टाइटल ब्लॉक, रेव ब्लॉक, पी/एल आदि को छोड़कर  है।
 
===सामग्री की सूची, सामग्री का विज्ञापन, भागों की सूची===
{{main|सामग्री का विज्ञापन}}
 
सामग्री की सूची (एल/एम, एलएम, एलओएम), सामग्री का विज्ञापन (बी/एम, बीएम, बीओएम), या भागों की सूची (पी/एल, पीएल) बनाने के लिए उपयोग की जाने वाली सामग्री की एक (सामान्य रूप से सारणीबद्ध) सूची है। एक भाग, और/या एक संयोजन बनाने के लिए उपयोग किए जाने वाले हिस्से। इसमें प्रत्येक भाग संख्या के लिए ताप संसोधन, परिष्करण और अन्य प्रक्रियाओं के निर्देश हो सकते हैं। कभी-कभी ऐसे एलओएम या पीएल आरेखण से अलग दस्तावेज होते हैं।
 
एलओएम/बीओएम के लिए पारंपरिक स्थान शीर्षक खंड के ऊपर या एक अलग प्रलेख में हैं।
 
===पैरामीटर सारणीकरण===
कुछ आरेखण पैरामीटर नामों के साथ आयामों को निर्देशित करते हैं (अर्थात, चर, जैसे A , B , C ), फिर प्रत्येक भाग संख्या के लिए पैरामीटर मानों की पंक्तियों को सारणीबद्ध करें।
 
पैरामीटर तालिकाओं के लिए पारंपरिक स्थान, जब ऐसी तालिकाओं का उपयोग किया जाता है, आरेखण के क्षेत्र के किनारों के पास अस्थिर हैं, या तो शीर्षक खंड के पास या कहीं और क्षेत्र के किनारों के साथ अस्थिर है।
 
===दृश्य और अनुभाग===
प्रत्येक दृश्य या अनुभाग अनुमानों का एक अलग समूह है, जो आरेखण के क्षेत्र के एक सन्निहित भाग पर प्रग्रहण कर रहा है। सामान्य रूप से विचारों और वर्गों को क्षेत्र के विशिष्ट क्षेत्रों के प्रति-संदर्भों के साथ निर्देशित किया जाता है।
 
===क्षेत्र===
प्रायः एक आरेखण को  [[अल्फ़ान्यूमेरिक ग्रिड|अक्षरांकीय ग्रिड]] द्वारा क्षेत्र में विभाजित किया जाता है, जिसमें सीमा के साथ ज़ोन लेबल होते हैं, जैसे A, B, C, D ऊपर की तरफ और 1,2,3,4,5,6 ऊपर और नीचे की तरफ होते है।<ref>https://en.wikipedia.org/wiki/Engineering_drawing#:~:text=and%20bottom.%5B-,14%5D,-Names%20of%20zones</ref>
 
शीर्षक (इसलिए नाम "शीर्षक खंड")
 
* (ड्राफ्ट्समैन का नाम) द्वारा बनाया गया
* के द्वारा अनुमोदित
* के द्वारा अनुमोदित
* कानूनी मालिक (कंपनी या संगठन का नाम)
* वैधानिक स्वामी (कंपनी या संगठन का नाम)
* दस्तावेज़ का प्रकार
* प्रलेख का प्रकार
* आरेखण संख्या (इस दस्तावेज़ की प्रत्येक शीट के लिए समान, संगठन के प्रत्येक तकनीकी दस्तावेज़ के लिए अद्वितीय)
* आरेखण संख्या (इस प्रलेख की प्रत्येक शीट के लिए समान, संगठन के प्रत्येक तकनीकी प्रलेख के लिए अद्वितीय है।)
* शीट संख्या और शीट की संख्या (उदाहरण के लिए, शीट 5/7)
* शीट संख्या और शीट की संख्या (उदाहरण के लिए, "शीट 5/7")
* जारी करने की तारीख (जब ड्राइंग बनाई गई थी)
* जारी करने की तिथि (जब आरेख बनाया गया था)
 
* शीर्षक खंड के लिए पारंपरिक स्थान नीचे दाईं ओर (सामान्य रूप से) या ऊपर दाईं ओर या बीच में होते हैं।
टाइटल ब्लॉक के लिए पारंपरिक स्थान नीचे दाईं ओर (आमतौर पर) या ऊपर दाईं ओर या बीच में होते हैं।


=== संशोधन ब्लॉक ===
=== संशोधन ब्लॉक ===
संशोधन ब्लॉक (रेव ब्लॉक) ड्राइंग के संशोधन (संस्करण) की एक सारणीबद्ध सूची है, जो [[संशोधन नियंत्रण]] का दस्तावेजीकरण करता है।
संशोधन ब्लॉक (रेव शीर्षक खंड) आरेखण के संशोधन (संस्करण) की एक सारणीबद्ध सूची है, जो संशोधन नियंत्रण का दस्तावेजीकरण करता है।


संशोधन ब्लॉक के लिए पारंपरिक स्थान शीर्ष दाएं (आमतौर पर) या किसी तरह से शीर्षक ब्लॉक से सटे होते हैं।
संशोधन ब्लॉक के लिए पारंपरिक स्थान शीर्ष दाएं (सामान्य रूप से) या किसी तरह से शीर्षक खंड से जुड़े होते हैं।


=== अगली असेंबली ===
==== अगला संयोजन ====
अगला असेंबली ब्लॉक, जिसे अक्सर इस्तेमाल किया जाता है या कभी-कभी प्रभावशीलता ब्लॉक के रूप में संदर्भित किया जाता है, उच्च विधानसभाओं की एक सूची है जहां वर्तमान ड्राइंग पर उत्पाद का उपयोग किया जाता है। यह ब्लॉक आमतौर पर टाइटल ब्लॉक के निकट पाया जाता है।
अगला संयोजन शीर्षक खंड, जिसे प्रायः "जहां उपयोग किया जाता है" या कभी-कभी "प्रभावकारिता शीर्षक खंड" के रूप में संदर्भित किया जाता है, उच्च संयोजन की एक सूची है जहां वर्तमान आरेख पर उत्पाद का उपयोग किया जाता है। यह शीर्षक खंड सामान्य रूप से शीर्षक खंड के समीप पाया जाता है।


=== नोट्स सूची ===
===== नोट्स सूची =====
नोट्स सूची ड्राइंग के उपयोगकर्ता को नोट्स प्रदान करती है, किसी भी जानकारी को बताती है कि ड्राइंग के क्षेत्र के कॉलआउट में नहीं था। इसमें सामान्य नोट्स, फ़्लैगनोट्स या दोनों का मिश्रण शामिल हो सकता है।
नोट्स सूची आरेखण के उपयोगकर्ता को नोट्स प्रदान करती है, किसी भी सूचना को बताती है कि आरेखण के क्षेत्र के कॉलआउट में नहीं था। इसमें सामान्य नोट्स, फ़्लैगनोट्स या दोनों का संयोजन सम्मिलित हो सकता है।


नोट्स सूची के लिए पारंपरिक स्थान आरेखण के क्षेत्र के किनारों के साथ कहीं भी हैं।
नोट्स सूची के लिए पारंपरिक स्थान आरेखण के क्षेत्र के किनारों के साथ कहीं भी हैं।


==== सामान्य नोट्स ====
==== सामान्य टिप्पणियां ====
सामान्य नोट्स (जी/एन, जीएन) आम तौर पर ड्राइंग की सामग्री पर लागू होते हैं, केवल कुछ भाग संख्याओं या कुछ सतहों या विशेषताओं पर लागू होने के विपरीत।
सामान्य नोट्स (जी/एन, जीएन) सामान्य रूप से आरेखण की वस्तु पर प्रयुक्त होते हैं, केवल कुछ भाग संख्याओं या कुछ सतहों या विशेषताओं पर प्रयुक्त होने के विपरीत है।


==== फ्लैगनोट्स ====
==== फ्लैगनोट्स ====
फ़्लैगनोट्स या फ़्लैग नोट्स (FL, F/N) वे नोट होते हैं जो केवल फ़्लैग किए गए कॉलआउट बिंदुओं पर लागू होते हैं, जैसे कि विशेष सतहों, सुविधाओं या भाग संख्याओं पर। आमतौर पर कॉलआउट में एक फ्लैग आइकन शामिल होता है। कुछ कंपनियां ऐसे नोटों को डेल्टा नोट्स कहती हैं, और नोट संख्या एक त्रिकोणीय प्रतीक ([[डेल्टा (पत्र)]]अक्षर), Δ के समान) के अंदर संलग्न होती है। FL5 (फ्लैगनोट 5) और D5 (डेल्टा नोट 5) [[एएससीआईआई]]-ओनली संदर्भों में संक्षिप्त करने के विशिष्ट तरीके हैं।
फ़्लैगनोट्स या फ़्लैग नोट (एफएल, एफ/एल) वे नोट होते हैं जो केवल प्रस्तरित किए गए कॉलआउट बिंदुओं पर प्रयुक्त होते हैं, जैसे कि विशेष सतहों, सुविधाओं या भाग संख्याओं पर होते है। सामान्य रूप से कॉलआउट में एक चिह्नक प्रतिरूप सम्मिलित होता है। कुछ कंपनियां ऐसे नोटों को "डेल्टा नोट्स" कहती हैं, और नोट संख्या एक त्रिकोणीय प्रतीक (बड़े अक्षर का डेल्टा, Δ के समान) के अंदर संलग्न है। "एफएल5" (फ्लैगनोट 5) और "D5" (डेल्टा नोट 5) केवल सूचना विनिमय के लिए अमेरिकी मानक कोड संदर्भों में संक्षिप्त करने के विशिष्ट तरीके हैं।
 
==== आरेखण का क्षेत्र ====
आरेखण का क्षेत्र (एफ/डी, एफडी) आरेखण का मुख्य भाग या मुख्य क्षेत्र, शीर्षक खंड, रेव शीर्षक खंड, पी/एल आदि को छोड़कर है।


=== ड्राइंग का क्षेत्र ===
==== वस्तु की सूची, वस्तु का विपत्र, भागों की सूची ====
ड्राइंग का क्षेत्र (एफ/डी, एफडी) ड्राइंग का मुख्य भाग या मुख्य क्षेत्र है, टाइटल ब्लॉक, रेव ब्लॉक, पी/एल आदि को छोड़कर
मुख्य लेख: [[सामग्री का बिल|वस्तु का विपत्र]]


=== सामग्री की सूची, सामग्री का बिल, भागों की सूची ===
वस्तु की सूची (एल/एम, एलएम, एलओएम), वस्तु का विपत्र (बी/एम, बीएम, बीओएम), या भागों की सूची (पी/एल, पीएल) बनाने के लिए उपयोग की जाने वाली वस्तु की एक (सामान्य रूप से सारणीबद्ध) सूची है। एक भाग, और/या एक संयोजन बनाने के लिए उपयोग किए जाने वाले भाग है। इसमें प्रत्येक भाग संख्या के लिए ऊष्मा संशोधन, परिष्करण और अन्य प्रक्रियाओं के निर्देश हो सकते हैं। कभी-कभी ऐसे एलओएम या पीएल आरेखण से अलग दस्तावेज होते हैं।
{{main| bill of materials }}
सामग्री की सूची (एल/एम, एलएम, एलओएम), सामग्री का बिल (बी/एम, बीएम, बीओएम), या भागों की सूची (पी/एल, पीएल) बनाने के लिए उपयोग की जाने वाली सामग्री की एक (आमतौर पर सारणीबद्ध) सूची है। एक हिस्सा, और/या एक असेंबली बनाने के लिए इस्तेमाल किए जाने वाले हिस्से। इसमें प्रत्येक भाग संख्या के लिए ताप उपचार, परिष्करण और अन्य प्रक्रियाओं के निर्देश हो सकते हैं। कभी-कभी ऐसे एलओएम या पीएल ड्राइंग से अलग दस्तावेज होते हैं।


एलओएम/बीओएम के लिए पारंपरिक स्थान शीर्षक ब्लॉक के ऊपर या एक अलग दस्तावेज़ में हैं।
एलओएम/बीओएम के लिए पारंपरिक स्थान शीर्षक खंड के ऊपर या एक अलग प्रलेख में हैं।


=== पैरामीटर सारणीकरण ===
==== पैरामीटर सारणीकरण ====
कुछ आरेखण पैरामीटर नामों के साथ आयामों को कॉल करते हैं (अर्थात, चर, जैसे A , B , C ), फिर प्रत्येक भाग संख्या के लिए पैरामीटर मानों की पंक्तियों को सारणीबद्ध करें।
पैरामीटर नामों के साथ कुछ आरेखण कॉलआउट आयाम (अर्थात, चर, जैसे "A", "B", "C"), फिर प्रत्येक भाग संख्या के लिए पैरामीटर मानों की पंक्तियों को सारणीबद्ध करें।


पैरामीटर तालिकाओं के लिए पारंपरिक स्थान, जब ऐसी तालिकाओं का उपयोग किया जाता है, ड्राइंग के क्षेत्र के किनारों के पास तैर रहे हैं, या तो शीर्षक ब्लॉक के पास या कहीं और क्षेत्र के किनारों के साथ।
पैरामीटर तालिकाओं के लिए पारंपरिक स्थान, जब ऐसी तालिकाओं का उपयोग किया जाता है, आरेखण के क्षेत्र के किनारों के पास, या तो शीर्षक खंड के पास या कहीं और क्षेत्र के किनारों के साथ संचरित कर रहे हैं।


