ऑनलाइन विश्लेषणात्मक प्रक्रिया: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Processing mode}} {{advert|date=February 2022}} {{buzzwords|date=February 2022}} ऑनलाइन विश्लेषणात्मक प्रसं...")
 
No edit summary
 
(21 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Processing mode}}
{{Short description|Processing mode}}
{{advert|date=February 2022}}
ऑनलाइन विश्लेषणात्मक प्रसंस्करण, या ओएलएपी ({{IPAc-en|ˈ|oʊ|l|æ|p}}), [[कम्प्यूटिंग]] में बहु-आयामी विश्लेषणात्मक (एमडीए) प्रश्नों का तेजी से उत्तर देने का एक दृष्टिकोण है।<ref name=Codd1993>{{cite web
{{buzzwords|date=February 2022}}
ऑनलाइन विश्लेषणात्मक प्रसंस्करण, या OLAP ({{IPAc-en|ˈ|oʊ|l|æ|p}}), [[कम्प्यूटिंग]] में बहु-आयामी विश्लेषणात्मक (एमडीए) प्रश्नों का तेजी से उत्तर देने का एक तरीका है।<ref name=Codd1993>{{cite web
   |url=http://www.sgpnyc.com/us/products/dataquest/whitepapers/OLAP_wp_efcodd.pdf
   |url=http://www.sgpnyc.com/us/products/dataquest/whitepapers/OLAP_wp_efcodd.pdf
   |title=Providing OLAP (On-line Analytical Processing) to User-Analysts: An IT Mandate
   |title=Providing OLAP (On-line Analytical Processing) to User-Analysts: An IT Mandate
Line 12: Line 10:
   |year=1993
   |year=1993
   |access-date=2008-03-05
   |access-date=2008-03-05
   }}{{Dead link|date=April 2020 |bot=InternetArchiveBot |fix-attempted=yes }}</ref> OLAP व्यावसायिक बुद्धिमत्ता की व्यापक श्रेणी का हिस्सा है, जिसमें [[संबंध का डेटाबेस]], रिपोर्ट लेखन और [[डेटा खनन]] भी शामिल है।<ref>{{cite book
   }}{{Dead link|date=April 2020 |bot=InternetArchiveBot |fix-attempted=yes }}</ref> ओएलएपी व्यावसायिक बुद्धिमत्ता की व्यापक श्रेणी का हिस्सा है, जिसमें [[संबंध का डेटाबेस|संबंध का आंकड़ाकोष]], रिपोर्ट लेखन और [[डेटा खनन]] भी सम्मिलित है।<ref>{{cite book
   |url=https://books.google.com/books?id=M-UOE1Cp9OEC
   |url=https://books.google.com/books?id=M-UOE1Cp9OEC
   |title=Business Intelligence for Telecommunications
   |title=Business Intelligence for Telecommunications
Line 21: Line 19:
   |isbn=978-0-8493-8792-0
   |isbn=978-0-8493-8792-0
   |access-date=2008-03-18
   |access-date=2008-03-18
}}</ref> OLAP के विशिष्ट अनुप्रयोगों में बिक्री, [[विपणन]], [[व्यापार रिपोर्टिंग]], व्यवसाय प्रक्रिया प्रबंधन (BPM) के लिए व्यावसायिक रिपोर्टिंग शामिल है।<ref>{{cite book
}}</ref> ओएलएपी के विशिष्ट अनुप्रयोगों में बिक्री, [[विपणन]], [[व्यापार रिपोर्टिंग|व्यापार प्रतिवेदन]], व्यवसाय प्रक्रिया प्रबंधन (बीपीएम) के लिए व्यवसाय प्रतिवेदन सम्मिलित है।<ref>{{cite book
   |url=http://www.google.com/products?q=9783639222166
   |url=http://www.google.com/products?q=9783639222166
   |title=Business Process Management:A Data Cube To Analyze Business Process Simulation Data For Decision Making
   |title=Business Process Management:A Data Cube To Analyze Business Process Simulation Data For Decision Making
Line 29: Line 27:
   |pages=204 pp
   |pages=204 pp
   |isbn=978-3-639-22216-6
   |isbn=978-3-639-22216-6
}}</ref> [[बजट]] और [[पूर्वानुमान]], [[वित्तीय रिपोर्टिंग]] और इसी तरह के क्षेत्र, नए अनुप्रयोगों के उभरने के साथ, जैसे कि [[कृषि]]<ref name=ahsan/>  
}}</ref> [[बजट]] और [[पूर्वानुमान]], [[वित्तीय रिपोर्टिंग|वित्तीय प्रतिवेदन]] और इसी तरह के क्षेत्र,[[कृषि]] जैसे नए अनुप्रयोगों के साथ।<ref name=ahsan/>  
OLAP शब्द पारंपरिक डेटाबेस शब्द [[ऑनलाइन लेनदेन प्रसंस्करण]] (OLTP) के मामूली संशोधन के रूप में बनाया गया था।<ref>{{cite web
 
ओएलएपी शब्द पारंपरिक आंकड़ाकोष शब्द [[ऑनलाइन लेनदेन प्रसंस्करण]] (ओएलपी) के लघु संशोधन के रूप में बनाया गया था।<ref>{{cite web
   |url=http://www.symcorp.com/downloads/OLAP_CouncilWhitePaper.pdf
   |url=http://www.symcorp.com/downloads/OLAP_CouncilWhitePaper.pdf
   |title=OLAP Council White Paper
   |title=OLAP Council White Paper
Line 37: Line 36:
   |access-date=2008-03-18
   |access-date=2008-03-18
}}</ref>
}}</ref>
OLAP उपकरण उपयोगकर्ताओं को बहुआयामी डेटा को कई दृष्टिकोणों से अंतःक्रियात्मक रूप से विश्लेषण करने में सक्षम बनाता है। OLAP में तीन बुनियादी विश्लेषणात्मक ऑपरेशन होते हैं: समेकन (रोल-अप), ड्रिल-डाउन और स्लाइसिंग और डाइसिंग।<ref name="OBrien">O'Brien, J. A., & Marakas, G. M. (2009). Management information systems (9th ed.). Boston, MA: McGraw-Hill/Irwin.</ref>{{rp|402-403}} समेकन में डेटा का एकत्रीकरण शामिल होता है जिसे संचित किया जा सकता है और एक या अधिक आयामों में गणना की जा सकती है। उदाहरण के लिए, बिक्री के रुझान का अनुमान लगाने के लिए सभी बिक्री कार्यालयों को बिक्री विभाग या बिक्री विभाग में रोल अप किया जाता है। इसके विपरीत, ड्रिल-डाउन एक ऐसी तकनीक है जो उपयोगकर्ताओं को विवरण के माध्यम से नेविगेट करने की अनुमति देती है। उदाहरण के लिए, उपयोगकर्ता अलग-अलग उत्पादों की बिक्री देख सकते हैं जो एक क्षेत्र की बिक्री बनाते हैं। स्लाइसिंग और डाइसिंग एक ऐसी सुविधा है जिससे उपयोगकर्ता OLAP क्यूब के डेटा के एक विशिष्ट सेट को निकाल (स्लाइसिंग) कर सकते हैं और विभिन्न दृष्टिकोणों से स्लाइस को देख (डाइसिंग) कर सकते हैं। इन दृष्टिकोणों को कभी-कभी आयाम कहा जाता है (जैसे विक्रेता द्वारा, या तिथि के अनुसार, या ग्राहक द्वारा, या उत्पाद द्वारा, या क्षेत्र द्वारा, आदि द्वारा समान बिक्री को देखना)।


OLAP के लिए कॉन्फ़िगर किए गए [[डेटाबेस]] एक बहुआयामी डेटा मॉडल का उपयोग करते हैं, जिससे जटिल विश्लेषणात्मक और तदर्थ प्रश्नों को तेजी से निष्पादन समय के साथ अनुमति मिलती है।<ref>{{cite web
ओएलएपी उपकरण उपयोगकर्ताओं को कई दृष्टिकोणों से बहुआयामी डेटा का सहभागी रूप से विश्लेषण करने में सक्षम बनाता है। ओएलएपी में तीन मूलभूत विश्लेषणात्मक संचालन होते हैं: समेकन (रोल-अप), ड्रिल-डाउन और स्लाइसिंग और डाइसिंग।<ref name="OBrien">O'Brien, J. A., & Marakas, G. M. (2009). Management information systems (9th ed.). Boston, MA: McGraw-Hill/Irwin.</ref> समेकन में डेटा का एकत्रीकरण सम्मिलित है जिसे एक या अधिक आयामों में संचित और गणना की जा सकती है। उदाहरण के लिए, बिक्री के रुझानों का अनुमान लगाने के लिए सभी बिक्री कार्यालयों को बिक्री विभाग या बिक्री प्रभाग में रोल अप किया जाता है। इसके विपरीत, ड्रिल-डाउन एक ऐसी प्रौद्योगिकी है जो उपयोगकर्ताओं को विवरण के माध्यम से मार्गनिर्देशन करने की अनुमति देती है। उदाहरण के लिए, उपयोगकर्ता व्यक्तिगत उत्पादों द्वारा बिक्री देख सकते हैं जो किसी क्षेत्र की बिक्री बनाते हैं। स्लाइसिंग और डाइसिंग एक ऐसी सुविधा है जिससे उपयोगकर्ता ओएलएपी क्यूब के डेटा के एक विशिष्ट सेट निकाल सकते हैं (स्लाइसिंग) कर सकते हैं और विभिन्न दृष्टिकोणों से स्लाइस देख सकते हैं (डाइकिंग)। इन दृष्टिकोणों को कभी-कभी आयाम कहा जाता है (जैसे विक्रेता द्वारा एक ही बिक्री को देखना, या तिथि के अनुसार, या ग्राहक द्वारा, या उत्पाद द्वारा, या क्षेत्र द्वारा, आदि द्वारा )।
 
ओएलएपी के लिए विन्यस्त किए गए [[डेटाबेस|आंकड़ाकोष]] एक बहुआयामी डेटा मॉडल का उपयोग करते हैं, जिससे तेजी से निष्पादन समय के साथ जटिल विश्लेषणात्मक और तदर्थ प्रश्नों की अनुमति मिलती है।<ref>{{cite web
   |url=http://www.dwreview.com/OLAP/Introduction_OLAP.html
   |url=http://www.dwreview.com/OLAP/Introduction_OLAP.html
   |title=Introduction to OLAP – Slice, Dice and Drill!
   |title=Introduction to OLAP – Slice, Dice and Drill!
Line 45: Line 45:
   |author=Hari Mailvaganam
   |author=Hari Mailvaganam
   |year=2007  |access-date=2008-03-18
   |year=2007  |access-date=2008-03-18
}}</ref> वे [[नेविगेशनल डेटाबेस]], [[पदानुक्रमित डेटाबेस]] और रिलेशनल डेटाबेस के पहलुओं को उधार लेते हैं।
}}</ref> वे [[नेविगेशनल डेटाबेस|नेविगेशनल आंकड़ाकोष]], [[पदानुक्रमित डेटाबेस|पदानुक्रमित आंकड़ाकोष]] और संबंधात्मक आंकड़ाकोष के पहलुओं को उधार लेते हैं।


OLAP आमतौर पर [[OLTP]] (ऑनलाइन ट्रांजेक्शन प्रोसेसिंग) के विपरीत है, जो आमतौर पर बहुत कम जटिल प्रश्नों की विशेषता है, बड़ी मात्रा में, व्यापार खुफिया या रिपोर्टिंग के उद्देश्य के बजाय लेनदेन को संसाधित करने के लिए। जबकि OLAP सिस्टम ज्यादातर पढ़ने के लिए अनुकूलित होते हैं, OLTP को सभी प्रकार के प्रश्नों (रीड, इंसर्ट, अपडेट और डिलीट) को प्रोसेस करना होता है।
ओएलएपी आमतौर पर [[OLTP|ओएलटीपी]] (ऑनलाइन लेनदेन प्रसंस्करण) के विपरीत माना जाता है, जो आमतौर पर व्यापार आसूचना या प्रतिवेदन के उद्देश्य के बजाय लेनदेन को संसाधित करने के लिए, बड़ी मात्रा में बहुत कम जटिल प्रश्नों की विशेषता है।। जबकि ओएलएपी प्रणालियों ज्यादातर पढ़ने के लिए अनुकूलित होते हैं, ओएलटीपी को सभी प्रकार के प्रश्नों (पढ़ना, सम्मिलित करना, नवीनीकरण करना और मिटाना) को संसाधित करना होता है।


== ओएलएपी सिस्टम का अवलोकन ==
== ओएलएपी प्रणाली का अवलोकन ==
किसी भी OLAP सिस्टम के मूल में एक OLAP क्यूब होता है (जिसे 'बहुआयामी क्यूब' या [[अतिविम]] भी कहा जाता है)। इसमें संख्यात्मक तथ्य होते हैं जिन्हें उपाय कहा जाता है जिन्हें [[आयाम (डेटा वेयरहाउस)]] द्वारा वर्गीकृत किया जाता है। उपायों को हाइपरक्यूब के चौराहों पर रखा गया है, जो एक सदिश स्थान के रूप में आयामों द्वारा फैला हुआ है। OLAP क्यूब में हेरफेर करने के लिए सामान्य इंटरफ़ेस एक मैट्रिक्स इंटरफ़ेस है, जैसे स्प्रेडशीट प्रोग्राम में [[पिवट तालिका]], जो एकत्रीकरण या औसत जैसे आयामों के साथ प्रक्षेपण संचालन करता है।
किसी भी ओएलएपी प्रणाली के मूल में एक ओएलएपी घन होता है (जिसे 'बहुआयामी घन' या [[अतिविम]] भी कहा जाता है)। इसमें संख्यात्मक तथ्य होते हैं जिन्हें माप कहा जाता है जिन्हें [[आयाम (डेटा वेयरहाउस)|आयामों (डेटा वेयरहाउस)]] द्वारा वर्गीकृत किया जाता है। उपायों को अतिविम के चौराहों पर रखा गया है, जो एक सदिश स्थान के रूप में आयामों द्वारा फैला हुआ है। ओएलएपी घन में गड़बड़ी करने के लिए सामान्य अंतरापृष्ठ एक सांचा अंतरापृष्ठ है, जैसे स्प्रेडशीट प्रोग्राम में [[पिवट तालिका|पिवट टेबल्स]], जो आयामों के साथ प्रक्षेपण संचालन करती हैं, जैसे कि एकत्रीकरण या औसत।