=== दृश्य और अनुभाग ===
==== दृश्य और अनुभाग ====
प्रत्येक दृश्य या अनुभाग अनुमानों का एक अलग सेट है, जो ड्राइंग के क्षेत्र के एक सन्निहित हिस्से पर कब्जा कर रहा है। आम तौर पर विचारों और वर्गों को क्षेत्र के विशिष्ट क्षेत्रों के प्रति-संदर्भों के साथ बुलाया जाता है।
प्रत्येक दृश्य या अनुभाग अनुमानों का एक अलग समूह है, जो आरेखण के क्षेत्र के एक सन्निहित भाग पर प्रग्रहण कर रहा है। सामान्य रूप से विचारों और वर्गों को क्षेत्र के विशिष्ट क्षेत्रों के प्रति-संदर्भों के साथ निर्देशित किया जाता है।


=== क्षेत्र ===
==== क्षेत्र ====
अक्सर एक ड्राइंग को [[अल्फ़ान्यूमेरिक ग्रिड]] द्वारा ज़ोन में विभाजित किया जाता है, जिसमें मार्जिन के साथ ज़ोन लेबल होते हैं, जैसे , बी, सी, डी ऊपर की तरफ और 1,2,3,4,5,6 ऊपर और नीचे।<ref>
प्रायः एक आरेखण को अक्षरांकीय ग्रिड द्वारा क्षेत्र में विभाजित किया जाता है, जिसमें संचय के साथ क्षेत्र लेबल होते हैं, जैसे कि A, B, C, D ऊपर की ओर और 1,2,3,4,5,6 ऊपर और नीचे है।<ref>https://en.wikipedia.org/wiki/Engineering_drawing#cite_note-14</ref> क्षेत्र के नाम इस प्रकार हैं, उदाहरण के लिए, A5, D2, या B1 है। यह सुविधा आरेखण के विशेष क्षेत्रों की चर्चा और संदर्भ को बहुत आसान बनाती है।
Paul Munford.
[https://cadsetterout.com/drawing-standards/grid-reference-frame/ "Technical drawing standards: Grid reference frame"].
</ref>
ज़ोन के नाम इस प्रकार हैं, उदाहरण के लिए, A5, D2, या B1। यह सुविधा आरेखण के विशेष क्षेत्रों की चर्चा और संदर्भ को बहुत आसान बनाती है।


== संकेताक्षर और प्रतीक ==
== संकेताक्षर और प्रतीक ==
{{main|Engineering drawing abbreviations and symbols}}
{{main|अभियांत्रिक आरेखण संक्षिप्तीकरण और प्रतीक}}
कई तकनीकी क्षेत्रों की तरह, 20वीं और 21वीं सदी के दौरान अभियांत्रिक आरेखण में संक्षिप्त रूपों और प्रतीकों की विस्तृत श्रृंखला विकसित की गई है। उदाहरण के लिए, [[ डण्डी लपेटी स्टील ]] को अक्सर सीआरएस के रूप में संक्षिप्त किया जाता है, और [[व्यास]] को अक्सर अभियांत्रिक आरेखण संक्षिप्ताक्षर और प्रतीकों के रूप में संक्षिप्त किया जाता है|डीआईए, डी, या ⌀।
कई तकनीकी क्षेत्रों की तरह, 20वीं और 21वीं सदी के समय अभियांत्रिक आरेखण में संक्षिप्त रूपों और प्रतीकों की विस्तृत श्रृंखला विकसित की गई है। उदाहरण के लिए, [[ डण्डी लपेटी स्टील |शीतित बेल्लित इस्पात]] को प्रायः सीआरएस के रूप में संक्षिप्त किया जाता है, और [[व्यास]] को प्रायः डीआईए, डी या ⌀ के रूप में संक्षिप्त किया जाता है।


अधिकांश अभियांत्रिकी चित्र भाषा-स्वतंत्र हैं - शब्द शीर्षक खंड तक ही सीमित हैं; अन्यत्र शब्दों के स्थान पर प्रतीकों का प्रयोग किया जाता है।<ref>
अधिकांश अभियांत्रिकी चित्र भाषा-स्वतंत्र हैं - शब्द शीर्षक खंड तक ही सीमित हैं; अन्यत्र शब्दों के स्थान पर प्रतीकों का प्रयोग किया जाता है।<ref>
Line 232: Line 280:
p. 1 and p. 13.
p. 1 and p. 13.
</ref>
</ref>
निर्माण और मशीनिंग के लिए कंप्यूटर जनित रेखाचित्रों के आगमन के साथ, कई प्रतीक सामान्य उपयोग से बाहर हो गए हैं। यह पुराने हाथ से तैयार किए गए दस्तावेज़ की व्याख्या करने का प्रयास करते समय समस्या उत्पन्न करता है जिसमें अस्पष्ट तत्व होते हैं जिन्हें मानक शिक्षण पाठ या यांत्रिक इंजीनियरों की अमरीकी संस्था और ANSI मानकों जैसे नियंत्रण दस्तावेज़ों में आसानी से संदर्भित नहीं किया जा सकता है। उदाहरण के लिए, यांत्रिक इंजीनियरों की अमरीकी संस्था Y14.5M 1994 कुछ ऐसे तत्वों को बाहर करता है जो पुराने अमेरिकी नौसेना के चित्र और विश्व युद्ध 2 विंटेज के विमान निर्माण चित्र में निहित महत्वपूर्ण जानकारी को संप्रेषित करते हैं। कुछ प्रतीकों के आशय और अर्थ पर शोध करना कठिन साबित हो सकता है।
 
निर्माण और मशीनिंग के लिए कंप्यूटर जनित आरेखण के आगमन के साथ, कई प्रतीक सामान्य उपयोग से बाहर हो गए हैं। यह पुराने हाथ से निर्मित किए गए प्रलेख की व्याख्या करने का प्रयास करते समय समस्या उत्पन्न करता है जिसमें अस्पष्ट तत्व होते हैं जिन्हें मानक शिक्षण पाठ या यांत्रिक इंजीनियरों की अमरीकी संस्था और अमेरिकन राष्ट्रीय मानक संस्थान मानकों जैसे नियंत्रण दस्तावेज़ों में आसानी से संदर्भित नहीं किया जा सकता है। उदाहरण के लिए, यांत्रिक इंजीनियरों की अमरीकी संस्था Y14.5M 1994 कुछ ऐसे तत्वों को बाहर करता है जो पुराने अमेरिकी नौसेना के चित्र और विश्व युद्ध 2 विंटेज के तल निर्माण चित्र में निहित महत्वपूर्ण सूचना को संप्रेषित करते हैं। कुछ प्रतीकों के आशय और अर्थ पर शोध करना कठिन प्रमाणित हो सकता है।


== उदाहरण ==
== उदाहरण ==
[[File:Mech draw 1.svg|thumb|200px|उदाहरण यांत्रिक आरेखण]]यहाँ अभियांत्रिक आरेखण का उदाहरण दिया गया है (उसी वस्तु का सममितीय दृश्य ऊपर दिखाया गया है)। स्पष्टता के लिए विभिन्न प्रकार की रेखाएँ रंगीन हैं।
[[File:Mech draw 1.svg|thumb|200px|उदाहरण यांत्रिक आरेखण]]यहाँ अभियांत्रिक आरेखण का उदाहरण दिया गया है (उसी वस्तु का सममितीय दृश्य ऊपर दिखाया गया है)। स्पष्टता के लिए विभिन्न प्रकार की रेखाएँ रंगीन हैं।


*ब्लैक = ऑब्जेक्ट लाइन और हैचिंग
*काला = वस्तु रेखा और रेखाछाया
* लाल = छिपी हुई रेखा
* लाल = प्रत्यक्ष रेखा
* नीला = टुकड़े या खुलने की केंद्र रेखा
* नीला = टुकड़े या खुलने की केंद्र रेखा
* मैजेंटा = प्रेत रेखा या काटने वाली समतल रेखा
* मैजेंटा = काल्पनिक रेखा या परिच्छेद समतल रेखा


अनुभागीय दृश्य तीरों की दिशा द्वारा इंगित किए जाते हैं, जैसा कि उदाहरण में दाईं ओर है।
अनुभागीय दृश्य तीरों की दिशा द्वारा इंगित किए जाते हैं, जैसा कि उदाहरण में दाईं ओर है।


== [[कानूनी]] उपकरण ==
== वैधानिक साधन ==


अभियांत्रिक आरेखण कानूनी दस्तावेज है (अर्थात, [[कानूनी साधन]]), क्योंकि यह उन सभी आवश्यक सूचनाओं को संप्रेषित करता है जो उन लोगों को चाहिए जो विचार को वास्तविकता में बदलने के लिए संसाधनों का व्यय करेंगे। इस प्रकार यह [[अनुबंध]] का हिस्सा है; [[खरीद आदेश]] और आरेखण साथ, साथ ही साथ किसी भी सहायक दस्तावेज़ (अभियांत्रिकी परिवर्तन आदेश [ईसीओ], तथाकथित विनिर्देश (तकनीकी मानक)), अनुबंध का गठन करते हैं। इस प्रकार, यदि परिणामी उत्पाद गलत है, तो कार्यकर्ता या निर्माता कानूनी दायित्व से सुरक्षित हैं, जब तक कि उन्होंने आरेखण द्वारा बताए गए निर्देशों को ईमानदारी से निष्पादित किया है। यदि वे निर्देश गलत थे, तो यह इंजीनियर की गलती है। क्योंकि निर्माण और निर्माण आम तौर पर बहुत महंगी प्रक्रियाएँ हैं (जिसमें बड़ी मात्रा में [[पूंजी (अर्थशास्त्र)]] और [[पेरोल]] सम्मिलित है), त्रुटियों के लिए उत्तरदायित्व के प्रश्न के कानूनी निहितार्थ हैं।
अभियांत्रिक आरेखण वैधानिक दस्तावेज है (अर्थात, [[कानूनी साधन|वैधानिक साधन]]), क्योंकि यह उन सभी आवश्यक सूचनाओं को संप्रेषित करता है जो उन लोगों को चाहिए जो विचार को वास्तविकता में बदलने के लिए संसाधनों का व्यय करेंगे। इस प्रकार यह [[अनुबंध]] का भाग है; [[खरीद आदेश]] और आरेखण साथ किसी भी सहायक प्रलेख (अभियांत्रिकी परिवर्तन आदेश [ईसीओ], तथाकथित विनिर्देश (तकनीकी मानक)), अनुबंध का गठन करते हैं। इस प्रकार, यदि परिणामी उत्पाद गलत है, तो कार्यकर्ता या निर्माता वैधानिक दायित्व से सुरक्षित हैं, जब तक कि उन्होंने आरेखण द्वारा बताए गए निर्देशों को ईमानदारी से निष्पादित किया है। यदि वे निर्देश गलत थे, तो यह इंजीनियर की गलती है। क्योंकि निर्माण और निर्माण सामान्य रूप से बहुत महंगी प्रक्रियाएँ हैं (जिसमें बड़ी मात्रा में [[पूंजी (अर्थशास्त्र)|पूंजी]] और [[पेरोल|वेतन पत्रक-सूची]] सम्मिलित है), त्रुटियों के लिए उत्तरदायित्व के प्रश्न के वैधानिक निहितार्थ हैं।


==मॉडल-आधारित परिभाषा से संबंध (एमबीडी/डीपीडी)==
==मॉडल-आधारित परिभाषा से संबंध (एमबीडी/डीपीडी)==