क्यूब मेटाडेटा आमतौर पर एक रिलेशनल डेटाबेस में [[स्टार स्कीमा]] या [[स्नोफ्लेक स्कीमा]] या तालिकाओं के [[तथ्य नक्षत्र]] से बनाया जाता है। [[तथ्य तालिका]] में रिकॉर्ड से माप प्राप्त किए जाते हैं और [[आयाम तालिका]] से आयाम प्राप्त किए जाते हैं।
घन अधिआंकड़ा आमतौर पर एक संबंधात्मक आंकड़ाकोष में [[स्टार स्कीमा]] या [[स्नोफ्लेक स्कीमा]] या टेबल के [[तथ्य नक्षत्र]] से बनाया जाता है। उपाय [[तथ्य तालिका|तथ्य टेबल]] में अभिलेख से माप प्राप्त किए जाते हैं और [[आयाम तालिका|आयाम टेबल]] से आयाम प्राप्त किए जाते हैं।


प्रत्येक उपाय के बारे में सोचा जा सकता है कि इसमें लेबल का एक सेट है, या इसके साथ जुड़े मेटा-डेटा हैं। आयाम वह है जो इन लेबलों का वर्णन करता है; यह उपाय के बारे में जानकारी प्रदान करता है।
प्रत्येक उपाय के बारे में सोचा जा सकता है कि इसमें लेबल का एक सेट है, या इसके साथ जुड़े अधिआंकड़ा हैं। एक आयाम वह है जो इन लेबलों का वर्णन करता है; यह उपाय के बारे में जानकारी प्रदान करता है।


एक सरल उदाहरण एक घन होगा जिसमें माप के रूप में स्टोर की बिक्री और आयाम के रूप में दिनांक/समय शामिल होता है। प्रत्येक बिक्री में एक दिनांक/समय लेबल होता है जो उस बिक्री के बारे में अधिक बताता है।
एक सरल उदाहरण एक घन होगा जिसमें माप के रूप में स्टोर की बिक्री और आयाम के रूप में दिनांक/समय सम्मिलित है। प्रत्येक बिक्री में एक दिनांक/समय लेबल होता है जो उस बिक्री के बारे में अधिक वर्णन बताता है।


उदाहरण के लिए:
उदाहरण के लिए:
   बिक्री तथ्य तालिका
   बिक्री तथ्य टेबल
  +-------------+----------+
  +-------------+----------+
  | बिक्री_राशि | समय_आईडी |
  | बिक्री_राशि | समय_आईडी |
  +-------------+----------+ समय आयाम
  +-------------+----------+ समय आयाम
  | 2008.10| 1234 |----+ +---------+----+
  | २००८.१०| १२३४ |----+ +---------+----+
  +-------------+----------+ | | समय_आईडी | टाइमस्टैम्प |
  +-------------+----------+ | | समय_आईडी | टाइमस्टैम्प |
                              | +---------+----+
  | +---------+----+
                              +---->| 1234 | 20080902 12:35:43 |
  +---->| १२३४ | २००८०९०२ १२ः३५ः४३ |
                                    +---------+----+
  +---------+----+
 
=== बहुआयामी डेटाबेस ===
बहुआयामी संरचना को रिलेशनल मॉडल की भिन्नता के रूप में परिभाषित किया जाता है जो डेटा को व्यवस्थित करने और डेटा के बीच संबंधों को व्यक्त करने के लिए बहुआयामी संरचनाओं का उपयोग करता है।<ref name="OBrien"/>{{rp|177}} संरचना को क्यूब्स में तोड़ा गया है और क्यूब्स प्रत्येक क्यूब की सीमा के भीतर डेटा को स्टोर और एक्सेस करने में सक्षम हैं। एक बहुआयामी संरचना के भीतर प्रत्येक सेल में इसके प्रत्येक आयाम के साथ तत्वों से संबंधित एकत्रित डेटा होता है।<ref name="OBrien"/>{{rp|178}} यहां तक ​​​​कि जब डेटा में हेरफेर किया जाता है, तब भी इसका उपयोग करना आसान रहता है और एक कॉम्पैक्ट डेटाबेस प्रारूप का गठन जारी रहता है। डेटा अभी भी परस्पर जुड़ा हुआ है।
ऑनलाइन एनालिटिकल प्रोसेसिंग (OLAP) एप्लिकेशन का उपयोग करने वाले विश्लेषणात्मक डेटाबेस के लिए बहुआयामी संरचना काफी लोकप्रिय है।<ref name="OBrien"/>  विश्लेषणात्मक डेटाबेस इन डेटाबेस का उपयोग जटिल व्यावसायिक प्रश्नों के उत्तर तेजी से देने की क्षमता के कारण करते हैं। डेटा को विभिन्न कोणों से देखा जा सकता है, जो अन्य मॉडलों के विपरीत समस्या का व्यापक परिप्रेक्ष्य देता है।<ref>Williams, C., Garza, V.R., Tucker, S, Marcus, A.M. (1994, January 24). Multidimensional models boost viewing options. InfoWorld, 16(4)</ref>
 


=== बहुआयामी आंकड़ाकोष ===
बहुआयामी संरचना को "संबंधात्मक मॉडल की भिन्नता के रूप में परिभाषित किया जाता है जो डेटा को व्यवस्थित करने और डेटा के बीच संबंधों को व्यक्त करने के लिए बहुआयामी संरचनाओं का उपयोग करता है"।<ref name="OBrien"/>{{rp|१७७}} संरचना को क्यूब्स में तोड़ा गया है और क्यूब्स प्रत्येक घन की सीमाओं के भीतर डेटा को स्टोर और एक्सेस करने में सक्षम हैं। "एक बहुआयामी संरचना के भीतर प्रत्येक सेल में इसके प्रत्येक आयाम के साथ तत्वों से संबंधित एकत्रित डेटा होता है" ।<ref name="OBrien"/>{{rp|१७८}} यहां तक ​​​​कि जब डेटा में गड़बड़ी किया जाता है, तब भी इसका उपयोग करना आसान रहता है और एक कॉम्पैक्ट आंकड़ाकोष प्रारूप का गठन जारी रहता है। डेटा अभी भी परस्पर जुड़ा हुआ है। बहुआयामी संरचना विश्लेषणात्मक आंकड़ाकोष के लिए काफी लोकप्रिय है जो ऑनलाइन विश्लेषणात्मक प्रसंस्करण (ओएलएपी) अनुप्रयोगों का उपयोग करने वाले विश्लेषणात्मक आंकड़ाकोष के लिए बहुआयामी संरचना काफी लोकप्रिय है।<ref name="OBrien"/> विश्लेषणात्मक आंकड़ाकोष इन आंकड़ाकोष का उपयोग जटिल व्यावसायिक प्रश्नों के उत्तर तेजी से देने की उनकी क्षमता है। डेटा को विभिन्न कोणों से देखा जा सकता है, जो अन्य मॉडलों के विपरीत समस्या का व्यापक परिप्रेक्ष्य देता है।<ref>Williams, C., Garza, V.R., Tucker, S, Marcus, A.M. (1994, January 24). Multidimensional models boost viewing options. InfoWorld, 16(4)</ref>
=== एकत्रीकरण ===
=== एकत्रीकरण ===
यह दावा किया गया है कि जटिल प्रश्नों के लिए OLAP क्यूब्स OLTP रिलेशनल डेटा पर समान क्वेरी के लिए आवश्यक समय के लगभग 0.1% में उत्तर दे सकते हैं।<ref>{{cite web
यह दावा किया गया है कि जटिल प्रश्नों के लिए ओएलएपी क्यूब्स ओएलटीपी संबंधात्मक डेटा पर एक ही प्रश्न के लिए आवश्यक समय के लगभग .% में उत्तर दे सकते हैं।<ref>{{cite web
   | author=MicroStrategy, Incorporated
   | author=MicroStrategy, Incorporated
   | year=1995
   | year=1995
Line 92: Line 89:
   |citeseerx=10.1.1.211.7178
   |citeseerx=10.1.1.211.7178
   |s2cid=8125630
   |s2cid=8125630
  }}</ref> OLAP में सबसे महत्वपूर्ण तंत्र जो इस तरह के प्रदर्शन को प्राप्त करने की अनुमति देता है, वह एकत्रीकरण का उपयोग है। [[कुल समारोह]] (या एकत्रीकरण फ़ंक्शन) का उपयोग करके, विशिष्ट आयामों पर ग्रैन्युलैरिटी को बदलकर और इन आयामों के साथ डेटा एकत्र करके तथ्य तालिका से एकत्रीकरण बनाया जाता है। संभावित एकत्रीकरण की संख्या आयाम ग्रैन्युलैरिटी के प्रत्येक संभावित संयोजन द्वारा निर्धारित की जाती है।
  }}</ref> ओएलएपी में सबसे महत्वपूर्ण तंत्र जो इस तरह के प्रदर्शन को प्राप्त करने की अनुमति देता है, वह एकत्रीकरण का उपयोग है। [[कुल समारोह]] (या एकत्रीकरण फ़ंक्शन) का उपयोग करके, विशिष्ट आयामों पर ग्रैन्युलैरिटी को बदलकर और इन आयामों के साथ डेटा एकत्र करके तथ्य टेबल से एकत्रीकरण बनाया जाता है। संभावित एकत्रीकरण की संख्या आयाम ग्रैन्युलैरिटी के प्रत्येक संभावित संयोजन द्वारा निर्धारित की जाती है।


सभी संभावित एकत्रीकरण और आधार डेटा के संयोजन में प्रत्येक क्वेरी के उत्तर होते हैं जिनका उत्तर डेटा से दिया जा सकता है।<ref>{{cite journal
सभी संभावित एकत्रीकरण और आधार डेटा के संयोजन में प्रत्येक प्रश्न के उत्तर होते हैं जिनका उत्तर डेटा से दिया जा सकता है।<ref>{{cite journal
   | last1 = Gray | first1 = Jim
   | last1 = Gray | first1 = Jim
   | author1-link = Jim Gray (computer scientist)
   | author1-link = Jim Gray (computer scientist)
Line 115: Line 112:
   | s2cid = 12502175
   | s2cid = 12502175
  }}</ref>
  }}</ref>
क्योंकि आम तौर पर कई एकत्रीकरण होते हैं जिनकी गणना की जा सकती है, अक्सर केवल एक पूर्व निर्धारित संख्या की ही पूरी तरह से गणना की जाती है; शेष मांग पर हल किए जाते हैं। किस एकत्रीकरण (विचारों) की गणना करने का निर्णय लेने की समस्या को दृश्य चयन समस्या के रूप में जाना जाता है। दृश्य चयन को एकत्रीकरण के चयनित सेट के कुल आकार, आधार डेटा में परिवर्तन से उन्हें अपडेट करने का समय, या दोनों द्वारा विवश किया जा सकता है। दृश्य चयन का उद्देश्य आम तौर पर OLAP प्रश्नों का उत्तर देने के लिए औसत समय को कम करना है, हालांकि कुछ अध्ययन अद्यतन समय को भी कम करते हैं। दृश्य चयन एनपी-पूर्ण है। समस्या के कई दृष्टिकोणों का पता लगाया गया है, जिसमें [[लालची एल्गोरिदम]], यादृच्छिक खोज, आनुवंशिक एल्गोरिदम और A* खोज एल्गोरिदम शामिल हैं।


कुछ एकत्रीकरण कार्यों की गणना पूरे OLAP क्यूब के लिए प्रत्येक सेल के लिए मूल्यों की पूर्व-गणना करके की जा सकती है, और फिर इन समुच्चय को एकत्र करके कोशिकाओं के रोल-अप के लिए एकत्रीकरण की गणना करके, उन्हें कुशलता से गणना करने के लिए बहुआयामी समस्या के लिए एक विभाजन और जीत एल्गोरिथ्म लागू किया जा सकता है।{{sfn|Zhang|2017|p=1}} उदाहरण के लिए, रोल-अप का कुल योग प्रत्येक सेल में सब-सम का योग है। ऐसे कार्य जिन्हें इस तरह से विघटित किया जा सकता है, उन्हें विघटनीय एकत्रीकरण कार्य कहा जाता है, और इसमें शामिल हैं <code>COUNT, MAX, MIN,</code> और <code>SUM</code>, जिसकी गणना प्रत्येक सेल के लिए की जा सकती है और फिर सीधे एकत्रित की जा सकती है; इन्हें स्व-विघटनीय एकत्रीकरण कार्यों के रूप में जाना जाता है।{{sfn|Jesus|Baquero|Almeida|2011|loc=2.1 Decomposable functions, pp. 3–4}} अन्य मामलों में कुल फ़ंक्शन की गणना कोशिकाओं के लिए सहायक संख्याओं की गणना करके, इन सहायक संख्याओं को एकत्र करके और अंत में अंत में समग्र संख्या की गणना करके की जा सकती है; उदाहरणों में शामिल <code>AVERAGE</code> (ट्रैकिंग राशि और गिनती, अंत में विभाजित) और <code>RANGE</code> (अधिकतम और न्यूनतम ट्रैकिंग, अंत में घटाना)अन्य मामलों में पूरे सेट का एक बार में विश्लेषण किए बिना समग्र कार्य की गणना नहीं की जा सकती है, हालांकि कुछ मामलों में सन्निकटन की गणना की जा सकती है; उदाहरणों में शामिल <code>DISTINCT COUNT, MEDIAN,</code> और <code>MODE</code>; उदाहरण के लिए, किसी समुच्चय की माध्यिका उपसमुच्चयों की माध्यिकाओं की माध्यिका नहीं है। इन बाद वाले को OLAP में कुशलता से लागू करना मुश्किल है, क्योंकि उन्हें आधार डेटा पर कुल फ़ंक्शन की गणना करने की आवश्यकता होती है, या तो उन्हें ऑनलाइन (धीमा) कंप्यूटिंग या संभावित रोलआउट (बड़ी जगह) के लिए प्रीकंप्यूटिंग करना पड़ता है।
क्योंकि आमतौर पर कई एकत्रीकरण होते हैं जिनकी गणना की जा सकती है, प्रायः केवल एक पूर्व निर्धारित संख्या की ही पूरी तरह से गणना की जाती है; शेष मांग पर हल किए जाते हैं। किस एकत्रीकरण (विचारों) की गणना करने का निर्णय लेने की समस्या को दृश्य चयन समस्या के रूप में जाना जाता है। दृश्य चयन को एकत्रीकरण के चयनित सेट के कुल आकार, आधार डेटा में परिवर्तन से उन्हें अद्यतन करने का समय, या दोनों द्वारा बाधित किया जा सकता है। दृश्य चयन का उद्देश्य आमतौर पर ओएलएपी प्रश्नों का उत्तर देने के लिए औसत समय को कम करना है, यद्यपि कुछ अध्ययन अद्यतन समय को भी कम करते हैं। दृश्य चयन एनपी-पूर्ण है। समस्या के कई दृष्टिकोणों का पता लगाया गया है, जिसमें [[लालची एल्गोरिदम]], यादृच्छिक खोज, आनुवंशिक एल्गोरिदम और ए* खोज एल्गोरिदम सम्मिलित हैं।
 
प्रत्येक सेल के लिए प्रीकंप्यूटिंग मानों द्वारा पूरे ओएलएपी घन के लिए कुछ एकत्रीकरण कार्यों की गणना की जा सकती है, और फिर इन समुच्चय को एकत्र करके सेल्स के रोल-अप के लिए एकत्रीकरण की गणना की जा सकती है, बहुआयामी समस्या के लिए एक विभाजन और विजय एल्गोरिदम लागू करके उन्हें कुशलतापूर्वक गणना करने के लिए।{{sfn|Zhang|2017|p=1}} उदाहरण के लिए, रोल-अप का कुल योग प्रत्येक सेल में सब-सम का योग है। ऐसे कार्य जिन्हें इस तरह से विघटित किया जा सकता है, उन्हें विघटनीय एकत्रीकरण कार्य कहा जाता है, और इसमें काउंट, मैक्स, एमआईएन और एसयूएम सम्मिलित हैं, जिन्हें प्रत्येक सेल के लिए गणना की जा सकती है और फिर सीधे एकत्रित किया जा सकता है; इन्हें स्व-विघटनीय एकत्रीकरण कार्यों के रूप में जाना जाता है।{{sfn|Jesus|Baquero|Almeida|2011|loc=2.1 Decomposable functions, pp. 3–4}} अन्य मामलों में कुल फ़ंक्शन की गणना सेल्स के लिए सहायक संख्याओं की गणना करके, इन सहायक संख्याओं को एकत्र करके और अंत में अंत में समग्र संख्या की गणना करके की जा सकती है; उदाहरणों में<code>औसत</code> (ट्रैकिंग योग और गिनती, अंत में विभाजित करना) और <code>रेंज</code> (अधिकतम और न्यूनतम ट्रैकिंग, अंत में घटाना) सम्मिलित हैं। अन्य मामलों में एक बार पूरे सेट का में विश्लेषण किए बिना समग्र कार्य की गणना नहीं की जा सकती है, यद्यपि कुछ मामलों में सन्निकटन की गणना की जा सकती है; उदाहरणों में विशिष्ट गणना, माध्य और मोड सम्मिलित हैं ; उदाहरण के लिए, किसी समुच्चय की माध्यिका उपसमुच्चयों की माध्यिकाओं की माध्यिका नहीं है। इन बाद वाले को ओएलएपी में कुशलता से लागू करना कठिन है, क्योंकि उन्हें आधार डेटा पर कुल फ़ंक्शन की गणना करने की आवश्यकता होती है, या तो उन्हें ऑनलाइन (धीमा) कंप्यूटिंग या संभावित रोलआउट (बड़ी जगह) के लिए प्रीकंप्यूटिंग करना पड़ता है।
 
 
 
 
 
 
 
 


== प्रकार ==
OLAP सिस्टम को पारंपरिक रूप से निम्नलिखित टैक्सोनॉमी का उपयोग करके वर्गीकृत किया गया है।<ref name=Pendse2006>{{cite web|url=http://www.olapreport.com/Architectures.htm |title=OLAP architectures |publisher=OLAP Report |author=Nigel Pendse |date=2006-06-27 |access-date=2008-03-17 |url-status=dead |archive-url=https://web.archive.org/web/20080124155954/http://www.olapreport.com/Architectures.htm |archive-date=January 24, 2008 }}</ref>




=== बहुआयामी OLAP (MOLAP) ===
== प्रकार ==
MOLAP (बहु-आयामी ऑनलाइन विश्लेषणात्मक प्रसंस्करण) OLAP का क्लासिक रूप है और इसे कभी-कभी केवल OLAP के रूप में संदर्भित किया जाता है। MOLAP इस डेटा को एक संबंधपरक डेटाबेस के बजाय एक अनुकूलित बहु-आयामी सरणी संग्रहण में संग्रहीत करता है।
ओएलएपी प्रणाली को पारंपरिक रूप से निम्नलिखित टैक्सोनॉमी का उपयोग करके वर्गीकृत किया गया है।<ref name=Pendse2006>{{cite web|url=http://www.olapreport.com/Architectures.htm |title=OLAP architectures |publisher=OLAP Report |author=Nigel Pendse |date=2006-06-27 |access-date=2008-03-17 |url-status=dead |archive-url=https://web.archive.org/web/20080124155954/http://www.olapreport.com/Architectures.htm |archive-date=January 24, 2008 }}</ref>
=== बहुआयामी ओएलएपी (एमओएलएपी) ===
एमओएलएपी (बहु-आयामी ऑनलाइन विश्लेषणात्मक प्रसंस्करण) ओएलएपी का शास्त्रीय रूप है और इसे कभी-कभी केवल ओएलएपी के रूप में संदर्भित किया जाता है। एमओएलएपी इस डेटा को एक संबंधपरक आंकड़ाकोष के बजाय एक अनुकूलित बहु-आयामी सरणी संग्रहण में संग्रहीत करता है।


कुछ MOLAP उपकरणों को व्युत्पन्न डेटा की पूर्व-गणना और भंडारण की आवश्यकता होती है, जैसे कि समेकन - प्रसंस्करण के रूप में जाना जाने वाला ऑपरेशन। ऐसे MOLAP उपकरण आम तौर पर [[डेटा क्यूब]] के रूप में संदर्भित पूर्व-परिकलित डेटा सेट का उपयोग करते हैं। डेटा क्यूब में प्रश्नों की दी गई श्रेणी के सभी संभावित उत्तर होते हैं। नतीजतन, उनके पास प्रश्नों के लिए बहुत तेज़ प्रतिक्रिया होती है। दूसरी ओर, पूर्व-गणना की डिग्री के आधार पर अद्यतन करने में लंबा समय लग सकता है। पूर्व-गणना से वह भी हो सकता है जिसे डेटा विस्फोट के रूप में जाना जाता है।
कुछ एमओएलएपी उपकरणों को व्युत्पन्न डेटा की पूर्व-गणना और भंडारण की आवश्यकता होती है, जैसे समेकन - ऑपरेशन जिसे प्रसंस्करण के रूप में जाना जाता है। ऐसे एमओएलएपी उपकरण आमतौर पर [[डेटा क्यूब|डेटा घन]] के रूप में संदर्भित पूर्व-परिकलित डेटा सेट का उपयोग करते हैं। डेटा घन में प्रश्नों की दी गई श्रेणी के सभी संभावित उत्तर होते हैं। नतीजतन, उनके पास प्रश्नों के लिए बहुत तेज़ प्रतिक्रिया होती है। दूसरी ओर, पूर्व-गणना की डिग्री के आधार पर अद्यतन करने में लंबा समय लग सकता है। पूर्व-गणना से डेटा विस्फोट के रूप में भी जाना जाता है।


अन्य MOLAP उपकरण, विशेष रूप से वे जो [[कार्यात्मक डेटाबेस मॉडल]] को लागू करते हैं, व्युत्पन्न डेटा की पूर्व-गणना नहीं करते हैं, लेकिन पहले से अनुरोध किए गए और कैश में संग्रहीत किए गए के अलावा अन्य सभी गणना मांग पर करते हैं।
अन्य एमओएलएपी उपकरण, विशेष रूप से वे जो [[कार्यात्मक डेटाबेस मॉडल|कार्यात्मक आंकड़ाकोष मॉडल]] को लागू करते हैं, व्युत्पन्न डेटा की पूर्व-गणना नहीं करते हैं, लेकिन उन लोगों के अतिरिक्त मांग पर सभी गणना करते हैं जो पहले अनुरोध किए गए थे और कैश में संग्रहीत किए गए थे।


मोलाप के लाभ
'''एमओएलएपी के लाभ'''
* अनुकूलित भंडारण, बहुआयामी अनुक्रमण और कैशिंग के कारण तेज़ क्वेरी प्रदर्शन।
* अनुकूलित भंडारण, बहुआयामी अनुक्रमण और कैशिंग के कारण तेज़ प्रश्न प्रदर्शन।
* संपीड़न तकनीकों के कारण रिलेशनल डेटाबेस में संग्रहीत डेटा की तुलना में डेटा का छोटा ऑन-डिस्क आकार।
* संपीड़न प्रौद्योगिकीों के कारण संबंधात्मक आंकड़ाकोष में संग्रहीत डेटा की तुलना में डेटा का छोटा ऑन-डिस्क आकार।
* डेटा के उच्च स्तरीय समुच्चय की स्वचालित गणना।
* डेटा के उच्च स्तर के समुच्चय की स्वचालित गणना।
* यह कम आयाम वाले डेटा सेट के लिए बहुत कॉम्पैक्ट है।
* यह कम आयाम वाले डेटा सेट के लिए बहुत संकुचित है।
* ऐरे मॉडल प्राकृतिक अनुक्रमण प्रदान करते हैं।
* सरणी मॉडल प्राकृतिक अनुक्रमण प्रदान करते हैं।
* एकत्रित डेटा की पूर्व-संरचना के माध्यम से प्रभावी डेटा निष्कर्षण प्राप्त किया गया।
* एकत्रित डेटा की पूर्व-संरचना के माध्यम से प्राप्त प्रभावी डेटा निष्कर्षण।


मोलाप के नुकसान
'''एमओएलएपी के नुकसान'''
* कुछ MOLAP सिस्टम में प्रोसेसिंग चरण (डेटा लोड) काफी लंबा हो सकता है, विशेष रूप से बड़े डेटा वॉल्यूम पर। आमतौर पर केवल वृद्धिशील प्रसंस्करण करके इसका उपचार किया जाता है, यानी पूरे डेटा सेट को पुन: संसाधित करने के बजाय केवल उस डेटा को संसाधित करना जो बदल गया है (आमतौर पर नया डेटा)।
* कुछ एमओएलएपी प्रणाली में प्रोसेसिंग चरण (डेटा लोड) काफी लंबा हो सकता है, विशेष रूप से बड़े डेटा वॉल्यूम पर। आमतौर पर केवल वृद्धिशील प्रसंस्करण करके इसका उपचार किया जाता है, यानी पूरे डेटा सेट को पुन: संसाधित करने के बजाय केवल उस डेटा को संसाधित करना जो बदल गया है (आमतौर पर नया डेटा)।
* कुछ MOLAP कार्यप्रणालियाँ डेटा अतिरेक का परिचय देती हैं।
* कुछ एमओएलएपी कार्यप्रणालियाँ डेटा अतिरेक का परिचय देती हैं।


==== उत्पाद ====
==== उत्पाद ====
मोलाप का उपयोग करने वाले वाणिज्यिक उत्पादों के उदाहरण [[कॉग्नोस]] पावरप्ले, [[ओरेकल ओएलएपी]], [[सूक्ष्म रणनीति]], [[Microsoft विश्लेषण सेवाएँ]], [[Essbase]], [[एप्लिक्स]], [[जेडॉक्स]] और [[iCube]] हैं।
एमओएलएपी का उपयोग करने वाले वाणिज्यिक उत्पादों के उदाहरण [[कॉग्नोस]] पावरप्ले, [[ओरेकल ओएलएपी]], [[सूक्ष्म रणनीति]], [[Microsoft विश्लेषण सेवाएँ|माइक्रोसॉफ्ट विश्लेषण सेवाएँ]], [[Essbase|ईएसएसबेस]], [[एप्लिक्स]], [[जेडॉक्स]] और [[iCube|आईसीक्यूब]] हैं।


=== संबंधपरक OLAP (ROLAP) ===
=== संबंधपरक ओएलएपी (आरओएलएपी) ===
ROLAP सीधे संबंधपरक डेटाबेस के साथ काम करता है और इसके लिए पूर्व-गणना की आवश्यकता नहीं होती है। आधार डेटा और आयाम तालिकाओं को संबंधपरक तालिकाओं के रूप में संग्रहीत किया जाता है और एकत्रित जानकारी रखने के लिए नई तालिकाएँ बनाई जाती हैं। यह एक विशेष स्कीमा डिजाइन पर निर्भर करता है। यह कार्यप्रणाली पारंपरिक OLAP की स्लाइसिंग और डाइसिंग कार्यक्षमता का आभास देने के लिए रिलेशनल डेटाबेस में संग्रहीत डेटा में हेरफेर करने पर निर्भर करती है। संक्षेप में, स्लाइसिंग और डाइसिंग की प्रत्येक क्रिया SQL स्टेटमेंट में WHERE क्लॉज जोड़ने के बराबर है। ROLAP उपकरण पूर्व-परिकलित डेटा क्यूब्स का उपयोग नहीं करते हैं, बल्कि प्रश्न का उत्तर देने के लिए आवश्यक डेटा को वापस लाने के लिए क्वेरी को मानक रिलेशनल डेटाबेस और इसकी तालिकाओं में रखते हैं। ROLAP टूल में कोई भी प्रश्न पूछने की क्षमता होती है क्योंकि कार्यप्रणाली क्यूब की सामग्री तक सीमित नहीं है। ROLAP में डेटाबेस में विवरण के निम्नतम स्तर तक ड्रिल-डाउन करने की क्षमता भी है।
आरओएलएपी सीधे संबंधपरक आंकड़ाकोष के साथ काम करता है और इसके लिए पूर्व-गणना की आवश्यकता नहीं होती है। आधार डेटा और आयाम टेबल्स को संबंधपरक टेबल्स के रूप में संग्रहीत किया जाता है और एकत्रित जानकारी रखने के लिए नई टेबल्स बनाई जाती हैं। यह एक विशेष स्कीमा डिजाइन पर निर्भर करता है। यह कार्यप्रणाली पारंपरिक ओएलएपी की स्लाइसिंग और डाइसिंग कार्यक्षमता का आभास देने के लिए संबंधात्मक आंकड़ाकोष में संग्रहीत डेटा में गड़बड़ी करने पर निर्भर करती है। संक्षेप में, स्लाइसिंग और डाइसिंग की प्रत्येक क्रिया एसक्यूएल कथन में "डब्ल्यएचईआरई" खंड जोड़ने के समान है। आरओएलएपी उपकरण पूर्व-परिकलित डेटा क्यूब्स का उपयोग नहीं करते हैं, बल्कि प्रश्न का उत्तर देने के लिए आवश्यक डेटा को वापस लाने के लिए मानक संबंधात्मक आंकड़ाकोष और इसकी टेबल्स में प्रश्न करते हैं। आरओएलएपी उपकरण में कोई भी प्रश्न पूछने की क्षमता होती है क्योंकि कार्यप्रणाली घन की सामग्री तक सीमित नहीं है। आरओएलएपी में आंकड़ाकोष में विवरण के निम्नतम स्तर तक ड्रिल डाउन करने की क्षमता भी रखता है।