सदियों से, अभियांत्रिक आरेखण डिजाइन से निर्माण में जानकारी स्थानांतरित करने का एकमात्र तरीका था। हाल के दशकों में और तरीका सामने आया है, जिसे मॉडल-आधारित परिभाषा (एमबीडी) या डिजिटल उत्पाद परिभाषा (डीपीडी) कहा जाता है। MBD में, कंप्यूटर एडेड डिजाइन सॉफ़्टवेयर ऐप द्वारा कैप्चर की गई जानकारी स्वचालित रूप से CAM ऐप ([[ कंप्यूटर सहायतायुक्त विनिर्माण ]]) में फीड हो जाती है, जो (पोस्टप्रोसेसिंग ऐप्स के साथ या बिना) अन्य भाषाओं में कोड बनाता है जैसे कि [[ जी कोड ]] को सीएनसी मशीन द्वारा निष्पादित किया जाता है। टूल ([[संख्यात्मक नियंत्रण]]), [[3 डी प्रिंटिग]], या (तेजी से) हाइब्रिड मशीन टूल जो दोनों का उपयोग करता है। इस प्रकार आज यह अक्सर ऐसा होता है कि जानकारी डिज़ाइनर के दिमाग से निर्मित घटक में बिना किसी अभियांत्रिक आरेखण द्वारा संहिताबद्ध किए यात्रा करती है। एमबीडी में, [[डेटा सेट]], आरेखण नहीं, कानूनी साधन है। तकनीकी डेटा पैकेज (TDP) शब्द का उपयोग अब सूचना के पूर्ण पैकेज (या दूसरे माध्यम में) को संदर्भित करने के लिए किया जाता है जो डिज़ाइन से लेकर उत्पादन तक सूचना का संचार करता है (जैसे 3D-मॉडल डेटासेट, अभियांत्रिकी चित्र, अभियांत्रिकी परिवर्तन आदेश (ECO)) , विनिर्देश (तकनीकी मानक) संशोधन और परिशिष्ट, और इसी तरह)।
कई वर्षों से, अभियांत्रिक आरेखण डिजाइन से निर्माण में सूचना स्थानांतरित करने का एकमात्र तरीका था। हाल के दशकों में और तरीका सामने आया है, जिसे मॉडल-आधारित परिभाषा (एमबीडी) या डिजिटल उत्पाद परिभाषा (डीपीडी) कहा जाता है। मॉडल-आधारित परिभाषा में, कंप्यूटर एडेड डिजाइन सॉफ़्टवेयर ऐप द्वारा अभिग्रहण की गई सूचना स्वचालित रूप से कंप्यूटर एडेड विनिर्माण ऐप ([[ कंप्यूटर सहायतायुक्त विनिर्माण |कंप्यूटर एडेड विनिर्माण]] ) में निर्धारित हो जाती है, जो (पोस्टप्रोसेसिंग ऐप्स के साथ या बिना) अन्य भाषाओं में कोड बनाता है जैसे कि [[ जी कोड |G कोड]] को कम्प्यूटरीकृत संख्यात्मक नियंत्रण मशीन द्वारा निष्पादित किया जाता है। कम्प्यूटरीकृत संख्यात्मक नियंत्रण, [[3 डी प्रिंटिग|3D प्रिंटिग]], या (तेजी से) हाइब्रिड मशीन उपकरण जो दोनों का उपयोग करता है। इस प्रकार आज यह प्रायः ऐसा होता है कि सूचना डिज़ाइनर के समझ से निर्मित घटक में बिना किसी अभियांत्रिक आरेखण द्वारा संहिताबद्ध किए संचरित करती है। मॉडल-आधारित परिभाषा में, [[डेटा सेट]], आरेखण नहीं, वैधानिक साधन है। तकनीकी डेटा पैकेज (टीडीपी) शब्द का उपयोग अब सूचना के पूर्ण पैकेज (या दूसरे माध्यम में) को संदर्भित करने के लिए किया जाता है जो डिज़ाइन से लेकर उत्पादन तक सूचना का संचार करता है (जैसे 3D-मॉडल डेटासेट, अभियांत्रिकी चित्र, अभियांत्रिकी परिवर्तन आदेश (ईसीओ), विनिर्देश (तकनीकी मानक) संशोधन और परिशिष्ट, और इसी तरह संचार करता है)।


यह अभी भी कंप्यूटर एडेड डिजाइन / सीएएम प्रोग्रामर, सीएनसी सेटअप वर्कर्स और सीएनसी ऑपरेटरों को निर्माण करने के लिए लेता है, साथ ही अन्य लोगों जैसे गुणवत्ता आश्वासन स्टाफ (इंस्पेक्टर) और लॉजिस्टिक्स स्टाफ (सामग्री हैंडलिंग, शिपिंग-एंड-रिसीविंग और [[ फ्रंट कार्यालय ]] फ़ंक्शंस के लिए) ). ये कार्यकर्ता अक्सर अपने काम के दौरान उन रेखाचित्रों का उपयोग करते हैं जिन्हें MBD डेटासेट से तैयार किया गया है। जब उचित प्रक्रियाओं का पालन किया जा रहा हो, तो वरीयता की स्पष्ट श्रृंखला को हमेशा प्रलेखित किया जाता है, जैसे कि जब कोई व्यक्ति आरेखण को देखता है, तो उसे उस पर नोट द्वारा बताया जाता है कि यह आरेखण शासी साधन नहीं है (क्योंकि एमबीडी डेटासेट है) . इन मामलों में, आरेखण अभी भी उपयोगी दस्तावेज़ है, हालांकि कानूनी रूप से इसे केवल संदर्भ के लिए वर्गीकृत किया गया है, जिसका अर्थ है कि यदि कोई विवाद या विसंगतियां उत्पन्न होती हैं, तो यह MBD डेटासेट है, आरेखण नहीं, जो नियंत्रित करता है।
यह अभी भी कंप्यूटर एडेड डिजाइन / कंप्यूटर एडेड विनिर्माण प्रोग्रामर, कम्प्यूटरीकृत संख्यात्मक नियंत्रण व्यवस्था कार्यकर्ता और कम्प्यूटरीकृत संख्यात्मक नियंत्रण ऑपरेटरों को निर्माण करने के लिए लेता है, साथ ही अन्य लोगों जैसे गुणवत्ता प्रमाण कर्मचारी (निरीक्षक) और संचालन कर्मचारी (वस्तु प्रबंधन, भेजने और प्राप्त करने और [[ फ्रंट कार्यालय |प्रबंध कार्यालय]] के लिए) है। ये कार्यकर्ता प्रायः अपने काम के समय उन आरेखण का उपयोग करते हैं जिन्हें मॉडल-आधारित परिभाषा डेटासेट से निर्मित किया गया है। जब उपयुक्त प्रक्रियाओं का अनुसरण किया जा रहा हो, तो प्रधानता की स्पष्ट श्रृंखला को सदैव प्रलेखित किया जाता है, जैसे कि जब कोई व्यक्ति आरेखण को देखता है, तो उसे उस पर नोट द्वारा बताया जाता है कि यह आरेखण साधन नहीं है (क्योंकि मॉडल-आधारित परिभाषा डेटासेट है)इन स्थितियों में, आरेखण अभी भी उपयोगी प्रलेख है, हालांकि वैधानिक रूप से इसे केवल संदर्भ के लिए वर्गीकृत किया गया है, जिसका अर्थ है कि यदि कोई विवाद या विसंगतियां उत्पन्न होती हैं, तो यह मॉडल-आधारित परिभाषा डेटासेट है, और आरेखण नहीं, जो नियंत्रित करता है।


== यह भी देखें ==
== यह भी देखें ==
{{div col|colwidth=30em}}
{{div col|colwidth=30em}}
* [[आर्किटेक्चरल ड्रॉइंग]]
* [[स्थापत्य रेखाचित्र]]
* ASME AED-1 एयरोस्पेस और उन्नत इंजीनियरिंग चित्र <ref>{{Citation | title = ASME AED-1 Aerospace and Advanced Engineering Drawings | url = https://www.asme.org/codes-standards/find-codes-standards/aed-1-aerospace-advanced-engineering-drawings/2018/drm-enabled-pdf | postscript =.}}</ref>
* एएसएमई एईडी-1 वैमानिकी और उन्नत इंजीनियरिंग आरेखण <ref>{{Citation | title = ASME AED-1 Aerospace and Advanced Engineering Drawings | url = https://www.asme.org/codes-standards/find-codes-standards/aed-1-aerospace-advanced-engineering-drawings/2018/drm-enabled-pdf | postscript =.}}</ref>
* बी. हिक एंड संस#इंजीनियरिंग ड्रॉइंग|बी. हिक एंड संस - प्रारंभिक लोकोमोटिव और भाप इंजन चित्रों का उल्लेखनीय संग्रह
* बी. हिक और  संस अभियांत्रिक आरेखण| प्रारंभिक स्वचालित यंत्र और भाप इंजन चित्रों का उल्लेखनीय संग्रह
* [[सीएडी मानक]]
* [[सीएडी मानक]]
* [[वर्णनात्मक रेखागणित]]
* [[वर्णनात्मक रेखागणित]]
* [[प्रलेख प्रबन्धन तंत्र]]
* [[प्रलेख प्रबन्धन तंत्र]]
* [[इंजीनियरिंग ड्राइंग प्रतीक]]
* [[इंजीनियरिंग आरेखण प्रतीक]]
* [[ज्यामितीय सहिष्णुता]]
* [[ज्यामितीय सहिष्णुता]]
* आईएसओ 128 तकनीकी चित्र - प्रस्तुति के सामान्य सिद्धांत
* आईएसओ 128 तकनीकी चित्र - प्रस्तुति के सामान्य सिद्धांत
* [[हल्का प्लॉट]]
* [[हल्का क्षेत्र]]
* [[रैखिक पैमाने]]
* [[रैखिक पैमाने]]
* [[पेटेंट ड्राइंग]]
* [[पेटेंट आरेखण]]
* स्केल शासक: वास्तुकार का पैमाना और इंजीनियर का पैमाना
* स्केल रूलर: वास्तुकार का पैमाना और अभियांत्रिक का पैमाना
* विशिष्टता (तकनीकी मानक)
* विशिष्टता (तकनीकी मानक)
* [[ संरचनात्मक आरेखण ]]
* [[ स्थापत्य आरेखण ]]
{{div col end}}
{{div col end}}


Line 296: Line 345:


==बाहरी संबंध==
==बाहरी संबंध==
{{Commons category|Engineering drawing}}
{{Wikiversity|Introduction to engineering drawings}}
*[http://wikifoundryattachments.com/GRrQA+wLyqvXsNkjB$sIkg==73895 Examples of cubes drawn in different projections]
*[http://wikifoundryattachments.com/GRrQA+wLyqvXsNkjB$sIkg==73895 Examples of cubes drawn in different projections]
*[http://members.dodo.com.au/~steegshaadsl/drawingsystems.html Animated presentation of drawing systems used in technical drawing (Flash animation)] {{Webarchive|url=https://web.archive.org/web/20110706103859/http://members.dodo.com.au/~steegshaadsl/drawingsystems.html |date=2011-07-06 }}
*[http://members.dodo.com.au/~steegshaadsl/drawingsystems.html Animated presentation of drawing systems used in technical drawing (Flash animation)] {{Webarchive|url=https://web.archive.org/web/20110706103859/http://members.dodo.com.au/~steegshaadsl/drawingsystems.html |date=2011-07-06 }}
* [https://ocw.mit.edu/courses/2-007-design-and-manufacturing-i-spring-2009/pages/related-resources/drawing_and_sketching/ Design Handbook: Engineering Drawing and Sketching], by [[MIT OpenCourseWare]]
* [https://ocw.mit.edu/courses/2-007-design-and-manufacturing-i-spring-2009/pages/related-resources/drawing_and_sketching/ Design Handbook: Engineering Drawing and Sketching], by [[MIT OpenCourseWare]]
{{Visualization}}
{{Authority control}}
{{Authority control}}
[[Category: इंजीनियरिंग अवधारणाएँ]] [[Category: टेक्निकल ड्राइंग]] [[Category: आलेख जानकारी]]


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:CS1 maint]]
[[Category:Created On 23/03/2023]]
[[Category:Created On 23/03/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Multi-column templates]]
[[Category:Pages using div col with small parameter]]
[[Category:Pages with reference errors]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Template documentation pages|Short description/doc]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Templates using under-protected Lua modules]]
[[Category:Webarchive template wayback links]]
[[Category:Wikipedia fully protected templates|Div col]]

Latest revision as of 17:46, 7 April 2023

"अभियांत्रिक आरेखण" यहां पुनर्निर्देश करता है। थॉमस इविंग फ्रेंच की पुस्तक के लिए, अभियांत्रिक आरेखण (पाठ्यपुस्तक) देखें।

मशीन उपकरण भाग का अभियांत्रिक आरेखण

अभियांत्रिक आरेखण (इंजीनियरिंग आरेखण) प्रकार का तकनीकी आरेखण है जिसका उपयोग किसी वस्तु के बारे में सूचना देने के लिए किया जाता है। सामान्य उपयोग घटक के निर्माण के लिए आवश्यक ज्यामिति को निर्दिष्ट करना है और इसे विस्तृत चित्र कहा जाता है। सामान्य रूप से, एक सामान्य घटक को भी पूरी तरह से निर्दिष्ट करने के लिए कई आरेख आवश्यक होते हैं। चित्र मुख्य आरेखण या समन्वायोजन आरेख द्वारा एक साथ जुड़े हुए हैं जो बाद के विस्तृत घटकों, आवश्यक मात्रा, निर्माण वस्तु और संभवतः 3D छवियों के आरेखण संख्या देते हैं जिनका उपयोग व्यक्तिगत वस्तुओं का पता लगाने के लिए किया जा सकता है। हालांकि अधिकतम चित्रात्मक निरूपण सम्मिलित हैं, अभियांत्रिक आरेखण संक्षिप्त रूप और प्रतीकों का उपयोग संक्षिप्तता के लिए किया जाता है और आवश्यक सूचना देने के लिए अतिरिक्त शाब्दिक स्पष्टीकरण भी प्रदान किए जा सकते हैं।

अभियांत्रिक आरेखण बनाने की प्रक्रिया को प्रायः तकनीकी आरेखण या प्रारूपण (ड्राफ्टिंग) कहा जाता है।[1] आरेख में सामान्य रूप से घटक का एकाधिक दृश्य होता है, हालांकि अतिरिक्त स्पष्टीकरण के लिए विवरण में अतिरिक्त अस्थायी दृश्य जोड़े जा सकते हैं। केवल वही सूचना जो एक आवश्यकता है, विशिष्ट रूप से निर्दिष्ट की जाती है। मुख्य सूचना जैसे कि आयाम सामान्य रूप से आरेखण पर केवल समान स्थान पर निर्दिष्ट होते हैं, अतिरेक और असंगति की संभावना से मुक्त होते हैं। घटक के निर्माण और कार्य करने की स्वीकृति देने के लिए महत्वपूर्ण आयामों के लिए उपयुक्त सह्यता दी गई है। अभियांत्रिक आरेखण में दी गई सूचना के आधार पर अधिक विस्तृत उत्पादन चित्र निर्मित किए जा सकते हैं। आरेखण में सूचना बॉक्स या शीर्षक खंड होता है जिसमें आरेखण किसने चित्रित किया, किसने इसे स्वीकृत किया, आयामों की इकाइयां, विचारों का अर्थ, आरेखण का शीर्षक और आरेखण संख्या सम्मिलित है।

इतिहास

तकनीकी आरेखण प्राचीन काल से सम्मिलित है। लियोनार्डो दा विंची के विज्ञान और आविष्कारों जैसे पुनर्जागरण काल ​​में जटिल तकनीकी चित्र बनाए गए थे। आधुनिक अभियांत्रिक आरेखण, वर्णलेखन प्रक्षेप और पैमाना (अनुपात) के अपने परिशुद्ध अभिसमय के साथ, फ्रांस में उस समय उत्पन्न हुई जब औद्योगिक क्रांति अपनी प्रारंभिक अवस्था में थी। एल.टी.सी. रोल्ट की इसमबार्ड किंगडम ब्रुनेल की जीवनी[2] उनके पिता, मार्क इसमबार्ड ब्रुनेल के बारे में कहती है कि, कि यह अधिकतम सीमा तक अवश्य लगता है कि मार्क के अपने ब्लॉक बनाने वाले उपकरण के चित्र (1799 में) ने ब्रिटिश अभियांत्रिकी तकनीक में उन मशीनों की तुलना में बहुत अधिक योगदान दिया, जिनका उन्होंने प्रतिनिधित्व किया था। क्योंकि यह मान लेना सुरक्षित है कि उन्होंने त्रि-आयामी वस्तुओं को द्वि-आयामी तल में प्रस्तुत करने की कला में निपुणता प्राप्त कर ली थी जिसे वर्तमान मे हम यांत्रिक आरेख कहते हैं। यह 1765 में मेज़िएरेस के गैस्पर्ड मोंज द्वारा विकसित किया गया था, लेकिन 1794 तक एक सैन्य रहस्य बना रहा और इसलिए इंग्लैंड में अज्ञात था।"[2]


मानकीकरण और असंबद्धता

अभियांत्रिक आरेखण घटक या संयोजन की आवश्यकताओं को निर्दिष्ट करती है जो जटिल हो सकती है। मानक उनके विनिर्देश और व्याख्या के लिए नियम प्रदान करते हैं। मानकीकरण भी अंतर्राष्ट्रीयकरण में सहायता करता है, क्योंकि अलग-अलग देशों के लोग जो अलग-अलग भाषाएं बोलते हैं, साथ ही अभियांत्रिक आरेखण को पढ़ सकते हैं और उसी तरह इसकी व्याख्या कर सकते हैं।

अभियांत्रिक आरेखण मानकों का प्रमुख समूह यांत्रिक इंजीनियरों की अमरीकी संस्था Y14.5 और Y14.5M (हाल ही में 2009 में संशोधित) है। ये संयुक्त राज्य अमेरिका में व्यापक रूप से प्रयुक्त होते हैं, हालांकि अंतर्राष्ट्रीय मानक संगठन 8015 (ज्यामितीय उत्पाद विनिर्देश (जीपीएस) - मौलिक - अवधारणाएं, सिद्धांत और नियम) वर्तमान मे भी महत्वपूर्ण है। 2018 में, यांत्रिक इंजीनियरों की अमरीकी संस्था वैमानिक और उन्नत अभियांत्रिक आरेखण-1 को वैमानिक और अन्य उद्योगों के लिए अद्वितीय उन्नत विधि को विकसित करने और Y14.5 मानकों के पूरक के लिए बनाया गया था।

2011 में, अंतर्राष्ट्रीय मानक संगठन 8015 (ज्यामितीय उत्पाद विनिर्देश (जीपीएस) - मौलिक) का नया संशोधन अवधारणाएं, सिद्धांत और नियम) उत्क्रियण सिद्धांत युक्त प्रकाशित किया गया था। इसमें कहा गया है कि यांत्रिक अभियांत्रिकी उत्पाद प्रलेखन में अंतर्राष्ट्रीय मानक संगठन ज्यामितीय उत्पाद विनिर्देश (जीपीएस) प्रणाली के भाग को प्रयुक्त किया जाता है, तो संपूर्ण अंतर्राष्ट्रीय मानक संगठन ज्यामितीय उत्पाद विनिर्देश प्रणाली प्रयुक्त हो जाती है। यह भी कहा जाता है कि आरेखण सह्यता अंतर्राष्ट्रीय मानक संगठन 8015 को चिह्नित करना वैकल्पिक है। इसका तात्पर्य यह है कि अंतर्राष्ट्रीय मानक संगठन प्रतीकों का उपयोग करने वाले किसी भी आरेखण को केवल अंतर्राष्ट्रीय मानक संगठन ज्यामितीय उत्पाद विनिर्देश नियमों में ही समझा जा सकता है। अंतर्राष्ट्रीय मानक संगठन ज्यामितीय उत्पाद विनिर्देश प्रणाली को प्रयुक्त नहीं करने का एकमात्र तरीका राष्ट्रीय या अन्य मानक प्रयुक्त करना है। ब्रिटेन, बीएस 8888 (तकनीकी उत्पाद विशिष्टता) में 2010 के दशक में महत्वपूर्ण संशोधन किए गए हैं।

मीडिया

कई वर्षों से, 1970 के दशक तक, सभी अभियांत्रिक आरेखण को पेपर या अन्य सबस्ट्रेट (जैसे, चर्म पत्र, माइलर) पर पेंसिल और पेन का उपयोग करके मैन्युअल रूप से किया जाता था। कंप्यूटर एडेड डिजाइन (सीएडी) के आगमन के बाद से, प्रत्येक गुजरते दशक के साथ इलेक्ट्रॉनिक माध्यम में अभियांत्रिक आरेखण अधिक से अधिक किया जाने लगा है। आज अधिकतम अभियांत्रिक आरेखण कंप्यूटर एडेड डिजाइन के साथ की जाती है, लेकिन पेंसिल और पेपर पूरी तरह से अनुपस्थित नहीं हुए हैं।

कुछ तकनीकी आरेखण उपकरण में पेंसिल, पेन और उनकी स्याही, सीधे कोर, T-वर्गों, फ़्रांसीसी वक्र, त्रिकोण, मापक, कोणमापक, परकार, कम्पास (दिशासूचक), पैमाना, रबड़ और आरेख पिन या पुशपिन (नक़्शे की पिन) सम्मिलित हैं। (विसर्पी गणक भी संभरण के बीच संख्या के लिए उपयोग किए जाते हैं, लेकिन वर्तमान मे भी मैनुअल आलेखन भी होता है, जब पॉकेट कैलकुलेटर (परिकलक) या इसके स्क्रीन पर समकक्ष से लाभ होता है।) और निश्चित रूप से उपकरण में आरेखण बोर्ड (आलेखन बोर्ड) या पटल भी सम्मिलित होते हैं। आरेखण बोर्ड पर वापस जाने के लिए अंग्रेजी वाक्पद्धति, जो आलंकारिक वाक्यांश है जिसका अर्थ है किसी वस्तु पर पूरी तरह से पुनर्विचार करना, उत्पादन के समय डिज़ाइन त्रुटियों की खोज करने और अभियांत्रिक आरेखण को संशोधित करने के लिए आरेखण बोर्ड पर प्रतिगमन के शाब्दिक कार्य से प्रेरित था। आरेखण मशीन ऐसे उपकरण हैं जो आरेखण बोर्ड, सीधी कोर, आलेखित्र और अन्य उपकरण को एकीकृत आरेखण वातावरण में जोड़कर मैन्युअल आलेखन में सहायता करते हैं। कंप्यूटर एडेड डिजाइन उनके आभासी समकक्ष प्रदान करता है।

चित्र बनाने में सामान्य रूप से मूल बनाना सम्मिलित होता है जिसे पुन: प्रस्तुत किया जाता है, और दुकान के फर्श, विक्रेताओं, कंपनी संग्रह, और इसी तरह वितरित करने के लिए कई प्रतिलिपियां निर्मित की जाती हैं। उत्कृष्ट प्रतिलिपि विधियों में नीले और सफेद स्वरूप सम्मिलित थे (चाहे सफेद पर नीला या नीला-पर-सफेद), यही कारण है कि अभियांत्रिक आरेखण को लंबे समय तक कहा जाता था, और आज भी प्रायः ब्लूप्रिंट या व्हाइटप्रिंट कहा जाता है, यहां तक ​​कि हालांकि ये शब्द शाब्दिक दृष्टिकोण से कालानुक्रम हैं, क्योंकि आज अभियांत्रिक आरेखण की अधिकांश प्रतिलिपियां अधिक आधुनिक तरीकों (प्रायः इंकजेट प्रिंटर या लेज़र प्रिंटर प्रिंटिंग) द्वारा बनाई जाती हैं, जो सफेद पेपर पर काली या बहुरंगी रेखाएं उत्पन्न करती हैं। अधिक सामान्य शब्द ''प्रिंट'' अब अमेरिका में सामान्य उपयोग में है, जिसका अर्थ अभियांत्रिक आरेखण की किसी भी पेपर प्रतिलिपि से है। कंप्यूटर एडेड डिजाइन आरेखण की स्थिति में, मूल कंप्यूटर एडेड डिजाइन फ़ाइल होती है, और उस फ़ाइल के मुद्रित अभिलेख प्रिंट होते हैं।

आयाम और सह्यता की प्रणाली

लगभग सभी अभियांत्रिकी चित्र (संभव्यता संदर्भ-मात्र विचारों या प्रारंभिक आरेखण को छोड़कर) न केवल ज्यामिति (आकार और स्थान) का संचार करते हैं बल्कि उन विशेषताओं के लिए आयाम और अभियांत्रिकी सह्यता का भी संचार करते हैं[1] आयाम और सहनशीलता की कई प्रणालियाँ विकसित हुई हैं। सबसे सरल आयाम प्रणाली केवल बिंदुओं के बीच की दूरी निर्दिष्ट करती है (जैसे किसी वस्तु की लंबाई या चौड़ाई, या सम्पूर्ण केंद्र स्थान करते है)। अच्छी तरह से विकसित विनिमेय भागों के आगमन के बाद से, इन दूरियों को वृद्धि तथा कमी या न्यूनतम-और-अधिकतम-सीमा प्रकार की सहनशीलता के साथ जोड़ा गया है। समन्वय आयाम में कार्टेशियन निर्देशांक के संदर्भ में सामान्य मूल के साथ सभी बिंदुओं, रेखाओं, तलों और प्रोफाइल को परिभाषित करना सम्मिलित है। द्वितीय विश्व युद्ध के बाद के युग में जब तक ज्यामितीय आयाम और सहनशीलता (जीडी और टी) के विकास को देखा गया था, तब तक समन्वय आयाम एकमात्र सबसे अच्छा विकल्प था, जो समन्वय आयाम (उदाहरण के लिए, आयताकार-केवल सह्यता क्षेत्र, सह्यता चितिकरण) की सीमाओं से हटकर सबसे अधिक ज्यामिति और आयाम दोनों की तार्किक सहनशीलता (अर्थात, दोनों रूप [आकार/स्थान] और आकार) स्वीकृति देता है।

सामान्य विशेषताएं

चित्र निम्नलिखित महत्वपूर्ण सूचना देते हैं:

  • ज्यामिति - वस्तु का आकार; विचारों के रूप में प्रतिनिधित्व; किसी वस्तु को विभिन्न कोणों से देखने पर वह कैसी दिखेगी, जैसे सामने, ऊपर, दायें, बाएं आदि।
  • आयाम - वस्तु का आकार स्वीकृत इकाइयों में लिया जाता है।
  • सह्यता (अभियांत्रिकी) - प्रत्येक आयाम के लिए स्वीकार्य विविधताएं।
  • वस्तु - यह दर्शाता है कि वस्तु किस वस्तु से बनी है।
  • परिरूपण - वस्तु, कार्यात्मक या प्रसाधन की सतह की गुणवत्ता निर्दिष्ट करता है। उदाहरण के लिए, बड़े पैमाने पर विक्रय किए गए उत्पाद को सामान्य रूप से औद्योगिक तंत्र के अंदर जाने वाले घटक की तुलना में बहुत अधिक सतह की गुणवत्ता की आवश्यकता होती है।

रेखा शैली और प्रकार

मानक अभियांत्रिक आरेखण रेखा प्रकार

विभिन्न प्रकार की रेखा शैलियाँ ग्राफिक रूप से भौतिक वस्तुओं का प्रतिनिधित्व करती हैं। रेखाओ के प्रकार में निम्न सम्मिलित हैं:

  • दृश्यमान - विशेष कोण से सीधे दिखाई देने वाले कोरों को दर्शाने के लिए उपयोग की जाने वाली सतत रेखाएँ हैं।
  • अदृष्ट - छोटी सतत रेखाएँ हैं जिनका उपयोग उन कोरों को दर्शाने के लिए किया जा सकता है जो सीधे दिखाई नहीं दे रहे हैं।
  • केंद्र - वैकल्पिक रूप से लंबी- और छोटी-सतत रेखाएँ होती हैं जिनका उपयोग वृत्ताकार सुविधाओं के अक्षों को दर्शाने के लिए किया जा सकता है।
  • कर्तन तल - पतली, मध्यम-सतत रेखाएँ, या वैकल्पिक रूप से लंबी- और दोहरी छोटी-सतत रेखाए हैं जिनका उपयोग अनुभाग दृश्यों के लिए अनुभागों को परिभाषित करने के लिए किया जा सकता है।
  • ब्लॉक - पैटर्न में पतली रेखाएं होती हैं (अलग किए जाने या खंडित होने वाली वस्तु द्वारा निर्धारित पैटर्न) का उपयोग सम्पादन के परिणामस्वरूप अनुभाग दृश्यों में सतहों को इंगित करने के लिए किया जाता है। अनुभाग रेखाओं को सामान्य रूप से तिर्यक रेखन के रूप में जाना जाता है।
  • काल्पनिक- (दिखाया नहीं गया) वैकल्पिक रूप से लंबी- और द्विक छोटी-सतत पतली रेखाएं हैं जो किसी विशेषता या घटक का प्रतिनिधित्व करने के लिए उपयोग की जाती हैं जो निर्दिष्ट भाग या संयोजन का भाग नहीं है। उदाहरण बिलेट सिरों का परीक्षण के लिए उपयोग किया जा सकता है, या मशीनी उत्पाद जो उपकरण आरेखण का केंद्र है।