जबकि ROLAP एक रिलेशनल डेटाबेस स्रोत का उपयोग करता है, आम तौर पर डेटाबेस को सावधानीपूर्वक ROLAP उपयोग के लिए डिज़ाइन किया जाना चाहिए। एक डेटाबेस जो OLTP के लिए डिज़ाइन किया गया था, वह ROLAP डेटाबेस के रूप में अच्छी तरह से काम नहीं करेगा। इसलिए, ROLAP में अभी भी डेटा की एक अतिरिक्त प्रति बनाना शामिल है। हालाँकि, चूंकि यह एक डेटाबेस है, इसलिए डेटाबेस को भरने के लिए विभिन्न तकनीकों का उपयोग किया जा सकता है।
जबकि आरओएलएपी एक संबंधात्मक आंकड़ाकोष स्रोत का उपयोग करता है, आम तौर पर आंकड़ाकोष को सावधानीपूर्वक आरओएलएपी उपयोग के लिए डिज़ाइन किया जाना चाहिए। एक आंकड़ाकोष जो ओएलटीपी के लिए डिज़ाइन किया गया था, वह आरओएलएपी आंकड़ाकोष के रूप में अच्छी तरह से काम नहीं करेगा। इसलिए, आरओएलएपी में अभी भी डेटा की एक अतिरिक्त प्रति बनाना सम्मिलित है। तथापि, चूंकि यह एक आंकड़ाकोष है, इसलिए आंकड़ाकोष को भरने के लिए विभिन्न प्रौद्योगिकीों का उपयोग किया जा सकता है।


==== रॉलप के फायदे ====
==== आरओएलएपी के फायदे ====
<!--Note to editors:
<!--Note to editors:
Please review the discussion page before making changes to the advantages or disadvantages. Thank you.
Please review the discussion page before making changes to the advantages or disadvantages. Thank you.
-->
-->
* ROLAP को बड़े डेटा वॉल्यूम को संभालने में अधिक स्केलेबल माना जाता है, विशेष रूप से आयाम वाले मॉडल (डेटा वेयरहाउस) बहुत उच्च [[प्रमुखता]] (यानी, लाखों सदस्य) के साथ।
* आरओएलएपी को बड़े डेटा वॉल्यूम को संभालने में अधिक मापनीय माना जाता है, विशेष रूप से बहुत अधिक गणनांक वाले आयाम वाले मॉडल [[प्रमुखता]] (यानी, लाखों सदस्य) के साथ।
* विभिन्न प्रकार के डेटा लोडिंग टूल उपलब्ध हैं, और विशेष डेटा मॉडल के लिए एक्सट्रैक्ट, ट्रांसफ़ॉर्म, लोड (ETL) कोड को फ़ाइन-ट्यून करने की क्षमता के साथ, लोड समय आम तौर पर स्वचालित #Multiआयामी_OLAP_.28MOLAP.29 लोड की तुलना में बहुत कम होता है .
* विभिन्न प्रकार के डेटा लोडिंग उपकरण उपलब्ध होने के साथ, और विशेष डेटा मॉडल में अर्क, परिणत, लोड (ईटीएल) कोड को ठीक करने की क्षमता के साथ, लोड समय आम तौर पर स्वचालित एमओएलएपी लोड की तुलना में बहुत कम होता है .
* डेटा को एक मानक रिलेशनल डेटाबेस में संग्रहीत किया जाता है और इसे किसी भी [[SQL]] रिपोर्टिंग टूल द्वारा एक्सेस किया जा सकता है (टूल को OLAP टूल नहीं होना चाहिए)।
* डेटा को एक मानक संबंधात्मक आंकड़ाकोष में संग्रहीत किया जाता है और इसे किसी भी [[SQL|एसक्यूएल]] प्रतिवेदन उपकरण द्वारा एक्सेस किया जा सकता है (उपकरण को ओएलएपी उपकरण आवश्यकता नहीं है)।
* गैर-एकत्रीकरण योग्य तथ्यों (जैसे, पाठ्य विवरण) को संभालने में ROLAP उपकरण बेहतर हैं। #बहुआयामी_OLAP_.28MOLAP.29 उपकरण इन तत्वों की क्वेरी करते समय धीमे प्रदर्शन से पीड़ित होते हैं।
* आरओएलएपी उपकरण गैर-अस्पष्ट तथ्यों (जैसे, पाठ्य विवरण) को संभालने में सुधार हैं। इन तत्वों को प्रश्न करते समय एमओएलएपी उपकरण धीमे प्रदर्शन से पीड़ित होते हैं।
* मल्टी-डायमेंशनल मॉडल से डेटा स्टोरेज को [[डिकूप्लिंग (इलेक्ट्रॉनिक्स)]] करके, डेटा को सफलतापूर्वक मॉडल करना संभव है जो अन्यथा सख्त डायमेंशनल मॉडल में फिट नहीं होगा।
* बहु-आयामी मॉडल से डेटा भंडारण को [[डिकूप्लिंग (इलेक्ट्रॉनिक्स)]] करके, डेटा को सफलतापूर्वक मॉडल करना संभव है जो अन्यथा सख्त आयामी मॉडल में फिट नहीं होगा।
* ROLAP दृष्टिकोण डेटाबेस प्राधिकरण नियंत्रणों का लाभ उठा सकता है जैसे कि पंक्ति-स्तरीय सुरक्षा, जिससे क्वेरी परिणाम लागू किए गए पूर्व निर्धारित मानदंडों के आधार पर फ़िल्टर किए जाते हैं, उदाहरण के लिए, किसी दिए गए उपयोगकर्ता या उपयोगकर्ताओं के समूह (SQL WHERE क्लॉज) के लिए।
* आरओएलएपी दृष्टिकोण आंकड़ाकोष प्राधिकरण नियंत्रणों जैसे कि पंक्ति-स्तरीय सुरक्षा का लाभ उठा सकता है, जिससे प्रश्न परिणाम लागू किए गए पूर्व निर्धारित मानदंडों के आधार पर फ़िल्टर किए जाते हैं, उदाहरण के लिए, किसी दिए गए उपयोगकर्ता या उपयोगकर्ताओं के समूह ( एसक्यूएल डब्ल्यूएचईआरई खंड) के लिए।


==== ROLAP के नुकसान ====
==== आरओएलएपी के नुकसान ====
<!--Note to editors:
<!--Note to editors:
Please review the discussion page before making changes to the advantages or disadvantages. Thank you.
Please review the discussion page before making changes to the advantages or disadvantages. Thank you.
-->
-->
* उद्योग में इस बात पर सहमति है कि ROLAP टूल का प्रदर्शन [[MOLAP]] टूल की तुलना में धीमा है। हालाँकि, ROLAP प्रदर्शन के बारे में नीचे चर्चा देखें।
* उद्योग में इस बात पर सहमति है कि आरओएलएपी उपकरण का प्रदर्शन [[MOLAP|एमओएलएपी]] उपकरण की तुलना में धीमा है। तथापि, आरओएलएपी प्रदर्शन के बारे में नीचे चर्चा देखें।
* एग्रीगेट टेबल की लोडिंग को कस्टम एक्सट्रैक्ट, ट्रांसफॉर्म, लोड कोड द्वारा प्रबंधित किया जाना चाहिए। ROLAP उपकरण इस कार्य में सहायता नहीं करते हैं। इसका अर्थ है अतिरिक्त विकास समय और समर्थन के लिए अधिक कोड।
* कुल टेबल की लोडिंग कस्टम ईटीएल कोड द्वारा प्रबंधित किया जाना चाहिए। आरओएलएपी उपकरण इस कार्य में सहायता नहीं करते हैं। इसका अर्थ है कि समर्थन करने के लिए अतिरिक्त विकास समय और अधिक कोड।
* जब समग्र तालिकाएँ बनाने का चरण छोड़ दिया जाता है, तो क्वेरी प्रदर्शन तब प्रभावित होता है क्योंकि बड़ी विस्तृत तालिकाओं को क्वेरी करना चाहिए। अतिरिक्त समग्र तालिकाएँ जोड़कर इसका आंशिक रूप से उपचार किया जा सकता है, हालाँकि आयामों/विशेषताओं के सभी संयोजनों के लिए समग्र तालिकाएँ बनाना अभी भी व्यावहारिक नहीं है।
* जब समग्र टेबल्स बनाने का चरण छोड़ दिया जाता है, तो प्रश्न प्रदर्शन तब प्रभावित होता है क्योंकि बड़ी विस्तृत टेबल को प्रश्न करना चाहिए। अतिरिक्त समग्र टेबल्स जोड़कर इसका आंशिक रूप से उपचार किया जा सकता है, तथापि आयामों/विशेषताओं के सभी संयोजनों के लिए समग्र टेबल्स बनाना अभी भी व्यावहारिक नहीं है।
* ROLAP क्वेरी और कैशिंग के लिए सामान्य उद्देश्य डेटाबेस पर निर्भर करता है, और इसलिए MOLAP टूल द्वारा नियोजित कई विशेष तकनीकें उपलब्ध नहीं हैं (जैसे विशेष श्रेणीबद्ध अनुक्रमण)। हालाँकि, आधुनिक ROLAP टूल SQL भाषा में नवीनतम सुधारों का लाभ उठाते हैं जैसे CUBE और ROLLUP ऑपरेटर्स, DB2 क्यूब व्यूज़, साथ ही अन्य SQL OLAP एक्सटेंशन। ये SQL सुधार MOLAP टूल के लाभों को कम कर सकते हैं।
* आरओएलएपी प्रश्न और कैशिंग के लिए सामान्य उद्देश्य आंकड़ाकोष पर निर्भर करता है, और इसलिए एमओएलएपी उपकरण द्वारा नियोजित कई विशेष प्रौद्योगिकीें उपलब्ध नहीं हैं (जैसे विशेष श्रेणीबद्ध अनुक्रमण)। तथापि, आधुनिक आरओएलएपी उपकरण एसक्यूएल भाषा में नवीनतम सुधारों का लाभ उठाते हैं जैसे क्यूब और रोलअप संचालक, डीबी२ घन व्यूज़, साथ ही अन्य एसक्यूएल ओएलएपी एक्सटेंशन। ये एसक्यूएल सुधार एमओएलएपी उपकरण के लाभों को कम कर सकते हैं।
* चूँकि ROLAP उपकरण सभी संगणनाओं के लिए SQL पर निर्भर करते हैं, वे उपयुक्त नहीं होते हैं जब मॉडल गणनाओं पर भारी होता है जो SQL में अच्छी तरह से अनुवाद नहीं करता है। ऐसे मॉडलों के उदाहरणों में बजट, आवंटन, वित्तीय रिपोर्टिंग और अन्य परिदृश्य शामिल हैं।
* चूँकि आरओएलएपी उपकरण सभी संगणनाओं के लिए एसक्यूएल पर भरोसा करते हैं, वे उपयुक्त नहीं होते हैं जब मॉडल गणना पर भारी होता है जो एसक्यूएल में अच्छी तरह से अनुवाद नहीं करता है। ऐसे मॉडलों के उदाहरणों में बजट, आवंटन, वित्तीय प्रतिवेदन और अन्य परिदृश्य सम्मिलित हैं।


==== ROLAP का प्रदर्शन ====
==== आरओएलएपी का प्रदर्शन ====
OLAP उद्योग में ROLAP को आमतौर पर बड़े डेटा वॉल्यूम के लिए स्केल करने में सक्षम माना जाता है, लेकिन #बहुआयामी_OLAP_.28MOLAP.29 के विपरीत धीमी क्वेरी प्रदर्शन से पीड़ित है। [http://www.olapreport.com/survey.htm OLAP सर्वेक्षण], जो सभी प्रमुख OLAP उत्पादों का सबसे बड़ा स्वतंत्र सर्वेक्षण है, जो 6 वर्षों (2001 से 2006) के लिए आयोजित किया जा रहा है, ने लगातार पाया है कि ROLAP का उपयोग करने वाली कंपनियां प्रदर्शन की तुलना में धीमी रिपोर्ट करती हैं जो डेटा की मात्रा को ध्यान में रखते हुए भी MOLAP का उपयोग कर रहे हैं।
ओएलएपी उद्योग में आरओएलएपी को आमतौर पर बड़े डेटा वॉल्यूम के लिए स्केल करने में सक्षम माना जाता है, लेकिन एमओएलएपी के विपरीत धीमी प्रश्न प्रदर्शन से पीड़ित है। [http://www.olapreport.com/survey.htm ओएलएपी सर्वेक्षण], जो सभी प्रमुख ओएलएपी उत्पादों का सबसे बड़ा स्वतंत्र सर्वेक्षण है, जो वर्षों (२००१ से २००६) के लिए आयोजित किया जा रहा है, ने लगातार पाया है कि आरओएलएपी का उपयोग करने वाली कंपनियां प्रदर्शन की तुलना में धीमी रिपोर्ट करती हैं जो डेटा की मात्रा को ध्यान में रखते हुए भी एमओएलएपी का उपयोग कर रहे हैं।