रेखाओं को वर्ण वर्गीकरण द्वारा भी वर्गीकृत किया जा सकता है जिसमें प्रत्येक पंक्ति को अक्षर दिया जाता है।

  • 'टाइप A' रेखाएँ किसी वस्तु की विशेषता की रूपरेखा दर्शाती हैं। वे आरेखण पर सबसे स्थूल रेखाएं हैं और एचबी की तुलना में नरम पेंसिल के साथ बनाई गई हैं।
  • 'टाइप B' रेखाएँ आयाम रेखाएँ हैं और इनका उपयोग आयाम, प्रक्षेप, विस्तार या अग्रलेख के लिए किया जाता है। कठोर पेंसिल का उपयोग किया जाना चाहिए, जैसे कि 2H पेंसिल।
  • 'टाइप C' रेखाओ का उपयोग विराम के लिए किया जाता है जब पूरी वस्तु नहीं दिखाई जाती है। ये मुक्तहस्त आरेखित हैं और केवल अल्प विराम के लिए हैं। 2H पेंसिल
  • 'टाइप D' रेखाएँ टाइप C के समान हैं, इसके अतिरिक्त कि ये घुमावदार हैं और केवल लंबे विराम के लिए हैं। 2H पेंसिल
  • 'टाइप E' रेखाएँ किसी वस्तु की आंतरिक विशेषताओं की अप्रत्यक्ष रूपरेखा दर्शाती हैं। ये बिंदुयुक्त रेखाएँ हैं। 2H पेंसिल
  • 'टाइप F' रेखाएँ टाइप E रेखाएँ हैं, इसके अतिरिक्त कि इनका उपयोग विद्युत-प्रौद्योगिकी में आरेखण के लिए किया जाता है। 2H पेंसिल
  • 'टाइप G' रेखाओ का उपयोग मध्य रेखाओं के लिए किया जाता है। ये बिंदुयुक्त रेखाएँ हैं, लेकिन 10–20 मिमी की लंबी रेखा, फिर 1 मिमी का अंतर, फिर 2 मिमी की छोटी रेखा है। 2H पेंसिल
  • 'टाइप H' रेखाएँ टाइप G के समान हैं, सिवाय इसके कि प्रत्येक दूसरी लंबी रेखा स्थूल होती है। ये किसी वस्तु के कर्तन वाले तल को इंगित करते हैं। 2H पेंसिल
  • 'टाइप K' रेखाएँ किसी वस्तु की वैकल्पिक स्थिति और उस वस्तु द्वारा ली गई रेखा को दर्शाती हैं। इन्हें 10–20 मिमी की लंबी रेखा, फिर छोटा अन्तराल, फिर 2 मिमी की छोटी रेखा, फिर अन्तराल, फिर अधिक छोटी रेखा के साथ चित्रित किया जाता है। 2H पेंसिल।

एकाधिक दृश्य और प्रक्षेप

प्रथम-कोण प्रक्षेप में दर्शाए गए भाग की छवि
प्रतीक यह परिभाषित करने के लिए उपयोग किया जाता है कि प्रक्षेप या तो प्रथम-कोण (बाएं) या तीसरा-कोण (दाएं) है।
कई प्रकार के चित्रमय प्रक्षेप की तुलना
विभिन्न प्रक्षेप और वे कैसे उत्पन्न होते हैं
अभियांत्रिकी आरेखण में दिखाई गई वस्तु का सममितीय दृश्य।

अधिकतम स्थितियों में, सभी आवश्यक सुविधाओं को दिखाने के लिए दृश्य पर्याप्त नहीं होता है, और कई दृश्यों का उपयोग किया जाता है। दृश्यों के प्रकार में निम्न सम्मिलित हैं:

बहुदृश्य प्रक्षेप

बहुदृश्य प्रक्षेप प्रकार का लंबकोणीय प्रक्षेप है जो वस्तु को सामने, दाएं, बाएं, ऊपर, नीचे या पीछे (जैसे प्राथमिक दृश्य) से दिखता है, और सामान्य रूप से पहले-कोण या तीसरे-कोण प्रक्षेपण के नियमों के अनुसार एक-दूसरे के सापेक्ष स्थित होते हैं। प्रक्षेपित्र (जिसे प्रक्षेप रेखा भी कहा जाता है) की उत्पत्ति और वेक्टर दिशा अलग-अलग होती है, जैसा कि नीचे बताया गया है।

  • प्रथम-कोण प्रक्षेप में, समानांतर प्रोजेक्टर (प्रक्षेपक यंत्र) ऐसे उत्पन्न होते हैं जैसे कि दर्शक के पीछे से विकीर्ण होते हैं और 3D वस्तु से होकर उसके पीछे लंबकोणीय तल पर 2D छवि प्रस्तुत करते हैं। 3D वस्तु को 2D पेपर अंतराल में प्रक्षेपित किया जाता है जैसे कि आप वस्तु के रेडियोग्राफ़ (विकिरण चित्र) को देख रहे हों: शीर्ष दृश्य सामने के दृश्य के नीचे है, दायां दृश्य सामने के दृश्य के बाईं ओर है। प्रथम-कोण प्रक्षेपण आईएसओ मानक है और इसका मुख्य रूप से यूरोप में उपयोग किया जाता है।
  • तीसरे-कोण प्रक्षेप में, समानांतर प्रोजेक्टर उत्पन्न होते हैं जैसे कि वस्तु के दूर की ओर से विकीर्ण होते हैं और 3D वस्तु के माध्यम से उसके सामने लंबकोणीय तल पर 2D छवि प्रस्तुत करने के लिए गुजरते हैं। 3D वस्तु के दृश्य बॉक्स के पैनल (फलक) की तरह होते हैं जो वस्तु को आवृत करते हैं, और पैनल धुरी के रूप में वे आरेखण के तल में समतल होते हैं।[3] इस प्रकार बायाँ दृश्य बाईं ओर और शीर्ष दृश्य शीर्ष पर रखा जाता है; और 3D वस्तु के सामने की सबसे समीप आकृति आरेखण में सामने के दृश्य के सबसे समीप दिखाई देंगी। तृतीय-कोण प्रक्षेप मुख्य रूप से संयुक्त राज्य अमेरिका और कनाडा में उपयोग किया जाता है, जहां यह यांत्रिक इंजीनियरों की अमरीकी संस्था मानक यांत्रिक इंजीनियरों की अमरीकी संस्था Y14.3M के अनुसार डिफ़ॉल्ट प्रक्षेप प्रणाली है।

19वीं शताब्दी के अंत तक, उत्तरी अमेरिका के साथ-साथ यूरोप में प्रथम-कोण प्रक्षेप मानक था; [4][5] लेकिन 1890 के आसपास, उत्तरी अमेरिकी अभियांत्रिकी और विनिर्माण समुदायों में व्यापक रूप से अनुसरण किए जाने वाले सम्मेलन बनने के बिंदु पर तृतीय-कोण प्रक्षेप विस्तृत हो गया,[6][4] और यह 1950 के दशक तक एएसए मानक था।[4] लगभग प्रथम विश्व युद्ध, ब्रिटिश अभ्यास मे प्रायः दोनों प्रक्षेप विधियों के उपयोग को मिला रहा था।[6]

जैसा कि ऊपर दिखाया गया है, उपयोग की गई प्रक्षेप विधि के आधार पर सामने, पीछे, ऊपर और नीचे की सतह का निर्धारण अलग-अलग होता है।

सभी दृश्यों का उपयोग आवश्यक नहीं है।[7] सामान्य रूप से केवल उतने ही दृश्यों का उपयोग किया जाता है जितने कि सभी आवश्यक सूचना को स्पष्ट रूप से और आर्थिक रूप से संप्रेषित करने के लिए आवश्यक होते हैं।[8] सामान्य रूप से सामने, ऊपर और दाईं ओर के दृश्यों को डिफ़ॉल्ट रूप से सम्मिलित किए गए दृश्यों का मुख्य समूह माना जाता है,[9] लेकिन विशेष डिजाइन की आवश्यकताओ के आधार पर दृश्यों के किसी भी संयोजन का उपयोग किया जा सकता है। छह प्रमुख विचारों (सामने, पीछे, ऊपर, नीचे, दाएं तरफ, बाएं तरफ) के अतिरिक्त, किसी भी सहायक विचार या अनुभागों को भाग परिभाषा और इसके संचार के उद्देश्यों के रूप में सम्मिलित किया जा सकता है। दृश्य रेखाए या अनुभाग रेखाए ( "A-A", "B-B", आदि चिह्नित तीर वाली रेखाए) देखने या अनुभागीकरण की दिशा और स्थान को परिभाषित करती हैं। कभी-कभी नोट रीडर (प्रवाचक) को आरेखण के किस क्षेत्र (क्षेत्रों) में दृश्य या अनुभाग खोजने के लिए कहता है।

सहायक दृश्य

सहायक दृश्य ऑर्थोग्राफ़िक दृश्य है जिसे छह प्राथमिक दृश्यों में से किसी के अतिरिक्त किसी भी तल में प्रक्षेपित किया जाता है।[10] ये दृश्य सामान्य रूप से तब उपयोग किए जाते हैं जब किसी वस्तु में किसी प्रकार का आनत तल होता है। सहायक दृश्य का उपयोग करने से उस आनत समतल (और अन्य महत्वपूर्ण विशेषताओं) को उनके वास्तविक आकार और आकार में प्रक्षेपित किया जा सकता है। अभियांत्रिक आरेखण में किसी भी महत्वपूर्ण लेख का सही आकार और आकृति केवल तभी जाना जा सकता है जब दृष्टि रेखा (एलओएस) संदर्भित किए जा रहे तल के लंबवत हो। इसे त्रि-आयामी वस्तु की तरह दिखाया गया है। सहायक दृश्य अक्षमितीय प्रक्षेप का उपयोग करते हैं। जब सभी स्वयं सम्मिलित होते हैं, सहायक दृश्य कभी-कभी चित्रमय रूप में जाने जाते हैं।

सममितीय प्रक्षेप

सममितीय प्रक्षेप वस्तु को कोणों से दिखाता है जिसमें वस्तु के प्रत्येक अक्ष के साथ पैमाने बराबर होते हैं। सममितीय प्रक्षेप ऊर्ध्वाधर अक्ष के बारे में ± 45° द्वारा वस्तु के घूर्णन से अनुरूप है, इसके बाद लगभग ± 35.264° [= arcSine(tan(30°))] क्षैतिज अक्ष के बारे में लंबकोणीय प्रक्षेप दृश्य से प्रारंभ होता है। सममितीय ही माप के लिए ग्रीक से आता है। वस्तु जो सममितीय आरेखण को इतना आकर्षक बनाती है, वह आसानी से 60° कोणों का केवल कम्पास-और-सीधे कोर के साथ निर्माण किया जा सकता है।

सममितीय प्रक्षेप प्रकार का अक्षमितीय प्रक्षेप है। अन्य दो प्रकार के अक्षमितीय प्रक्षेप हैं:

तिर्यक प्रक्षेप

तिर्यक प्रक्षेप सरल प्रकार का चित्रमय प्रक्षेप है जिसका उपयोग त्रि-आयामी वस्तुओं की सचित्र, द्वि-आयामी छवियों के निर्माण के लिए किया जाता है:

  • यह समानांतर किरणों (प्रोजेक्टर) को काटकर छवि प्रस्तुत करता है
  • आरेखण सतह (प्रक्षेप योजना) के साथ त्रि-आयामी स्रोत वस्तु से।

तिर्यक प्रक्षेप और लंबकोणीय प्रक्षेप दोनों में, स्रोत वस्तु की समानांतर रेखाएँ अनुमानित छवि में समानांतर रेखाएँ उत्पन्न करती हैं।

संदर्श प्रक्षेप

परिप्रेक्ष्य (चित्रमय) छवि की समतल सतह पर अनुमानित प्रतिनिधित्व है, जैसा कि यह दृश्य से माना जाता है। परिप्रेक्ष्य की दो सबसे विशिष्ट विशेषताएं हैं कि वस्तुओं को चित्रित किया जाता है:

  • प्रेक्षक से उनकी दूरी बढ़ने के साथ-साथ छोटा होता जाता है
  • अग्रसंक्षिप्त: दृष्टि रेखा के साथ-साथ किसी वस्तु के आयामों का आकार दृष्टि की रेखा के आयामों की तुलना में अपेक्षाकृत छोटी होती है।

अनुभाग दृश्य

अनुमानित दृश्य (या तो सहायक या बहुदृश्य) जो निर्दिष्ट कट तल के साथ स्रोत वस्तु का अनुप्रस्थ परिच्छेद दिखाते हैं। इन दृश्यों का उपयोग सामान्य रूप से आंतरिक विशेषताओं को अधिक स्पष्टता के साथ दिखाने के लिए किया जाता है, जो नियमित अनुमानों या अप्रत्‍यक्ष रेखाओं का उपयोग करके उपलब्ध हो सकता है। संयोजन आरेख में, हार्डवेयर घटक (जैसे नट, स्क्रू, वाशर) सामान्य रूप से खंडित नहीं होते हैं। अनुभाग दृश्य वस्तु का आधा पार्श्व दृश्य है।

पैमाना

योजनाएं सामान्य रूप से आरेखण-पैमाना होती हैं, जिसका अर्थ है कि योजनाएं स्थान या वस्तु के वास्तविक आकार के सापेक्ष विशिष्ट अनुपात में चित्रित की जाती हैं। समूह में अलग-अलग आरेखण के लिए अलग-अलग पैमानों का उपयोग किया जा सकता है। उदाहरण के लिए, फर्श आरेख 1:50 (1:48 या 14″ = 1′ 0″) जबकि विस्तृत दृश्य 1:25 (1:24 या 12″ = 1′ 0″). स्थल-आरेख प्रायः 1:200 या 1:100 पर बनाए जाते हैं।

पैमाना अभियांत्रिक आरेखण के उपयोग में अति सूक्ष्म विषय है। एक ओर, यह अभियांत्रिकी आरेखण का सामान्य सिद्धांत है कि उन्हें मानकीकृत, गणितीय रूप से निश्चित प्रक्षेप विधियों और नियमों का उपयोग करके प्रक्षेपित किया जाता है। इस प्रकार, अभियांत्रिक आरेखण को परिशुद्ध रूप से आकार, आकार, रूप, सुविधाओं के बीच स्वरूप अनुपात, और इसी तरह चित्रित करने में अधिक प्रयास किया जाता है। और फिर भी, दूसरी ओर, अभियांत्रिक आरेखण का और सामान्य सिद्धांत है जो लगभग सभी प्रयासों और प्रयोजन का विरोध करता है - वह सिद्धांत है कि उपयोगकर्ताओं को आरेखण को मापन नहीं करना है ताकि लेबल न किए गए आयाम का अनुमान लगाया जा सके। यह दृढ़ चेतावनी प्रायः आरेख पर पुनरावृत की जाती है, शीर्षक खंड में बॉयलरप्लेट टिप्पणी के माध्यम से उपयोगकर्ता को यह कहते हुए, ''आरेख मापन न करें''।

ये दो लगभग विपरीत सिद्धांत सह-अस्तित्व में क्यों हो सकते हैं, इसकी व्याख्या इस प्रकार है। पहला सिद्धांत - कि चित्र इतनी सावधानी से और परिशुद्ध रूप से बनाए जाएंगे - मुख्य लक्ष्य में कार्य करता है कि अभियांत्रिक आरेखण क्यों सम्मिलित है, जो भाग की परिभाषा और स्वीकृति मानदंड को सफलतापूर्वक संप्रेषित कर रहा है - जिसमें यह भी सम्मिलित है कि यदि आपने इसे सही तरीके से बनाया है तो भाग कैसा दिखना चाहिए। इस लक्ष्य का कार्य वह है जो आरेख बनाता है जिसे कोई माप भी सकता है और जिससे परिशुद्ध आयाम प्राप्त हो सकता है। और इस प्रकार ऐसा करने का बड़ा प्रलोभन, जब आयाम चाहता था लेकिन उसे लेबल नहीं किया गया था। दूसरा सिद्धांत - तथापि आरेखण को मापन करना सामान्य रूप से काम करेगा, फिर भी किसी को ऐसा कभी नहीं करना चाहिए - कई लक्ष्यों को पूरा करता है, जैसे कि डिजाइन के उद्देश्य को समझने का अधिकार किसके पास है, और आरेखण के गलत मापन करने को रोकने के बारे में पूरी स्पष्टता को प्रयुक्त करना, जिसे प्रारंभ करने के लिए मापन करने के लिए (जिसे सामान्य रूप से ''आरेखण नॉट टू स्केल" या "स्केल एनटीएस'' कहा जाता है।) जो कभी भी निर्मित नहीं किया गया था। जब किसी उपयोगकर्ता को आरेखण को मापन करने से मना किया जाता है, तो उसे इसके अतिरिक्त अभियांत्रिक की ओर बढ़ना चाहिए (उत्तरों के लिए जो मापन की जांच होगी), और वह कभी भी गलत तरीके से मापन नहीं करेगा जो स्वाभाविक रूप से परिशुद्ध रूप से मापन करने में असमर्थ है।

लेकिन कुछ तरीकों में, कंप्यूटर-एडेड डिज़ाइन और मॉडल-आधारित परिभाषा युग का आगमन इन धारणाओं को चुनौती देता है जो कई दशकों पहले बनाई गई थीं। जब ठोस मॉडल के माध्यम से भाग की परिभाषा को गणितीय रूप से परिभाषित किया जाता है, तो यह दावा कि कोई मॉडल से जांच नहीं कर सकता है - आरेखण को मापन करने का प्रत्यक्ष एनालॉग - विकृति हो जाता है; क्योंकि जब भाग परिभाषा को इस तरह से परिभाषित किया जाता है, तो आरेखण या मॉडल के लिए मापन नहीं करना संभव नहीं है। 2D पेंसिल आरेखण को गलत तरीके से पूर्वसंक्षिप्त और तिर्यक किया जा सकता है (और इस प्रकार मापन नहीं किया जा सकता है), फिर भी यह पूरी तरह से मान्य भाग परिभाषा हो सकती है जब तक कि लेबल किए गए आयाम केवल उपयोग किए जाने वाले आयाम हैं, और उपयोगकर्ता द्वारा आरेखण का कोई मापन नहीं होता है। ऐसा इसलिए है क्योंकि आरेख और लेबल जो व्यक्त करते हैं, वह वास्तव में वांछित वस्तु का प्रतीक होता है, न कि उसकी वास्तविक प्रतिकृति होती है। (उदाहरण के लिए, स्केच जो स्पष्ट रूप से पूर्ण नहीं है, फिर भी सही पूर्ण रूप में भाग को परिशुद्ध रूप से परिभाषित करता है, जब तक कि लेबल 10 मिमी डीआईए कहता है, क्योंकि डीआईए स्पष्ट रूप से लेकिन निष्पक्ष रूप से उपयोगकर्ता को बताता है कि तिर्यक चित्रित किया गया चक्र है पूर्ण वृत्त का प्रतिनिधित्व करने वाला प्रतीक है।) लेकिन अगर गणितीय मॉडल - अनिवार्य रूप से वेक्टर ग्राफिक - को भाग की आधिकारिक परिभाषा घोषित किया जाता है, तो आरेखण को मापन करने की कोई भी मात्रा समझ में आ सकती है; मॉडल में अभी भी त्रुटि हो सकती है, इस अर्थ में कि जो विचार था वह चित्रित नहीं किया गया है (मॉडलिंग); लेकिन मापन न करने के प्रकार की कोई त्रुटि नहीं हो सकती है - क्योंकि गणितीय वेक्टर और वक्र भाग सुविधाओं के प्रतीक नहीं, प्रतिकृतियां हैं।

यहां तक ​​कि 2D रेखांकन से प्रस्तुत करने में, निर्माण की विश्व उन दिनों से परिवर्तित गई है जब लोग प्रिंट पर दावा किए गए पैमाने अनुपात पर ध्यान देते थे, या इसकी परिशुद्ध पर निर्भर करते थे। अतीत में, आलेखक पर परिशुद्ध अनुपात मापन के लिए प्रिंट आलेखित किए गए थे, और उपयोगकर्ता यह जान सकता था कि 15 मिमी लंबी आरेखण पर रेखा 30 मिमी भाग आयाम के अनुरूप है क्योंकि आरेख ने शीर्षक खंड के "स्केल" बॉक्स में "1:2" कहा था। आज, सर्वव्यापी डेस्कटॉप प्रिंटिंग के युग में, जहां मूल चित्र या मापन किए गए प्रिंट प्रायः स्कैनर पर स्कैन किए जाते हैं और पीडीएफ फाइल के रूप में संग्रहीत किए जाते हैं, जिसे बाद में किसी भी प्रतिशत आवर्धन पर मुद्रित किया जाता है, जो उपयोगकर्ता को आसान लगता है (जैसे पेपर के आकार के लिए उपयुक्त) शीर्षक खंड के पैमाना बॉक्स में किस पैमाने के अनुपात का दावा किया है, उपयोगकर्ताओं ने बहुत अधिक ध्यान दिया है। जो, आरेख पैमाना न करने के नियम के अंतर्गत, वैसे भी वास्तव में उनके लिए इतना कुछ नहीं किया।

आयाम प्रदर्शन

आरेखण का आकार

अंतर्राष्ट्रीय मानक संगठन पेपर आकार
अमेरिकन राष्ट्रीय मानक संस्थान पेपर आकार

आरेखण के आकार सामान्य रूप से दो अलग-अलग मानकों, अंतर्राष्ट्रीय मानक संगठन मानक (विश्व मानक) या अमेरिकन राष्ट्रीय मानक संस्थान/यांत्रिक इंजीनियरों की अमरीकी संस्था वाई14.1 (अमेरिकी) का अनुसरण करते हैं।

मापीय आरेखण आकार अंतर्राष्ट्रीय पेपर आकारों के अनुरूप होते हैं। बीसवीं शताब्दी के उत्तरार्ध में इनमें और संशोधन हुआ, जब फोटोकॉपी सस्ती हो गई। अभियांत्रिक आरेखण को आसानी से आकार में दोगुना (या आधा) किया जा सकता है और स्थान के क्षय के बिना अगले बड़े (या क्रमशः, छोटे) आकार के पेपर पर रखा जा सकता है। और मापीय तकनीकी पेनों को आकारों में चयन किया गया था ताकि कोई व्यक्ति 2 के वर्गमूल के लगभग कारक द्वारा बदलते हुए पेन की चौड़ाई के साथ विवरण या आलेखन परिवर्तन जोड़ सके। पेनों के पूर्ण समूह में निम्नलिखित निब आकार : 0.13, 0.18, 0.25, 0.35, 0.5, 0.7, 1.0, 1.5 और 2.0 मिमी होंगे। हालाँकि, मानकीकरण के लिए अंतर्राष्ट्रीय संगठन (अंतर्राष्ट्रीय मानक संगठन) ने चार पेन चौड़ाई के लिए कहा और प्रत्येक के लिए रंग कोड: 0.25 (सफेद), 0.35 (पीला), 0.5 (भूरा), 0.7 (नीला) निर्धारित किया; इन निब्स ने ऐसी रेखाए बनाईं जो विभिन्न पाठ वर्ण ऊंचाई और अंतर्राष्ट्रीय मानक संगठन पेपर के आकार से संबंधित थीं।

सभी अंतर्राष्ट्रीय मानक संगठन पेपर आकारों में समान स्वरूप अनुपात होता है, एक से 2 का वर्गमूल, जिसका अर्थ है कि किसी दिए गए आकार के लिए डिज़ाइन किए गए प्रलेख को किसी अन्य आकार में बड़ा या कम किया जा सकता है और यह पूरी तरह से निर्धारित होगा। आकार बदलने की इस आसानी को देखते हुए, विशेष रूप से श्रृंखला के अंदर किसी दिए गए प्रलेख को पेपर के विभिन्न आकारों पर प्रतिलिपि बनाना या प्रिंट करना सामान्य बात है, उदाहरण A3 पर आरेखण को A2 तक बढ़ाया जा सकता है या A4 तक घटाया जा सकता है।

अमेरिका प्रचलित A-आकार अक्षर आकार से अनुरूप है, और B-आकार लेजर या पत्रिका आकार से अनुरूप है। एक बार ब्रिटिश पेपर आकार भी थे, जो अक्षरांकीय पदनामों के अतिरिक्त नामों से जाने जाते थे।

यांत्रिक इंजीनियरों की अमरीकी संस्था अमेरिकन राष्ट्रीय मानक संस्थान/यांत्रिक इंजीनियरों की अमरीकी संस्था Y14.1, Y14.2, Y14.3, और Y14.5 अमेरिका में सामान्यतः संदर्भित मानक हैं।