हालांकि, जैसा कि किसी भी सर्वेक्षण के साथ होता है, ऐसे कई सूक्ष्म मुद्दे हैं जिन्हें परिणामों की व्याख्या करते समय ध्यान में रखा जाना चाहिए।
यद्यपि, जैसा कि किसी भी सर्वेक्षण के साथ होता है, ऐसे कई सूक्ष्म मुद्दे हैं जिन्हें परिणामों की व्याख्या करते समय ध्यान में रखा जाना चाहिए।
* सर्वेक्षण से पता चलता है कि ROLAP टूल के पास प्रत्येक कंपनी के #बहुआयामी_OLAP_.28MOLAP.29 टूल की तुलना में 7 गुना अधिक उपयोगकर्ता हैं। अधिक उपयोगकर्ताओं वाले सिस्टम को चरम उपयोग के समय अधिक प्रदर्शन समस्याओं का सामना करना पड़ेगा।
* सर्वेक्षण से पता चलता है कि आरओएलएपी उपकरण के पास प्रत्येक कंपनी के भीतर एमओएलएपी उपकरण की तुलना में गुना अधिक उपयोगकर्ता हैं। अधिक उपयोगकर्ताओं वाले प्रणाली को चरम उपयोग के समय अधिक प्रदर्शन समस्याओं का सामना करना पड़ेगा।
* मॉडल की जटिलता के बारे में भी एक सवाल है, जिसे आयामों की संख्या और गणनाओं की समृद्धि दोनों में मापा जाता है। विश्लेषण किए जा रहे डेटा में इन विविधताओं को नियंत्रित करने के लिए सर्वेक्षण एक अच्छा तरीका प्रदान नहीं करता है।
* मॉडल की जटिलता के बारे में भी एक सवाल है, जिसे आयामों की संख्या और गणनाओं की समृद्धि दोनों में मापा जाता है। विश्लेषण किए जा रहे डेटा में इन विविधताओं को नियंत्रित करने के लिए सर्वेक्षण एक अच्छा तरीका प्रदान नहीं करता है।


==== लचीलेपन का नकारात्मक पक्ष ====
==== लचीलेपन का नकारात्मक पक्ष ====
कुछ कंपनियां ROLAP का चयन करती हैं क्योंकि वे मौजूदा संबंधपरक डेटाबेस तालिकाओं का पुन: उपयोग करने का इरादा रखती हैं - इन तालिकाओं को अक्सर OLAP उपयोग के लिए इष्टतम रूप से डिज़ाइन नहीं किया जाएगा। ROLAP टूल का बेहतर लचीलापन इसे काम करने के लिए इष्टतम डिज़ाइन से कम अनुमति देता है, लेकिन प्रदर्शन प्रभावित होता है। इसके विपरीत #बहुआयामी_OLAP_.28MOLAP.29 उपकरण डेटा को एक इष्टतम OLAP डिज़ाइन में पुनः लोड करने के लिए बाध्य करेंगे।
कुछ कंपनियां आरओएलएपी का चयन करती हैं क्योंकि वे वर्तमान संबंधपरक आंकड़ाकोष टेबल का पुन: उपयोग करने का आशय रखती हैं - ये टेबल को प्रायः ओएलएपी उपयोग के लिए इष्टतम रूप से डिज़ाइन नहीं किया जाएगा। आरओएलएपी उपकरण का बेहतर लचीलापन इसे काम करने के लिए इष्टतम डिज़ाइन से कम अनुमति देता है, लेकिन प्रदर्शन प्रभावित होता है। इसके विपरीत ओएलएपी उपकरण डेटा को एक इष्टतम ओएलएपी डिज़ाइन में पुनः लोड करने के लिए बाध्य करेंगे।


===हाइब्रिड ओलाप (होलाप)===
===हाइब्रिड ओलाप (होलाप)===
अतिरिक्त एक्सट्रेक्ट, ट्रांसफॉर्म, लोड लागत और धीमी क्वेरी प्रदर्शन के बीच अवांछनीय व्यापार-बंद ने सुनिश्चित किया है कि अधिकांश वाणिज्यिक OLAP उपकरण अब एक हाइब्रिड OLAP (HOLAP) दृष्टिकोण का उपयोग करते हैं, जो मॉडल डिज़ाइनर को यह तय करने की अनुमति देता है कि डेटा का कौन सा भाग संग्रहीत किया जाएगा। #बहुआयामी_OLAP_.28MOLAP.29 और ROLAP में कौन सा भाग।
अतिरिक्त ईटीएल लागत लागत और धीमी प्रश्न प्रदर्शन के बीच अवांछनीय व्यापार-बंद ने सुनिश्चित किया है कि अधिकांश वाणिज्यिक ओएलएपी उपकरण अब "हाइब्रिड ओएलएपी" (एचओएलएपी) दृष्टिकोण का उपयोग करते हैं, जो मॉडल डिज़ाइनर को यह तय करने की अनुमति देता है कि डेटा का कौन सा भाग एमओएलएपी में संग्रहीत किया जाएगा और आरओएलएपी में कौन सा हिस्सा।


हाइब्रिड OLAP का गठन करने के लिए पूरे उद्योग में कोई स्पष्ट समझौता नहीं है, सिवाय इसके कि एक डेटाबेस संबंधपरक और विशेष भंडारण के बीच डेटा को विभाजित करेगा।<ref name="ieee_cite">{{cite journal
"हाइब्रिड ओएलएपी" का गठन करने के लिए पूरे उद्योग में कोई स्पष्ट समझौता नहीं है, सिवाय इसके कि एक आंकड़ाकोष संबंधपरक और विशेष भंडारण के बीच डेटा को विभाजित करेगा।<ref name="ieee_cite">{{cite journal
   | last1 = Bach Pedersen | first1 = Torben
   | last1 = Bach Pedersen | first1 = Torben
   | last2 = S. Jensen  
   | last2 = S. Jensen  
Line 195: Line 201:
   | doi = 10.1109/2.970558
   | doi = 10.1109/2.970558
   | first2 = Christian }}
   | first2 = Christian }}
</ref> उदाहरण के लिए, कुछ विक्रेताओं के लिए, एक HOLAP डेटाबेस बड़ी मात्रा में विस्तृत डेटा रखने के लिए रिलेशनल टेबल का उपयोग करेगा, और अधिक-एकत्रित या कम-विस्तृत डेटा की छोटी मात्रा के कम से कम कुछ पहलुओं के लिए विशेष भंडारण का उपयोग करेगा। HOLAP दोनों दृष्टिकोणों की क्षमताओं को जोड़कर #बहुआयामी_OLAP_.28MOLAP.29 और #Relational_OLAP_.28ROLAP.29 की कमियों को संबोधित करता है। HOLAP उपकरण पूर्व-परिकलित क्यूब्स और संबंधपरक डेटा स्रोतों दोनों का उपयोग कर सकते हैं।
</ref> उदाहरण के लिए, कुछ विक्रेताओं के लिए, एक एचओएलएपी आंकड़ाकोष बड़ी मात्रा में विस्तृत डेटा रखने के लिए संबंधात्मक टेबल का उपयोग करेगा, और अधिक-एकत्रित या कम-विस्तृत डेटा की छोटी मात्रा के कम से कम कुछ पहलुओं के लिए विशेष भंडारण का उपयोग करेगा। एचओएलएपी दोनों दृष्टिकोणों की क्षमताओं को जोड़कर एमओएलएपी और आरओएलएपी की कमियों को संबोधित करता है। एचओएलएपी उपकरण पूर्व-परिकलित क्यूब्स और संबंधपरक डेटा स्रोतों दोनों का उपयोग कर सकते हैं।


==== कार्यक्षेत्र विभाजन ====
==== कार्यक्षेत्र विभाजन ====
इस मोड में HOLAP एकत्रीकरण को #बहुआयामी_OLAP_.28MOLAP.29 में तेजी से क्वेरी प्रदर्शन के लिए संग्रहीत करता है, और घन प्रसंस्करण के समय को अनुकूलित करने के लिए #Relational_OLAP_.28ROLAP.29 में विस्तृत डेटा।
इस मोड में एचओएलएपी एकत्रीकरण को एमओएलएपी में तेजी से प्रश्न प्रदर्शन के लिए संग्रहीत करता है, और घन प्रसंस्करण के समय को अनुकूलित करने के लिए आरओएलएपी में विस्तृत डेटा।


==== क्षैतिज विभाजन ====
==== क्षैतिज विभाजन ====
इस मोड में HOLAP डेटा के कुछ हिस्से को संग्रहीत करता है, आमतौर पर नवीनतम डेटा (अर्थात समय आयाम द्वारा विभाजित) को #Multiआयामी_OLAP_.28MOLAP.29 में तेजी से क्वेरी प्रदर्शन के लिए, और पुराने डेटा को #Relational_OLAP_.28ROLAP.29 में संग्रहीत करता है। इसके अलावा, हम कुछ डाइसों को #बहुआयामी_OLAP_.28MOLAP.29 में और अन्य को #Relational_OLAP_.28ROLAP.29 में स्टोर कर सकते हैं, इस तथ्य का लाभ उठाते हुए कि एक बड़े घनाभ में घने और विरल उपक्षेत्र होंगे।<ref>{{cite journal|arxiv=cs/0702143|doi=10.1016/j.ins.2005.09.005 |title=Attribute value reordering for efficient hybrid OLAP |year=2006 |last1=Kaser |first1=Owen |last2=Lemire |first2=Daniel |journal=Information Sciences |volume=176 |issue=16 |pages=2304–2336 }}</ref>
इस मोड में एचओएलएपी डेटा के कुछ हिस्से को संग्रहीत करता है, आमतौर पर नवीनतम डेटा (अर्थात समय आयाम द्वारा विभाजित) को एमओएलएपी में तेजी से प्रश्न प्रदर्शन के लिए, और पुराने डेटा को आरओएलएपी में संग्रहीत करता है। इसके अतिरिक्त, हम कुछ डाइसों को एमओएलएपी में और अन्य को आरओएलएपी में स्टोर कर सकते हैं, इस तथ्य का लाभ उठाते हुए कि एक बड़े घनाभ में घने और विरल उपक्षेत्र होंगे।<ref>{{cite journal|arxiv=cs/0702143|doi=10.1016/j.ins.2005.09.005 |title=Attribute value reordering for efficient hybrid OLAP |year=2006 |last1=Kaser |first1=Owen |last2=Lemire |first2=Daniel |journal=Information Sciences |volume=176 |issue=16 |pages=2304–2336 }}</ref>
 
 
==== उत्पाद ====
==== उत्पाद ====
HOLAP स्टोरेज प्रदान करने वाला पहला उत्पाद [[Holos]] था, लेकिन यह तकनीक अन्य वाणिज्यिक उत्पादों जैसे Microsoft विश्लेषण सेवाओं, Oracle OLAP, MicroStrategy और [[SAP AG]] BI Accelerator में भी उपलब्ध हो गई। हाइब्रिड OLAP दृष्टिकोण ROLAP और MOLAP तकनीक को जोड़ती है, जो ROLAP की अधिक मापनीयता और MOLAP की तेज़ संगणना से लाभान्वित होती है। उदाहरण के लिए, एक HOLAP सर्वर बड़ी मात्रा में विस्तृत डेटा को रिलेशनल डेटाबेस में स्टोर कर सकता है, जबकि एग्रीगेशन को एक अलग MOLAP स्टोर में रखा जाता है। Microsoft SQL Server 7.0 OLAP सेवाएँ हाइब्रिड OLAP सर्वर का समर्थन करती हैं
एचओएलएपी संग्रहण प्रदान करने वाला पहला उत्पाद [[Holos|होलोस]] था, लेकिन यह प्रौद्योगिकी अन्य वाणिज्यिक उत्पादों जैसे माइक्रोसॉफ्ट विश्लेषण सेवाओं, देववाणी ओएलएपी, सूक्ष्म रणनीति और [[SAP AG|एसएपी एजी]] बीआई एक्सेलेरेटर में भी उपलब्ध हो गई। हाइब्रिड ओएलएपी दृष्टिकोण आरओएलएपी और एमओएलएपी प्रौद्योगिकी को जोड़ती है, जो आरओएलएपी की अधिक मापनीयता और एमओएलएपी की तेज़ गणना से लाभान्वित होती है। उदाहरण के लिए, एक एचओएलएपी सर्वर बड़ी मात्रा में विस्तृत डेटा को संबंधात्मक आंकड़ाकोष में संग्रहीत कर सकता है, जबकि एकत्रीकरण को एक अलग एमओएलएपी स्टोर में रखा जाता है। माइक्रोसॉफ्ट एसक्यूएल सर्वर ७.० ओएलएपी सेवाएँ हाइब्रिड ओएलएपी सर्वर का समर्थन करती हैं


=== तुलना ===
=== तुलना ===
प्रत्येक प्रकार के कुछ लाभ हैं, हालांकि प्रदाताओं के बीच लाभों की बारीकियों के बारे में असहमति है।
प्रत्येक प्रकार के कुछ लाभ हैं, यद्यपि प्रदाताओं के बीच लाभों की बारीकियों के बारे में असहमति है।


* कुछ MOLAP कार्यान्वयन डेटाबेस विस्फोट के लिए प्रवण होते हैं, एक ऐसी घटना जिसके कारण MOLAP डेटाबेस द्वारा बड़ी मात्रा में भंडारण स्थान का उपयोग किया जाता है जब कुछ सामान्य स्थितियाँ पूरी होती हैं: उच्च संख्या में आयाम, पूर्व-परिकलित परिणाम और विरल बहुआयामी डेटा।
* कुछ एमओएलएपी कार्यान्वयन आंकड़ाकोष विस्फोट के लिए प्रवण होते हैं, एक ऐसी घटना जिसके कारण एमओएलएपी आंकड़ाकोष द्वारा बड़ी मात्रा में भंडारण स्थान का उपयोग किया जाता है जब कुछ सामान्य स्थितियाँ पूरी होती हैं: उच्च संख्या में आयाम, पूर्व-परिकलित परिणाम और विरल बहुआयामी डेटा।
* MOLAP आमतौर पर विशिष्ट अनुक्रमण और भंडारण अनुकूलन के कारण बेहतर प्रदर्शन प्रदान करता है। MOLAP को ROLAP की तुलना में कम संग्रहण स्थान की आवश्यकता होती है क्योंकि विशिष्ट संग्रहण में आमतौर पर डेटा संपीड़न तकनीकें शामिल होती हैं।<ref name="ieee_cite"/>* ROLAP आमतौर पर अधिक मापनीय है।<ref name="ieee_cite"/>हालांकि, बड़ी मात्रा में पूर्व-प्रसंस्करण कुशलता से लागू करना मुश्किल है, इसलिए इसे अक्सर छोड़ दिया जाता है। ROLAP क्वेरी प्रदर्शन इसलिए जबरदस्त रूप से प्रभावित हो सकता है।
* एमओएलएपी आमतौर पर विशिष्ट अनुक्रमण और भंडारण अनुकूलन के कारण बेहतर प्रदर्शन प्रदान करता है। एमओएलएपी को आरओएलएपी की तुलना में कम संग्रहण स्थान की आवश्यकता होती है क्योंकि विशिष्ट संग्रहण में आमतौर पर डेटा संपीड़न प्रौद्योगिकीें सम्मिलित होती हैं।<ref name="ieee_cite"/> आरओएलएपी आमतौर पर अधिक मापनीय है।<ref name="ieee_cite"/>यद्यपि, बड़ी मात्रा में पूर्व-प्रसंस्करण कुशलता से लागू करना कठिन है, इसलिए इसे प्रायः छोड़ दिया जाता है। आरओएलएपी प्रश्न प्रदर्शन इसलिए जबरदस्त रूप से प्रभावित हो सकता है।
* चूँकि ROLAP गणना करने के लिए डेटाबेस पर अधिक निर्भर करता है, इसलिए इसके द्वारा उपयोग किए जा सकने वाले विशेष कार्यों में इसकी अधिक सीमाएँ हैं।
* चूँकि आरओएलएपी गणना करने के लिए आंकड़ाकोष पर अधिक निर्भर करता है, इसलिए इसके द्वारा उपयोग किए जा सकने वाले विशेष कार्यों में इसकी अधिक सीमाएँ हैं।
* HOLAP ROLAP और MOLAP के सर्वोत्तम मिश्रण का प्रयास करता है। यह आम तौर पर तेजी से प्री-प्रोसेस कर सकता है, अच्छी तरह से स्केल कर सकता है और अच्छे फंक्शन सपोर्ट की पेशकश कर सकता है।
* एचओएलएपी आरओएलएपी और एमओएलएपी के सर्वोत्तम मिश्रण का प्रयास करता है। यह आमतौर पर तेजी से पूर्व प्रक्रमक कर सकता है, अच्छी तरह से स्केल कर सकता है और अच्छे फंक्शन समर्थन की प्रस्ताव कर सकता है।


=== अन्य प्रकार ===
=== अन्य प्रकार ===
निम्नलिखित परिवर्णी शब्द भी कभी-कभी उपयोग किए जाते हैं, हालांकि वे ऊपर के रूप में व्यापक नहीं हैं:
निम्नलिखित परिवर्णी शब्द भी कभी-कभी उपयोग किए जाते हैं, यद्यपि वे ऊपर के रूप में व्यापक नहीं हैं:


* WOLAP - वेब आधारित OLAP
* डब्ल्यूओएलएपी - वेब आधारित ओएलएपी
* DOLAP - [[डेस्कटॉप कंप्यूटर]] OLAP
* डीओएलएपी - [[डेस्कटॉप कंप्यूटर]] ओएलएपी
* [[Rtolap]] - रीयल-टाइम OLAP
* [[Rtolap|आरटीओएलएपी]] - रीयल-टाइम ओएलएपी
* GOLAP - ग्राफ़ OLAP<ref>{{Cite news|url=https://www.datanami.com/2016/12/07/week-graph-entity-analytics/|title=This Week in Graph and Entity Analytics|date=2016-12-07|work=Datanami|access-date=2018-03-08|language=en-US}}</ref><ref>{{Cite news|url=http://www.dbta.com/Editorial/News-Flashes/Cambridge-Semantics-Announces-AnzoGraph-Support-for-Amazon-Neptune-and-Graph-Databases-123280.aspx|title=Cambridge Semantics Announces AnzoGraph Support for Amazon Neptune and Graph Databases|date=2018-02-15|work=Database Trends and Applications|access-date=2018-03-08|language=en-US}}</ref>
* जीओएलएपी - ग्राफ़ ओएलएपी<ref>{{Cite news|url=https://www.datanami.com/2016/12/07/week-graph-entity-analytics/|title=This Week in Graph and Entity Analytics|date=2016-12-07|work=Datanami|access-date=2018-03-08|language=en-US}}</ref><ref>{{Cite news|url=http://www.dbta.com/Editorial/News-Flashes/Cambridge-Semantics-Announces-AnzoGraph-Support-for-Amazon-Neptune-and-Graph-Databases-123280.aspx|title=Cambridge Semantics Announces AnzoGraph Support for Amazon Neptune and Graph Databases|date=2018-02-15|work=Database Trends and Applications|access-date=2018-03-08|language=en-US}}</ref>
* CaseOLAP - संदर्भ-अवगत सिमेंटिक OLAP,<ref name = "textcubes">{{cite web |title=Multi-Dimensional, Phrase-Based Summarization in Text Cubes |url=http://sites.computer.org/debull/A16sept/p74.pdf |last1=Tao|first1=Fangbo | last2=Zhuang|first2=Honglei | last3=Yu|first3=Chi Wang| first4=Qi|last4=Wang | first5=Taylor|last5=Cassidy | first6=Lance|last6=Kaplan | first7=Clare|last7=Voss| last8=Han | first8=Jiawei | date=2016}}</ref> जैव चिकित्सा अनुप्रयोगों के लिए विकसित।<ref>{{Cite journal|last1=Liem|first1=David A.|last2=Murali|first2=Sanjana|last3=Sigdel|first3=Dibakar|last4=Shi|first4=Yu|last5=Wang|first5=Xuan|last6=Shen|first6=Jiaming|last7=Choi|first7=Howard|last8=Caufield|first8=John H.|last9=Wang|first9=Wei|last10=Ping|first10=Peipei|last11=Han|first11=Jiawei|date=2018-10-01|title=Phrase mining of textual data to analyze extracellular matrix protein patterns across cardiovascular disease|journal=American Journal of Physiology. Heart and Circulatory Physiology|volume=315|issue=4|pages=H910–H924|doi=10.1152/ajpheart.00175.2018|issn=1522-1539|pmid=29775406|pmc=6230912}}</ref> CaseOLAP प्लेटफ़ॉर्म में डेटा प्रीप्रोसेसिंग (जैसे, डाउनलोड करना, निष्कर्षण और टेक्स्ट दस्तावेज़ों को पार्स करना), इलास्टिक्स खोज के साथ अनुक्रमण और खोज करना, टेक्स्ट-क्यूब नामक एक कार्यात्मक दस्तावेज़ संरचना बनाना शामिल है,<ref>{{cite book |last1=Lee |first1=S. |last2=Kim |first2=N. |last3=Kim |first3=J. |title=A Multi-dimensional Analysis and Data Cube for Unstructured Text and Social Media |journal=2014 IEEE Fourth International Conference on Big Data and Cloud Computing, Sydney, NSW |date=2014 |pages=761–764 |doi=10.1109/BDCloud.2014.117|isbn=978-1-4799-6719-3 |s2cid=229585 }}</ref><ref>{{cite journal |last1=Ding |first1=B. |last2= Lin|first2= X.C.|last3=Han|first3=J.|last4=Zhai| first4=C.|last5=Srivastava|first5= A.|last6=Oza|first6= N.C.|title=Efficient Keyword-Based Search for Top-K Cells in Text Cube |journal=IEEE Transactions on Knowledge and Data Engineering |date=December 2011 |volume=23 |issue=12 |pages=1795–1810 |doi=10.1109/TKDE.2011.34|s2cid=13960227 }}</ref><ref>{{cite book |last1=Ding |first1=B. |last2=Zhao |first2=B. |last3=Lin |first3=C.X. |last4=Han |first4=J. |last5=Zhai |first5=C. |title=TopCells: Keyword-based search of top-k aggregated documents in text cube |journal=2010 IEEE 26th International Conference on Data Engineering (ICDE 2010), Long Beach, CA |date=2010 |pages=381–384 |doi=10.1109/ICDE.2010.5447838|isbn=978-1-4244-5445-7 |citeseerx=10.1.1.215.7504 |s2cid=14649087 }}</ref><ref>{{cite journal |last1=Lin |first1=C.X. |last2=Ding |first2=B. |last3=Han |first3=K. |last4=Zhu |first4=F. |last5=Zhao |first5=B. |title=Text Cube: Computing IR Measures for Multidimensional Text Database Analysis. |journal=IEEE Data Mining |date=2008 |pages=905–910 |doi=10.1109/icdm.2008.135|isbn=978-0-7695-3502-9 |s2cid=1522480 |url=https://ink.library.smu.edu.sg/sis_research/1008 }}</ref><ref>{{cite book |last1=Liu |first1=X. |last2=Tang |first2=K. |last3=Hancock |first3=J. |last4=Han |first4=J. |last5=Song |first5=M. |last6=Xu |first6=R. |last7=Pokorny |first7=B. |editor1-last=Greenberg |editor1-first=A.M. |editor2-last=Kennedy |editor2-first=W.G. |editor3-last=Bos |editor3-first=N.D. |title=A Text Cube Approach to Human, Social and Cultural Behavior in the Twitter Stream |publisher=Springer |location=Berlin, Heidelberg |isbn=978-3-642-37209-4 |pages=321–330 |edition=7812 |chapter=Social Computing, Behavioral-Cultural Modeling and Prediction. SBP 2013. Lecture Notes in Computer Science|date=2013-03-21 }}</ref> और मुख्य CaseOLAP एल्गोरिथ्म का उपयोग करके उपयोगकर्ता-परिभाषित वाक्यांश-श्रेणी संबंधों को परिमाणित करना।
* कैसिओएलएपी - संदर्भ-जागरूक सिमेंटिक ओएलएपी,<ref name = "textcubes">{{cite web |title=Multi-Dimensional, Phrase-Based Summarization in Text Cubes |url=http://sites.computer.org/debull/A16sept/p74.pdf |last1=Tao|first1=Fangbo | last2=Zhuang|first2=Honglei | last3=Yu|first3=Chi Wang| first4=Qi|last4=Wang | first5=Taylor|last5=Cassidy | first6=Lance|last6=Kaplan | first7=Clare|last7=Voss| last8=Han | first8=Jiawei | date=2016}}</ref> जैव चिकित्सा अनुप्रयोगों के लिए विकसित।<ref>{{Cite journal|last1=Liem|first1=David A.|last2=Murali|first2=Sanjana|last3=Sigdel|first3=Dibakar|last4=Shi|first4=Yu|last5=Wang|first5=Xuan|last6=Shen|first6=Jiaming|last7=Choi|first7=Howard|last8=Caufield|first8=John H.|last9=Wang|first9=Wei|last10=Ping|first10=Peipei|last11=Han|first11=Jiawei|date=2018-10-01|title=Phrase mining of textual data to analyze extracellular matrix protein patterns across cardiovascular disease|journal=American Journal of Physiology. Heart and Circulatory Physiology|volume=315|issue=4|pages=H910–H924|doi=10.1152/ajpheart.00175.2018|issn=1522-1539|pmid=29775406|pmc=6230912}}</ref> कैसिओएलएपी प्लेटफ़ॉर्म में डेटा पूर्वप्रक्रमण (जैसे, डाउनलोड करना, निष्कर्षण और टेक्स्ट दस्तावेज़ों को पार्स करना), इलास्टिक्स खोज के साथ अनुक्रमण और खोज करना, टेक्स्ट-घन नामक एक कार्यात्मक दस्तावेज़ संरचना बनाना सम्मिलित है,<ref>{{cite book |last1=Lee |first1=S. |last2=Kim |first2=N. |last3=Kim |first3=J. |title=A Multi-dimensional Analysis and Data Cube for Unstructured Text and Social Media |journal=2014 IEEE Fourth International Conference on Big Data and Cloud Computing, Sydney, NSW |date=2014 |pages=761–764 |doi=10.1109/BDCloud.2014.117|isbn=978-1-4799-6719-3 |s2cid=229585 }}</ref><ref>{{cite journal |last1=Ding |first1=B. |last2= Lin|first2= X.C.|last3=Han|first3=J.|last4=Zhai| first4=C.|last5=Srivastava|first5= A.|last6=Oza|first6= N.C.|title=Efficient Keyword-Based Search for Top-K Cells in Text Cube |journal=IEEE Transactions on Knowledge and Data Engineering |date=December 2011 |volume=23 |issue=12 |pages=1795–1810 |doi=10.1109/TKDE.2011.34|s2cid=13960227 }}</ref><ref>{{cite book |last1=Ding |first1=B. |last2=Zhao |first2=B. |last3=Lin |first3=C.X. |last4=Han |first4=J. |last5=Zhai |first5=C. |title=TopCells: Keyword-based search of top-k aggregated documents in text cube |journal=2010 IEEE 26th International Conference on Data Engineering (ICDE 2010), Long Beach, CA |date=2010 |pages=381–384 |doi=10.1109/ICDE.2010.5447838|isbn=978-1-4244-5445-7 |citeseerx=10.1.1.215.7504 |s2cid=14649087 }}</ref><ref>{{cite journal |last1=Lin |first1=C.X. |last2=Ding |first2=B. |last3=Han |first3=K. |last4=Zhu |first4=F. |last5=Zhao |first5=B. |title=Text Cube: Computing IR Measures for Multidimensional Text Database Analysis. |journal=IEEE Data Mining |date=2008 |pages=905–910 |doi=10.1109/icdm.2008.135|isbn=978-0-7695-3502-9 |s2cid=1522480 |url=https://ink.library.smu.edu.sg/sis_research/1008 }}</ref><ref>{{cite book |last1=Liu |first1=X. |last2=Tang |first2=K. |last3=Hancock |first3=J. |last4=Han |first4=J. |last5=Song |first5=M. |last6=Xu |first6=R. |last7=Pokorny |first7=B. |editor1-last=Greenberg |editor1-first=A.M. |editor2-last=Kennedy |editor2-first=W.G. |editor3-last=Bos |editor3-first=N.D. |title=A Text Cube Approach to Human, Social and Cultural Behavior in the Twitter Stream |publisher=Springer |location=Berlin, Heidelberg |isbn=978-3-642-37209-4 |pages=321–330 |edition=7812 |chapter=Social Computing, Behavioral-Cultural Modeling and Prediction. SBP 2013. Lecture Notes in Computer Science|date=2013-03-21 }}</ref> और मुख्य कैसिओएलएपी एल्गोरिथ्म का उपयोग करके उपयोगकर्ता-परिभाषित वाक्यांश-श्रेणी संबंधों को परिमाणित करना।
 