तकनीकी अभिलेख

तकनीकी अभिलेख तकनीकी आरेखण में अक्षर, अंक और अन्य वर्ण (कंप्यूटिंग) बनाने की प्रक्रिया है। इसका उपयोग किसी वस्तु का वर्णन करने या विस्तृत विवरण प्रदान करने के लिए किया जाता है। पठनीयता और एकरूपता के लक्ष्यों के साथ, शैलियों को मानकीकृत किया जाता है और अक्षरों की क्षमता का सामान्य लेखन क्षमता से बहुत कम संबंध होता है। अभियांत्रिकी आरेख में गॉथिक सैंस-सेरिफ़ लिपि का उपयोग होता है। मशीन के अधिकांश आरेखणों में छोटे अक्षर अक्षर दुर्लभ हैं। अंतर्राष्ट्रीय मानक संगठन अभिलेख प्रतिदर्श, तकनीकी पेन और पेंसिल के साथ उपयोग के लिए डिज़ाइन किए गए हैं, और अंतर्राष्ट्रीय मानक संगठन पेपर के आकार के अनुरूप हैं, अंतरराष्ट्रीय मानक के लिए अभिलेख वर्ण निर्मित करते हैं। रेखा की संघनता वर्ण की ऊंचाई से संबंधित होती है (उदाहरण के लिए, 2.5 मिमी अत्यधिक अक्षरों में स्ट्रोक की संघनता होगी - पेन निब का आकार - 0.25 मिमी, 3.5 में 0.35 मिमी पेन और इसी तरह आगे है)। अंतर्राष्ट्रीय मानक संगठन वर्ण समूह ( लिपि) में सेरिफ़, सात, चार, छह और नौ, और चक्र शीर्ष तीन होता है, जो सुपाठ्यता में संशोधन करता है, उदाहरण के लिए, A0 आरेखण को A1 या A3 तक कम कर दिया गया है (और संभव्यता वापस बड़ा या पुन: प्रस्तुत/फैक्स/ सूक्ष्मफिल्मांकन और c)। जब कंप्यूटर एडेड डिजाइन चित्र अधिक लोकप्रिय हो गए, विशेष रूप से स्व-कंप्यूटर एडेड डिजाइन जैसे अमेरिकी अमेरिकी सॉफ्टवेयर का उपयोग करते हुए, इस अंतर्राष्ट्रीय मानक संगठन मानक अक्षर का निकटतम अक्षर अव्यवहारिक प्रसमुच्चय (रोमनएस) था - ट्रेडमार्क युक्त एसएचएक्स अक्षर) मैन्युअल रूप से समायोजित चौड़ाई कारक ( प्रत्यादिष्ट ) के साथ इसे बनाने के लिए आरेखण बोर्ड के लिए अंतर्राष्ट्रीय मानक संगठन अभिलेख के समीप देखें। हालांकि, चार संवृत और आर्क छह और नौ के साथ, romans.shx अक्षराकृति को अवनति में पढ़ना कठिन हो सकता है। सॉफ़्टवेयर पैकेजों के हाल के संशोधनों में, दो प्रकार अक्षर आईएसोपीईयूआर विश्वसनीय रूप से मूल आरेखण बोर्ड अभिलेख निकृंत शैली को पुन: उत्पन्न करता है, हालाँकि, कई चित्र सर्वव्यापी Arial.ttf पर स्विच किए गए हैं।

पारंपरिक भाग (क्षेत्र)

शीर्षक खंड

प्रत्येक अभियांत्रिक आरेखण में शीर्षक खंड होना चाहिए।[11][12][13]

शीर्षक खंड (टी/बी, टीबी) आरेखण का क्षेत्र है जो आरेखण के बारे में हेडर (कंप्यूटिंग)-प्रकार की सूचना देता है, जैसे:

  • आरेखण शीर्षक (इसलिए नाम शीर्षक खंड)
  • आरेखण संख्या
  • भाग संख्याएँ)
  • डिजाइन गतिविधि का नाम (निगम, सरकारी संस्था, आदि)
  • डिजाइन गतिविधि का पहचान कोड (जैसे व्यवसायिक और सरकारी संस्था)
  • डिजाइन गतिविधि का पता (जैसे शहर, राज्य/प्रांत, देश)
  • आरेखण की माप इकाइयाँ (उदाहरण के लिए, इंच, मिलीमीटर)
  • आयाम कॉलआउट के लिए डिफ़ॉल्ट सहनशीलता जहां कोई सहनशीलता निर्दिष्ट नहीं की गई है
  • सामान्य विनिर्देश (तकनीकी मानक) के बॉयलरप्लेट कॉलआउट
  • बौद्धिक संपदा अधिकार चेतावनी

अंतर्राष्ट्रीय मानक संगठन 7200 शीर्षक ब्लॉकों में उपयोग किए जाने वाले डेटा क्षेत्रों को निर्दिष्ट करता है। यह आठ अनिवार्य डेटा क्षेत्रों का मानकीकरण करता है:[14]

  • शीर्षक (इसलिए नाम शीर्षक खंड)
  • द्वारा बनाया गया (ड्राफ्ट्समैन का नाम)
  • के द्वारा अनुमोदित
  • वैधानिक स्वामी (कंपनी या संगठन का नाम)
  • प्रलेख का प्रकार
  • आरेखण संख्या (इस प्रलेख की प्रत्येक शीट के लिए समान, संगठन के प्रत्येक तकनीकी प्रलेख के लिए अद्वितीय)
  • शीट संख्या और शीट की संख्या (उदाहरण के लिए, शीट 5/7)
  • जारी करने की तारीख (जब आरेखण बनाया गया था)

शीर्षक खंड के लिए पारंपरिक स्थान नीचे दाईं ओर (सामान्य रूप से) या ऊपर दाईं ओर या बीच में होते हैं।

संशोधन ब्लॉक

संशोधन ब्लॉक (रेव ब्लॉक) आरेखण के संशोधन (संस्करण) की एक सारणीबद्ध सूची है, जो संशोधन नियंत्रण का दस्तावेजीकरण करता है।

संशोधन ब्लॉक के लिए पारंपरिक स्थान शीर्ष दाएं (सामान्य रूप से) या किसी तरह से शीर्षक खंड से लगे होते हैं।

अगली संयोजन

अगला संयोजन ब्लॉक, जिसे प्रायः उपयोग किया जाता है या कभी-कभी प्रभावशीलता ब्लॉक के रूप में संदर्भित किया जाता है, उच्च संयोजन की एक सूची है जहां वर्तमान आरेखण पर उत्पाद का उपयोग किया जाता है। यह ब्लॉक सामान्य रूप से टाइटल ब्लॉक के निकट पाया जाता है।

नोट्स सूची

नोट्स सूची आरेखण के उपयोगकर्ता को नोट्स प्रदान करती है, किसी भी सूचना को बताती है कि आरेखण के क्षेत्र के कॉलआउट में नहीं था। इसमें सामान्य नोट्स, फ़्लैगनोट्स या दोनों का मिश्रण सम्मिलित हो सकता है।

नोट्स सूची के लिए पारंपरिक स्थान आरेखण के क्षेत्र के किनारों के साथ कहीं भी हैं।

सामान्य नोट्स

सामान्य नोट्स (जी/एन, जीएन) सामान्य रूप से आरेखण की सामग्री पर प्रयुक्त होते हैं, केवल कुछ भाग संख्याओं या कुछ सतहों या विशेषताओं पर प्रयुक्त होने के विपरीत है।

फ्लैगनोट्स

फ़्लैगनोट्स या फ़्लैग नोट्स (एफएल, एफ/एल) वे नोट होते हैं जो केवल प्रस्तारिक किए गए कॉलआउट बिंदुओं पर प्रयुक्त होते हैं, जैसे कि विशेष सतहों, सुविधाओं या भाग संख्याओं पर है। सामान्य रूप से कॉलआउट में एक चिन्ह प्रतिरूप सम्मिलित होता है। कुछ कंपनियां ऐसे नोटों को डेल्टा नोट्स कहती हैं, और नोट संख्या एक त्रिकोणीय प्रतीक (डेल्टा Δ (पत्र) अक्षर के समान) के अंदर संलग्न होती है। FL5 (फ्लैगनोट 5) और D5 (डेल्टा नोट 5) केवल एएससीआईआई संदर्भों में संक्षिप्त करने के विशिष्ट तरीके हैं।

आरेखण का क्षेत्र

आरेखण का क्षेत्र (एफ/डी, एफडी) आरेखण का मुख्य भाग या मुख्य क्षेत्र टाइटल ब्लॉक, रेव ब्लॉक, पी/एल आदि को छोड़कर है।

सामग्री की सूची, सामग्री का विज्ञापन, भागों की सूची

सामग्री की सूची (एल/एम, एलएम, एलओएम), सामग्री का विज्ञापन (बी/एम, बीएम, बीओएम), या भागों की सूची (पी/एल, पीएल) बनाने के लिए उपयोग की जाने वाली सामग्री की एक (सामान्य रूप से सारणीबद्ध) सूची है। एक भाग, और/या एक संयोजन बनाने के लिए उपयोग किए जाने वाले हिस्से। इसमें प्रत्येक भाग संख्या के लिए ताप संसोधन, परिष्करण और अन्य प्रक्रियाओं के निर्देश हो सकते हैं। कभी-कभी ऐसे एलओएम या पीएल आरेखण से अलग दस्तावेज होते हैं।

एलओएम/बीओएम के लिए पारंपरिक स्थान शीर्षक खंड के ऊपर या एक अलग प्रलेख में हैं।

पैरामीटर सारणीकरण

कुछ आरेखण पैरामीटर नामों के साथ आयामों को निर्देशित करते हैं (अर्थात, चर, जैसे A , B , C ), फिर प्रत्येक भाग संख्या के लिए पैरामीटर मानों की पंक्तियों को सारणीबद्ध करें।

पैरामीटर तालिकाओं के लिए पारंपरिक स्थान, जब ऐसी तालिकाओं का उपयोग किया जाता है, आरेखण के क्षेत्र के किनारों के पास अस्थिर हैं, या तो शीर्षक खंड के पास या कहीं और क्षेत्र के किनारों के साथ अस्थिर है।

दृश्य और अनुभाग

प्रत्येक दृश्य या अनुभाग अनुमानों का एक अलग समूह है, जो आरेखण के क्षेत्र के एक सन्निहित भाग पर प्रग्रहण कर रहा है। सामान्य रूप से विचारों और वर्गों को क्षेत्र के विशिष्ट क्षेत्रों के प्रति-संदर्भों के साथ निर्देशित किया जाता है।

क्षेत्र

प्रायः एक आरेखण को अक्षरांकीय ग्रिड द्वारा क्षेत्र में विभाजित किया जाता है, जिसमें सीमा के साथ ज़ोन लेबल होते हैं, जैसे A, B, C, D ऊपर की तरफ और 1,2,3,4,5,6 ऊपर और नीचे की तरफ होते है।[15]

शीर्षक (इसलिए नाम "शीर्षक खंड")

  • (ड्राफ्ट्समैन का नाम) द्वारा बनाया गया
  • के द्वारा अनुमोदित
  • वैधानिक स्वामी (कंपनी या संगठन का नाम)
  • प्रलेख का प्रकार
  • आरेखण संख्या (इस प्रलेख की प्रत्येक शीट के लिए समान, संगठन के प्रत्येक तकनीकी प्रलेख के लिए अद्वितीय है।)
  • शीट संख्या और शीट की संख्या (उदाहरण के लिए, "शीट 5/7")
  • जारी करने की तिथि (जब आरेख बनाया गया था)
  • शीर्षक खंड के लिए पारंपरिक स्थान नीचे दाईं ओर (सामान्य रूप से) या ऊपर दाईं ओर या बीच में होते हैं।

संशोधन ब्लॉक

संशोधन ब्लॉक (रेव शीर्षक खंड) आरेखण के संशोधन (संस्करण) की एक सारणीबद्ध सूची है, जो संशोधन नियंत्रण का दस्तावेजीकरण करता है।

संशोधन ब्लॉक के लिए पारंपरिक स्थान शीर्ष दाएं (सामान्य रूप से) या किसी तरह से शीर्षक खंड से जुड़े होते हैं।

अगला संयोजन

अगला संयोजन शीर्षक खंड, जिसे प्रायः "जहां उपयोग किया जाता है" या कभी-कभी "प्रभावकारिता शीर्षक खंड" के रूप में संदर्भित किया जाता है, उच्च संयोजन की एक सूची है जहां वर्तमान आरेख पर उत्पाद का उपयोग किया जाता है। यह शीर्षक खंड सामान्य रूप से शीर्षक खंड के समीप पाया जाता है।

नोट्स सूची

नोट्स सूची आरेखण के उपयोगकर्ता को नोट्स प्रदान करती है, किसी भी सूचना को बताती है कि आरेखण के क्षेत्र के कॉलआउट में नहीं था। इसमें सामान्य नोट्स, फ़्लैगनोट्स या दोनों का संयोजन सम्मिलित हो सकता है।

नोट्स सूची के लिए पारंपरिक स्थान आरेखण के क्षेत्र के किनारों के साथ कहीं भी हैं।

सामान्य टिप्पणियां

सामान्य नोट्स (जी/एन, जीएन) सामान्य रूप से आरेखण की वस्तु पर प्रयुक्त होते हैं, केवल कुछ भाग संख्याओं या कुछ सतहों या विशेषताओं पर प्रयुक्त होने के विपरीत है।

फ्लैगनोट्स

फ़्लैगनोट्स या फ़्लैग नोट (एफएल, एफ/एल) वे नोट होते हैं जो केवल प्रस्तरित किए गए कॉलआउट बिंदुओं पर प्रयुक्त होते हैं, जैसे कि विशेष सतहों, सुविधाओं या भाग संख्याओं पर होते है। सामान्य रूप से कॉलआउट में एक चिह्नक प्रतिरूप सम्मिलित होता है। कुछ कंपनियां ऐसे नोटों को "डेल्टा नोट्स" कहती हैं, और नोट संख्या एक त्रिकोणीय प्रतीक (बड़े अक्षर का डेल्टा, Δ के समान) के अंदर संलग्न है। "एफएल5" (फ्लैगनोट 5) और "D5" (डेल्टा नोट 5) केवल सूचना विनिमय के लिए अमेरिकी मानक कोड संदर्भों में संक्षिप्त करने के विशिष्ट तरीके हैं।

आरेखण का क्षेत्र

आरेखण का क्षेत्र (एफ/डी, एफडी) आरेखण का मुख्य भाग या मुख्य क्षेत्र, शीर्षक खंड, रेव शीर्षक खंड, पी/एल आदि को छोड़कर है।

वस्तु की सूची, वस्तु का विपत्र, भागों की सूची

मुख्य लेख: वस्तु का विपत्र

वस्तु की सूची (एल/एम, एलएम, एलओएम), वस्तु का विपत्र (बी/एम, बीएम, बीओएम), या भागों की सूची (पी/एल, पीएल) बनाने के लिए उपयोग की जाने वाली वस्तु की एक (सामान्य रूप से सारणीबद्ध) सूची है। एक भाग, और/या एक संयोजन बनाने के लिए उपयोग किए जाने वाले भाग है। इसमें प्रत्येक भाग संख्या के लिए ऊष्मा संशोधन, परिष्करण और अन्य प्रक्रियाओं के निर्देश हो सकते हैं। कभी-कभी ऐसे एलओएम या पीएल आरेखण से अलग दस्तावेज होते हैं।

एलओएम/बीओएम के लिए पारंपरिक स्थान शीर्षक खंड के ऊपर या एक अलग प्रलेख में हैं।

पैरामीटर सारणीकरण

पैरामीटर नामों के साथ कुछ आरेखण कॉलआउट आयाम (अर्थात, चर, जैसे "A", "B", "C"), फिर प्रत्येक भाग संख्या के लिए पैरामीटर मानों की पंक्तियों को सारणीबद्ध करें।

पैरामीटर तालिकाओं के लिए पारंपरिक स्थान, जब ऐसी तालिकाओं का उपयोग किया जाता है, आरेखण के क्षेत्र के किनारों के पास, या तो शीर्षक खंड के पास या कहीं और क्षेत्र के किनारों के साथ संचरित कर रहे हैं।

दृश्य और अनुभाग

प्रत्येक दृश्य या अनुभाग अनुमानों का एक अलग समूह है, जो आरेखण के क्षेत्र के एक सन्निहित भाग पर प्रग्रहण कर रहा है। सामान्य रूप से विचारों और वर्गों को क्षेत्र के विशिष्ट क्षेत्रों के प्रति-संदर्भों के साथ निर्देशित किया जाता है।

क्षेत्र

प्रायः एक आरेखण को अक्षरांकीय ग्रिड द्वारा क्षेत्र में विभाजित किया जाता है, जिसमें संचय के साथ क्षेत्र लेबल होते हैं, जैसे कि A, B, C, D ऊपर की ओर और 1,2,3,4,5,6 ऊपर और नीचे है।[16] क्षेत्र के नाम इस प्रकार हैं, उदाहरण के लिए, A5, D2, या B1 है। यह सुविधा आरेखण के विशेष क्षेत्रों की चर्चा और संदर्भ को बहुत आसान बनाती है।

संकेताक्षर और प्रतीक

कई तकनीकी क्षेत्रों की तरह, 20वीं और 21वीं सदी के समय अभियांत्रिक आरेखण में संक्षिप्त रूपों और प्रतीकों की विस्तृत श्रृंखला विकसित की गई है। उदाहरण के लिए, शीतित बेल्लित इस्पात को प्रायः सीआरएस के रूप में संक्षिप्त किया जाता है, और व्यास को प्रायः डीआईए, डी या ⌀ के रूप में संक्षिप्त किया जाता है।

अधिकांश अभियांत्रिकी चित्र भाषा-स्वतंत्र हैं - शब्द शीर्षक खंड तक ही सीमित हैं; अन्यत्र शब्दों के स्थान पर प्रतीकों का प्रयोग किया जाता है।[17]

निर्माण और मशीनिंग के लिए कंप्यूटर जनित आरेखण के आगमन के साथ, कई प्रतीक सामान्य उपयोग से बाहर हो गए हैं। यह पुराने हाथ से निर्मित किए गए प्रलेख की व्याख्या करने का प्रयास करते समय समस्या उत्पन्न करता है जिसमें अस्पष्ट तत्व होते हैं जिन्हें मानक शिक्षण पाठ या यांत्रिक इंजीनियरों की अमरीकी संस्था और अमेरिकन राष्ट्रीय मानक संस्थान मानकों जैसे नियंत्रण दस्तावेज़ों में आसानी से संदर्भित नहीं किया जा सकता है। उदाहरण के लिए, यांत्रिक इंजीनियरों की अमरीकी संस्था Y14.5M 1994 कुछ ऐसे तत्वों को बाहर करता है जो पुराने अमेरिकी नौसेना के चित्र और विश्व युद्ध 2 विंटेज के तल निर्माण चित्र में निहित महत्वपूर्ण सूचना को संप्रेषित करते हैं। कुछ प्रतीकों के आशय और अर्थ पर शोध करना कठिन प्रमाणित हो सकता है।

उदाहरण

उदाहरण यांत्रिक आरेखण

यहाँ अभियांत्रिक आरेखण का उदाहरण दिया गया है (उसी वस्तु का सममितीय दृश्य ऊपर दिखाया गया है)। स्पष्टता के लिए विभिन्न प्रकार की रेखाएँ रंगीन हैं।

  • काला = वस्तु रेखा और रेखाछाया
  • लाल = प्रत्यक्ष रेखा
  • नीला = टुकड़े या खुलने की केंद्र रेखा
  • मैजेंटा = काल्पनिक रेखा या परिच्छेद समतल रेखा

अनुभागीय दृश्य तीरों की दिशा द्वारा इंगित किए जाते हैं, जैसा कि उदाहरण में दाईं ओर है।

वैधानिक साधन

अभियांत्रिक आरेखण वैधानिक दस्तावेज है (अर्थात, वैधानिक साधन), क्योंकि यह उन सभी आवश्यक सूचनाओं को संप्रेषित करता है जो उन लोगों को चाहिए जो विचार को वास्तविकता में बदलने के लिए संसाधनों का व्यय करेंगे। इस प्रकार यह अनुबंध का भाग है; खरीद आदेश और आरेखण साथ किसी भी सहायक प्रलेख (अभियांत्रिकी परिवर्तन आदेश [ईसीओ], तथाकथित विनिर्देश (तकनीकी मानक)), अनुबंध का गठन करते हैं। इस प्रकार, यदि परिणामी उत्पाद गलत है, तो कार्यकर्ता या निर्माता वैधानिक दायित्व से सुरक्षित हैं, जब तक कि उन्होंने आरेखण द्वारा बताए गए निर्देशों को ईमानदारी से निष्पादित किया है। यदि वे निर्देश गलत थे, तो यह इंजीनियर की गलती है। क्योंकि निर्माण और निर्माण सामान्य रूप से बहुत महंगी प्रक्रियाएँ हैं (जिसमें बड़ी मात्रा में पूंजी और वेतन पत्रक-सूची सम्मिलित है), त्रुटियों के लिए उत्तरदायित्व के प्रश्न के वैधानिक निहितार्थ हैं।

मॉडल-आधारित परिभाषा से संबंध (एमबीडी/डीपीडी)

कई वर्षों से, अभियांत्रिक आरेखण डिजाइन से निर्माण में सूचना स्थानांतरित करने का एकमात्र तरीका था। हाल के दशकों में और तरीका सामने आया है, जिसे मॉडल-आधारित परिभाषा (एमबीडी) या डिजिटल उत्पाद परिभाषा (डीपीडी) कहा जाता है। मॉडल-आधारित परिभाषा में, कंप्यूटर एडेड डिजाइन सॉफ़्टवेयर ऐप द्वारा अभिग्रहण की गई सूचना स्वचालित रूप से कंप्यूटर एडेड विनिर्माण ऐप (कंप्यूटर एडेड विनिर्माण ) में निर्धारित हो जाती है, जो (पोस्टप्रोसेसिंग ऐप्स के साथ या बिना) अन्य भाषाओं में कोड बनाता है जैसे कि G कोड को कम्प्यूटरीकृत संख्यात्मक नियंत्रण मशीन द्वारा निष्पादित किया जाता है। कम्प्यूटरीकृत संख्यात्मक नियंत्रण, 3D प्रिंटिग, या (तेजी से) हाइब्रिड मशीन उपकरण जो दोनों का उपयोग करता है। इस प्रकार आज यह प्रायः ऐसा होता है कि सूचना डिज़ाइनर के समझ से निर्मित घटक में बिना किसी अभियांत्रिक आरेखण द्वारा संहिताबद्ध किए संचरित करती है। मॉडल-आधारित परिभाषा में, डेटा सेट, आरेखण नहीं, वैधानिक साधन है। तकनीकी डेटा पैकेज (टीडीपी) शब्द का उपयोग अब सूचना के पूर्ण पैकेज (या दूसरे माध्यम में) को संदर्भित करने के लिए किया जाता है जो डिज़ाइन से लेकर उत्पादन तक सूचना का संचार करता है (जैसे 3D-मॉडल डेटासेट, अभियांत्रिकी चित्र, अभियांत्रिकी परिवर्तन आदेश (ईसीओ), विनिर्देश (तकनीकी मानक) संशोधन और परिशिष्ट, और इसी तरह संचार करता है)।

यह अभी भी कंप्यूटर एडेड डिजाइन / कंप्यूटर एडेड विनिर्माण प्रोग्रामर, कम्प्यूटरीकृत संख्यात्मक नियंत्रण व्यवस्था कार्यकर्ता और कम्प्यूटरीकृत संख्यात्मक नियंत्रण ऑपरेटरों को निर्माण करने के लिए लेता है, साथ ही अन्य लोगों जैसे गुणवत्ता प्रमाण कर्मचारी (निरीक्षक) और संचालन कर्मचारी (वस्तु प्रबंधन, भेजने और प्राप्त करने और प्रबंध कार्यालय के लिए) है। ये कार्यकर्ता प्रायः अपने काम के समय उन आरेखण का उपयोग करते हैं जिन्हें मॉडल-आधारित परिभाषा डेटासेट से निर्मित किया गया है। जब उपयुक्त प्रक्रियाओं का अनुसरण किया जा रहा हो, तो प्रधानता की स्पष्ट श्रृंखला को सदैव प्रलेखित किया जाता है, जैसे कि जब कोई व्यक्ति आरेखण को देखता है, तो उसे उस पर नोट द्वारा बताया जाता है कि यह आरेखण साधन नहीं है (क्योंकि मॉडल-आधारित परिभाषा डेटासेट है)। इन स्थितियों में, आरेखण अभी भी उपयोगी प्रलेख है, हालांकि वैधानिक रूप से इसे केवल संदर्भ के लिए वर्गीकृत किया गया है, जिसका अर्थ है कि यदि कोई विवाद या विसंगतियां उत्पन्न होती हैं, तो यह मॉडल-आधारित परिभाषा डेटासेट है, और आरेखण नहीं, जो नियंत्रित करता है।

यह भी देखें

संदर्भ

  1. 1.0 1.1 M. Maitra, Gitin (2000). प्रैक्टिकल इंजीनियरिंग ड्राइंग. 4835/24, Ansari Road, Daryaganj, New Delhi - 110002: New Age International (P) Limited, Publishers. pp. 2–5, 183. ISBN 81-224-1176-2.{{cite book}}: CS1 maint: location (link)
  2. 2.0 2.1 Rolt 1957, pp. 29–30.
  3. {{Harvnb|French|Vierck|1953|pp=99–105}
  4. 4.0 4.1 4.2 {{Harvnb|French|Vierck|1953|pp=111–114}
  5. https://en.wikipedia.org/wiki/Engineering_drawing#Relationship_to_model-based_definition_(MBD/DPD):~:text=Europe%3B%5B4%5D-,%5B5%5D,-but%20circa%20the
  6. 6.0 6.1 Cite error: Invalid <ref> tag; no text was provided for refs named French1918p78
  7. French & Vierck 1953, pp. 97–114
  8. French & Vierck 1953, pp. 108–111
  9. French & Vierck 1953, p. 102.
  10. Bertoline, Gary R. Introduction to Graphics Communications for Engineers (4th Ed.). New York, NY. 2009
  11. United States Bureau of Naval Personnel. "Engineering Aid 1 & C.". 1969. p. 188.
  12. Andres M. Embuido. "Engineering Aid 1 & C". 1988. p. 7-10.
  13. "Farm Planners' Engineering Handbook for the Upper Mississippi Region". 1953. p. 2-5.
  14. फरहाद घोरानी. टाइटल ब्लॉक। 2015.
  15. https://en.wikipedia.org/wiki/Engineering_drawing#:~:text=and%20bottom.%5B-,14%5D,-Names%20of%20zones
  16. https://en.wikipedia.org/wiki/Engineering_drawing#cite_note-14
  17. Brian Griffiths. "Engineering Drawing for Manufacture". 2002. p. 1 and p. 13.
  18. ASME AED-1 Aerospace and Advanced Engineering Drawings.


ग्रन्थसूची


अग्रिम पठन

  • Basant Agrawal and C M Agrawal (2013). Engineering Drawing. Second Edition, McGraw Hill Education India Pvt. Ltd., New Delhi. [1]
  • Paige Davis, Karen Renee Juneau (2000). Engineering Drawing
  • David A. Madsen, Karen Schertz, (2001) Engineering Drawing & Design. Delmar Thomson Learning. [2]
  • Cecil Howard Jensen, Jay D. Helsel, Donald D. Voisinet Computer-aided engineering drawing using AutoCAD.
  • Warren Jacob Luzadder (1959). Fundamentals of engineering drawing for technical students and professional.
  • M.A. Parker, F. Pickup (1990) Engineering Drawing with Worked Examples.
  • Colin H. Simmons, Dennis E. Maguire Manual of engineering drawing. Elsevier.
  • Cecil Howard Jensen (2001). Interpreting Engineering Drawings.
  • B. Leighton Wellman (1948). Technical Descriptive Geometry. McGraw-Hill Book Company, Inc.


बाहरी संबंध