== एपीआई और क्वेरी भाषाएं ==
[[संबंधपरक डेटाबेस]] के विपरीत, जिसमें मानक क्वेरी भाषा के रूप में SQL था, और [[ODBC]], [[JDBC]] और [[OLEDB]] जैसे व्यापक [[अप्लिकेशन प्रोग्रामिंग अंतरफलक]] थे, OLAP दुनिया में लंबे समय तक ऐसा कोई एकीकरण नहीं था। [[Microsoft]] से OLAP विनिर्देशन के लिए पहला वास्तविक मानक API OLE DB था जो 1997 में सामने आया और बहुआयामी अभिव्यक्ति क्वेरी भाषा पेश की। कई OLAP वेंडर – सर्वर और क्लाइंट दोनों – ने इसे अपनाया। 2001 में Microsoft और [[Hyperion Solutions Corporation]] ने विश्लेषण विनिर्देश के लिए XML की घोषणा की, जिसे अधिकांश OLAP विक्रेताओं द्वारा समर्थन दिया गया था। चूँकि इसने MDX को क्वेरी भाषा के रूप में भी इस्तेमाल किया, MDX वास्तविक मानक बन गया।<ref>{{cite web|url=http://www.olapreport.com/Comment_APIs.htm |title=Commentary: OLAP API wars |publisher=OLAP Report |author=Nigel Pendse |date=2007-08-23 |access-date=2008-03-18 |url-status=dead |archive-url=https://web.archive.org/web/20080528220113/http://www.olapreport.com/Comment_APIs.htm |archive-date=May 28, 2008 }}</ref>
सितंबर-2011 से Microsoft .NET से Microsoft विश्लेषण सेवाओं OLAP क्यूब्स को क्वेरी करने के लिए [[LINQ]] का उपयोग किया जा सकता है।<ref>{{cite web|url=http://www.agiledesignllc.com/Products|title=SSAS Entity Framework Provider for LINQ to SSAS OLAP}}</ref>


== एपीआई और प्रश्न भाषाएं ==
[[संबंधपरक डेटाबेस|संबंधपरक आंकड़ाकोष]] के विपरीत, जिसमें मानक प्रश्न भाषा के रूप में एसक्यूएल था, और [[ODBC|ओडीबीसी]], [[JDBC|जे]][[ODBC|डीबीसी]] और [[OLEDB|ओएलईडीबी]] जैसे व्यापक [[अप्लिकेशन प्रोग्रामिंग अंतरफलक]] थे, ओएलएपी दुनिया में लंबे समय तक ऐसा कोई एकीकरण नहीं था। [[Microsoft|माइक्रोसॉफ्ट]] से ओएलएपी विनिर्देशन के लिए पहला वास्तविक मानक एपीआई ओएलई डीबी था जो १९९७ में सामने आया और बहुआयामी अभिव्यक्ति प्रश्न भाषा पेश की। कई ओएलएपी वेंडर – सर्वर और क्लाइंट दोनों – ने इसे अपनाया। २००१ में माइक्रोसॉफ्ट और [[Hyperion Solutions Corporation|हाइपरियन सॉल्यूशंस कॉर्पोरेशन]] ने विश्लेषण विनिर्देश के लिए एक्सएमएल की घोषणा की, जिसे अधिकांश ओएलएपी विक्रेताओं द्वारा समर्थन दिया गया था। चूँकि इसने एमडीएक्स को प्रश्न भाषा के रूप में भी उपयोग किया, एमडीएक्स वास्तविक मानक बन गया।<ref>{{cite web|url=http://www.olapreport.com/Comment_APIs.htm |title=Commentary: OLAP API wars |publisher=OLAP Report |author=Nigel Pendse |date=2007-08-23 |access-date=2008-03-18 |url-status=dead |archive-url=https://web.archive.org/web/20080528220113/http://www.olapreport.com/Comment_APIs.htm |archive-date=May 28, 2008 }}</ref>


सितंबर-२०११ से माइक्रोसॉफ्ट .एनएफटी से माइक्रोसॉफ्ट विश्लेषण सेवाओं ओएलएपी क्यूब्स को प्रश्न करने के लिए [[LINQ|एलआईएनक्यू]] का उपयोग किया जा सकता है।<ref>{{cite web|url=http://www.agiledesignllc.com/Products|title=SSAS Entity Framework Provider for LINQ to SSAS OLAP}}</ref>
== उत्पाद ==
== उत्पाद ==


=== इतिहास ===
=== इतिहास ===
OLAP प्रश्नों का प्रदर्शन करने वाला पहला उत्पाद एक्सप्रेस था, जिसे 1970 में जारी किया गया था (और 1995 में [[Oracle Corporation]] द्वारा सूचना संसाधनों से अधिग्रहित किया गया था)।<ref>{{cite web|title=The origins of today's OLAP products |url=http://olapreport.com/origins.htm |publisher=OLAP Report |date=2007-08-23 |author=Nigel Pendse |access-date=November 27, 2007 |url-status=dead |archive-url=https://web.archive.org/web/20071221044811/http://www.olapreport.com/origins.htm |archive-date=December 21, 2007 }}</ref> हालांकि, यह शब्द 1993 तक प्रकट नहीं हुआ था जब इसे एडगर एफ. कॉड द्वारा गढ़ा गया था, जिसे संबंधपरक डेटाबेस के पिता के रूप में वर्णित किया गया है। कॉड का पेपर<ref name=Codd1993/>मार्केटिंग कूप के रूप में एक संक्षिप्त परामर्श कार्य के परिणामस्वरूप कोडड ने पूर्व आर्बर सॉफ्टवेयर (बाद में [[हाइपरियन सॉल्यूशंस]], और 2007 में ओरेकल द्वारा अधिग्रहित) के लिए काम किया। कंपनी ने एक साल पहले अपना OLAP उत्पाद Essbase जारी किया था। नतीजतन, कॉड के ऑनलाइन विश्लेषणात्मक प्रसंस्करण के बारह कानून Essbase के संदर्भ में स्पष्ट थे। इसके बाद कुछ विवाद हुआ और जब कंप्यूटरवर्ल्ड को पता चला कि कॉड को आर्बर द्वारा भुगतान किया गया था, तो उसने लेख को वापस ले लिया। OLAP बाजार ने 1990 के दशक के अंत में दर्जनों वाणिज्यिक उत्पादों के बाजार में आने के साथ मजबूत वृद्धि का अनुभव किया। 1998 में, Microsoft ने अपना पहला OLAP सर्वर जारी किया{{snd}} Microsoft विश्लेषण सेवाएँ, जिसने OLAP तकनीक को व्यापक रूप से अपनाया और इसे मुख्यधारा में लाया।
ओएलएपी प्रश्नों का प्रदर्शन करने वाला पहला उत्पाद एक्सप्रेस था, जिसे १९७० में जारी किया गया था (और १९९५ में [[Oracle Corporation|ओरेकल निगम]] द्वारा सूचना संसाधनों से अधिग्रहित किया गया था)।<ref>{{cite web|title=The origins of today's OLAP products |url=http://olapreport.com/origins.htm |publisher=OLAP Report |date=2007-08-23 |author=Nigel Pendse |access-date=November 27, 2007 |url-status=dead |archive-url=https://web.archive.org/web/20071221044811/http://www.olapreport.com/origins.htm |archive-date=December 21, 2007 }}</ref> यद्यपि, यह शब्द १९९३ तक प्रकट नहीं हुआ था जब इसे एडगर एफ. कॉड द्वारा गढ़ा गया था, जिसे संबंधपरक आंकड़ाकोष के पिता के रूप में वर्णित किया गया है। कॉड का पेपर<ref name=Codd1993/> एक छोटे से परामर्श कार्य के परिणामस्वरूप हुआ, जिसे कॉड ने पूर्व आर्बर सॉफ्टवेयर (बाद में [[हाइपरियन सॉल्यूशंस]], और २००७ में ओरेकल द्वारा अधिग्रहित) एक प्रकार के विपणन तख्तापलट के रूप में लिया था। कंपनी ने एक साल पहले अपना ओएलएपी उत्पाद एस्बेस जारी किया था। नतीजतन, कॉड के ऑनलाइन विश्लेषणात्मक प्रसंस्करण के बारह कानून एस्बेस के संदर्भ में स्पष्ट थे। इसके बाद कुछ विवाद हुआ और जब कंप्यूटरवर्ल्ड को पता चला कि कॉड को आर्बर द्वारा भुगतान किया गया था, तो उसने लेख को वापस ले लिया। ओएलएपी बाजार ने १९९० के दशक के अंत में दर्जनों वाणिज्यिक उत्पादों के बाजार में आने के साथ मजबूत वृद्धि का अनुभव किया। १९९८ में, माइक्रोसॉफ्ट ने अपना पहला ओएलएपी सर्वर जारी किया{{snd}} माइक्रोसॉफ्ट विश्लेषण सेवाएँ, जिसने ओएलएपी प्रौद्योगिकी को व्यापक रूप से अपनाया और इसे मुख्यधारा में लाया।


=== उत्पाद तुलना ===
=== उत्पाद तुलना ===
{{Main|Comparison of OLAP servers}}
{{Main|ओएलएपी सर्वर की तुलना}}


 
=== ओएलएपी ग्राहक ===
=== OLAP ग्राहक ===
ओएलएपी क्लाइंट में एक्सेल, वेब एप्लिकेशन, एसक्यूएल, डैशबोर्ड उपकरण आदि जैसे कई स्प्रेडशीट प्रोग्राम सम्मिलित हैं। कई ग्राहक इंटरएक्टिव डेटा अन्वेषण का समर्थन करते हैं जहां उपयोगकर्ता रुचि के आयामों और उपायों का चयन करते हैं। कुछ आयामों का उपयोग फिल्टर के रूप में किया जाता है (डेटा को स्लाइस करने और डाइस करने के लिए) जबकि अन्य को धुरी टेबल या धुरी चार्ट के अक्ष के रूप में चुना जाता है। उपयोगकर्ता प्रदर्शित दृश्य में एकत्रीकरण स्तर (ड्रिलिंग-डाउन या रोलिंग-अप के लिए) भी भिन्न हो सकते हैं। ग्राहक विभिन्न प्रकार के ग्राफिकल विजेट्स जैसे स्लाइडर्स, भौगोलिक मानचित्र, हीट मैप्स और बहुत कुछ प्रदान कर सकते हैं जिन्हें डैशबोर्ड के रूप में समूहीकृत और समन्वित किया जा सकता है। ओएलएपी सर्वर टेबल की तुलना के विज़ुअलाइज़ेशन कॉलम में ग्राहकों की एक विस्तृत सूची दिखाई देती है।
OLAP क्लाइंट में एक्सेल, वेब एप्लिकेशन, SQL, डैशबोर्ड टूल आदि जैसे कई स्प्रेडशीट प्रोग्राम शामिल हैं। कई क्लाइंट इंटरएक्टिव डेटा एक्सप्लोरेशन का समर्थन करते हैं जहां उपयोगकर्ता रुचि के आयामों और उपायों का चयन करते हैं। कुछ आयामों का उपयोग फिल्टर के रूप में किया जाता है (डेटा को स्लाइस करने और डाइस करने के लिए) जबकि अन्य को पिवट टेबल या पिवट चार्ट के अक्ष के रूप में चुना जाता है। उपयोगकर्ता प्रदर्शित दृश्य में एकत्रीकरण स्तर (ड्रिलिंग-डाउन या रोलिंग-अप के लिए) भी भिन्न हो सकते हैं। ग्राहक विभिन्न प्रकार के ग्राफिकल विजेट्स जैसे स्लाइडर्स, भौगोलिक मानचित्र, हीट मैप्स और बहुत कुछ प्रदान कर सकते हैं जिन्हें डैशबोर्ड के रूप में समूहीकृत और समन्वित किया जा सकता है। OLAP सर्वर टेबल की तुलना के विज़ुअलाइज़ेशन कॉलम में ग्राहकों की एक विस्तृत सूची दिखाई देती है।


=== बाजार संरचना ===
=== बाजार संरचना ===
नीचे 2006 में शीर्ष OLAP विक्रेताओं की सूची दी गई है, जिसमें आंकड़े लाखों [[अमेरिकी डॉलर]] में हैं।<ref>{{cite web
नीचे २००६ में शीर्ष ओएलएपी विक्रेताओं की सूची दी गई है, जिसमें आंकड़े लाखों [[अमेरिकी डॉलर]] में हैं।<ref>{{cite web
   |url=http://www.olapreport.com/market.htm
   |url=http://www.olapreport.com/market.htm
   |title=OLAP Market
   |title=OLAP Market
Line 252: Line 254:
{| class="wikitable sortable"
{| class="wikitable sortable"
|- bgcolor="#CCCCCC" align="center"
|- bgcolor="#CCCCCC" align="center"
! Vendor !! Global Revenue  !! Consolidated company
! विक्रेता !! भूमंडलीय
कर
! समेकित कंपनी
|-
|-
| [[Microsoft Corporation]] || 1,806   || Microsoft
| [[Microsoft Corporation|माइक्रोसॉफ्ट निगम]] || ,८०६   || माइक्रोसॉफ्ट
|-
|-
| [[Hyperion Solutions Corporation]] || 1,077 || Oracle
| [[Hyperion Solutions Corporation|हाइपरियन समाधान निगम]] || ,०७७ || ओरेकल
|-
|-
| [[Cognos]] || 735 || IBM
| [[Cognos|कोगन]] || ७३५ || आईबीएम
|-
|-
| [[Business Objects (company)|Business Objects]] || 416 || SAP
| [[Business Objects (company)|व्यापार ऑब्जेक्ट]] || ४१६ || एसएपी
|-
|-
| [[MicroStrategy]] || 416 || MicroStrategy
| [[MicroStrategy|सूक्ष्म रणनीति]] || ४१६ || सूक्ष्म रणनीति
|-
|-
| [[SAP AG]] || 330 || SAP
| [[SAP AG|एसएपी एजी]] || ३३० || एसएपी
|-
|-
| Cartesis ([[SAP AG|SAP]]) || 210 || SAP
| कार्तीय ([[SAP AG|एसएपी]] ) || २१० || एसएपी
|-
|-
| [[Applix]] || 205 || IBM
| [[ए]][[Applix|प्प्लिक्ष]]|| २०५ || आईबीएम
|-
|-
| [[Infor]] || 199 || Infor
| [[Infor|इन्फोर]] || १९९ || इन्फोर
|-
|-
| [[Oracle Corporation]] || 159 || Oracle
| [[Oracle Corporation|ओरेकल निगम]] || १५९ || ओरेकल
|-
|-
| Others || 152 || Others
| अन्य || १५२ || अन्य
|-
|-
| '''Total''' || '''5,700'''
| '''एकूण''' || ''',७००'''
|}
|}


Line 282: Line 286:
=== ओपन-सोर्स ===
=== ओपन-सोर्स ===
*[[अपाचे पिनोट]] का उपयोग लिंक्डइन, सिस्को, उबेर, स्लैक, स्ट्राइप, डोरडैश, टारगेट, वॉलमार्ट, अमेज़ॅन और माइक्रोसॉफ्ट में कम विलंबता के साथ स्केलेबल रियल टाइम एनालिटिक्स देने के लिए किया जाता है।<ref>{{cite news |last= Yegulalp |first=Serdar |date=2015-06-11 |title= LinkedIn fills another SQL-on-Hadoop niche |url=http://www.infoworld.com/article/2934506/olap/linkedins-pinot-fills-another-sql-on-hadoop-niche.html |magazine=InfoWorld |access-date=2016-11-19}}</ref> यह ऑफ़लाइन डेटा स्रोतों (जैसे हडूप और फ्लैट फ़ाइलें) के साथ-साथ ऑनलाइन स्रोतों (जैसे काफ्का) से डेटा ग्रहण कर सकता है। पिनोट को क्षैतिज रूप से स्केल करने के लिए डिज़ाइन किया गया है।
*[[अपाचे पिनोट]] का उपयोग लिंक्डइन, सिस्को, उबेर, स्लैक, स्ट्राइप, डोरडैश, टारगेट, वॉलमार्ट, अमेज़ॅन और माइक्रोसॉफ्ट में कम विलंबता के साथ स्केलेबल रियल टाइम एनालिटिक्स देने के लिए किया जाता है।<ref>{{cite news |last= Yegulalp |first=Serdar |date=2015-06-11 |title= LinkedIn fills another SQL-on-Hadoop niche |url=http://www.infoworld.com/article/2934506/olap/linkedins-pinot-fills-another-sql-on-hadoop-niche.html |magazine=InfoWorld |access-date=2016-11-19}}</ref> यह ऑफ़लाइन डेटा स्रोतों (जैसे हडूप और फ्लैट फ़ाइलें) के साथ-साथ ऑनलाइन स्रोतों (जैसे काफ्का) से डेटा ग्रहण कर सकता है। पिनोट को क्षैतिज रूप से स्केल करने के लिए डिज़ाइन किया गया है।
* [[मोंड्रियन ओलाप सर्वर]] एक [[खुला स्रोत सॉफ्टवेयर]] है। ओपन-सोर्स OLAP सर्वर [[जावा (प्रोग्रामिंग भाषा)]] में लिखा गया है। यह बहुआयामी अभिव्यक्ति क्वेरी भाषा, विश्लेषण के लिए XML और [https://web.archive.org/web/20150312031439/http://www.olap4j.org/ olap4j] इंटरफ़ेस विनिर्देशों का समर्थन करता है।
* [[मोंड्रियन ओलाप सर्वर]] एक [[खुला स्रोत सॉफ्टवेयर]] है। ओपन-सोर्स ओएलएपी सर्वर [[जावा (प्रोग्रामिंग भाषा)]] में लिखा गया है। यह बहुआयामी अभिव्यक्ति प्रश्न भाषा, विश्लेषण के लिए एक्सएमएल और [https://web.archive.org/web/20150312031439/http://www.olap4j.org/ ओएलएपी4j] इंटरफ़ेस विनिर्देशों का समर्थन करता है।
* [[Apache Druid]] OLAP प्रश्नों के लिए एक लोकप्रिय ओपन-सोर्स वितरित डेटा स्टोर है जिसका उपयोग विभिन्न संगठनों द्वारा बड़े पैमाने पर उत्पादन में किया जाता है।
* [[Apache Druid|अपाचे ड्र्यूड]] ओएलएपी प्रश्नों के लिए एक लोकप्रिय ओपन-सोर्स वितरित डेटा स्टोर है जिसका उपयोग विभिन्न संगठनों द्वारा बड़े पैमाने पर उत्पादन में किया जाता है।
* [[Apache Kylin]] मूल रूप से eBay द्वारा विकसित OLAP प्रश्नों के लिए एक वितरित डेटा स्टोर है।
* [[Apache Kylin|अपाचे]] [[Apache Kylin|किलिन]] मूल रूप से ईबे द्वारा विकसित ओएलएपी प्रश्नों के लिए एक वितरित डेटा स्टोर है।
* क्यूब्स (ओएलएपी सर्वर) एक और हल्का ओपन-सोर्स सॉफ्टवेयर है। अंतर्निहित रोलैप के साथ [[पायथन (प्रोग्रामिंग भाषा)]] में ओएलएपी कार्यक्षमता का ओपन-सोर्स टूलकिट कार्यान्वयन।
* क्यूब्स (ओएलएपी सर्वर) एक और हल्का ओपन-सोर्स सॉफ्टवेयर है। अंतर्निहित रोलैप के साथ [[पायथन (प्रोग्रामिंग भाषा)]] में ओएलएपी कार्यक्षमता का ओपन-सोर्स उपकरणकिट कार्यान्वयन।
* [[क्लिकहाउस]] तेजी से प्रसंस्करण और प्रतिक्रिया समय पर ध्यान केंद्रित करने वाला एक बिल्कुल नया कॉलम उन्मुख डीबीएमएस है।
* [[क्लिकहाउस]] तेजी से प्रसंस्करण और प्रतिक्रिया समय पर ध्यान केंद्रित करने वाला एक बिल्कुल नया कॉलम उन्मुख डीबीएमएस है।
* डकडब<ref>{{Cite web |title=An in-process SQL OLAP database management system |url=https://duckdb.org/ |access-date=2022-12-10 |website=DuckDB |language=en}}</ref> एक इन-प्रोसेस SQL ​​OLAP है<ref>{{Cite web |last=Anand |first=Chillar |date=2022-11-17 |title=Common Crawl On Laptop - Extracting Subset Of Data |url=https://avilpage.com/2022/11/common-crawl-laptop-extract-subset.html |access-date=2022-12-10 |website=Avil Page |language=en}}</ref> डेटाबेस प्रबंधन प्रणाली।
* डकडब<ref>{{Cite web |title=An in-process SQL OLAP database management system |url=https://duckdb.org/ |access-date=2022-12-10 |website=DuckDB |language=en}}</ref> एक इन-प्रोसेस एसक्यूएल ​​ओएलएपी है<ref>{{Cite web |last=Anand |first=Chillar |date=2022-11-17 |title=Common Crawl On Laptop - Extracting Subset Of Data |url=https://avilpage.com/2022/11/common-crawl-laptop-extract-subset.html |access-date=2022-12-10 |website=Avil Page |language=en}}</ref> आंकड़ाकोष प्रबंधन प्रणाली।


== यह भी देखें ==
== यह भी देखें ==
* ओलाप सर्वरों की तुलना
* ओलाप सर्वरों की तुलना
* कार्यात्मक डेटाबेस मॉडल
* कार्यात्मक आंकड़ाकोष मॉडल


==ग्रन्थसूची==
==ग्रन्थसूची==
* {{cite web
* {{cite web
   |url= http://www.daniel-lemire.com/OLAP/
   |url= http://www.daniel-lemire.com/OLAP/
   |title= Data Warehousing and OLAP-A Research-Oriented ग्रन्थसूची
   |title= डेटा वेयरहाउसिंग और ओएलएपी-ए अनुसंधान-उन्मुख ग्रन्थसूची
   |author= Daniel Lemire
   |author= डैनियल लेमिरे
   |date= December 2007
   |date= दिसम्बर २००७
   }}
   }}


* {{cite book
* {{cite book
   | title = OLAP Solutions: Building Multidimensional Information Systems, 2nd Edition
   | title = ओएलएपी समाधान: बहुआयामी सूचना प्रणाली का निर्माण, दूसरा संस्करण
   | publisher = John Wiley & Sons
   | publisher = जॉन विली एंड संस
   | year = 1997
   | year = १९९७
   | isbn = 978-0-471-14931-6
   | isbn = ९७८-०४७१-१४९३१-
   | author = Erik Thomsen. }}
   | author = एरिक थॉमसेन। }}


* Ling Liu and Tamer M. Özsu (Eds.) (2009). "[https://www.springer.com/computer/database+management+&+information+retrieval/book/978-0-387-49616-0 Encyclopedia of Database Systems], 4100 p.&nbsp;60 illus. {{ISBN|978-0-387-49616-0}}.
* लिंग लियू और तामेर एम ओज़सू (एड) (२००९). "[https://www.springer.com/computer/database+management+&+information+retrieval/book/978-0-387-49616-0 Encyclopedia of Database Systems], ४१०० पी. ६० इलस. {{ISBN|९७८-०३८७-४९६१६-}}.




Line 339: Line 343:


{{-}}
{{-}}
{{Data warehouse}}
{{DEFAULTSORT:Online Analytical Processing}}{{Authority control}}
 
{{Authority control}}
 
{{DEFAULTSORT:Online Analytical Processing}}
श्रेणी:ऑनलाइन विश्लेषणात्मक प्रक्रिया
श्रेणी:डेटा प्रबंधन
 


[[Category: Machine Translated Page]]
[[Category:All articles with dead external links|Online Analytical Processing]]
[[Category:Created On 16/02/2023]]
[[Category:Articles with dead external links from April 2020|Online Analytical Processing]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Online Analytical Processing]]
[[Category:Articles with invalid date parameter in template|Online Analytical Processing]]
[[Category:Articles with permanently dead external links|Online Analytical Processing]]
[[Category:CS1 English-language sources (en)]]
[[Category:CS1 errors|Online Analytical Processing]]
[[Category:Created On 16/02/2023|Online Analytical Processing]]
[[Category:Harv and Sfn no-target errors|Online Analytical Processing]]
[[Category:Lua-based templates|Online Analytical Processing]]
[[Category:Machine Translated Page|Online Analytical Processing]]
[[Category:Pages with script errors|Online Analytical Processing]]
[[Category:Short description with empty Wikidata description|Online Analytical Processing]]
[[Category:Templates Vigyan Ready|Online Analytical Processing]]
[[Category:Templates that add a tracking category|Online Analytical Processing]]
[[Category:Templates that generate short descriptions|Online Analytical Processing]]
[[Category:Templates using TemplateData|Online Analytical Processing]]

Latest revision as of 16:42, 9 April 2023

ऑनलाइन विश्लेषणात्मक प्रसंस्करण, या ओएलएपी (/ˈlæp/), कम्प्यूटिंग में बहु-आयामी विश्लेषणात्मक (एमडीए) प्रश्नों का तेजी से उत्तर देने का एक दृष्टिकोण है।[1] ओएलएपी व्यावसायिक बुद्धिमत्ता की व्यापक श्रेणी का हिस्सा है, जिसमें संबंध का आंकड़ाकोष, रिपोर्ट लेखन और डेटा खनन भी सम्मिलित है।[2] ओएलएपी के विशिष्ट अनुप्रयोगों में बिक्री, विपणन, व्यापार प्रतिवेदन, व्यवसाय प्रक्रिया प्रबंधन (बीपीएम) के लिए व्यवसाय प्रतिवेदन सम्मिलित है।[3] बजट और पूर्वानुमान, वित्तीय प्रतिवेदन और इसी तरह के क्षेत्र,कृषि जैसे नए अनुप्रयोगों के साथ।[4]

ओएलएपी शब्द पारंपरिक आंकड़ाकोष शब्द ऑनलाइन लेनदेन प्रसंस्करण (ओएलपी) के लघु संशोधन के रूप में बनाया गया था।[5]

ओएलएपी उपकरण उपयोगकर्ताओं को कई दृष्टिकोणों से बहुआयामी डेटा का सहभागी रूप से विश्लेषण करने में सक्षम बनाता है। ओएलएपी में तीन मूलभूत विश्लेषणात्मक संचालन होते हैं: समेकन (रोल-अप), ड्रिल-डाउन और स्लाइसिंग और डाइसिंग।[6] समेकन में डेटा का एकत्रीकरण सम्मिलित है जिसे एक या अधिक आयामों में संचित और गणना की जा सकती है। उदाहरण के लिए, बिक्री के रुझानों का अनुमान लगाने के लिए सभी बिक्री कार्यालयों को बिक्री विभाग या बिक्री प्रभाग में रोल अप किया जाता है। इसके विपरीत, ड्रिल-डाउन एक ऐसी प्रौद्योगिकी है जो उपयोगकर्ताओं को विवरण के माध्यम से मार्गनिर्देशन करने की अनुमति देती है। उदाहरण के लिए, उपयोगकर्ता व्यक्तिगत उत्पादों द्वारा बिक्री देख सकते हैं जो किसी क्षेत्र की बिक्री बनाते हैं। स्लाइसिंग और डाइसिंग एक ऐसी सुविधा है जिससे उपयोगकर्ता ओएलएपी क्यूब के डेटा के एक विशिष्ट सेट निकाल सकते हैं (स्लाइसिंग) कर सकते हैं और विभिन्न दृष्टिकोणों से स्लाइस देख सकते हैं (डाइकिंग)। इन दृष्टिकोणों को कभी-कभी आयाम कहा जाता है (जैसे विक्रेता द्वारा एक ही बिक्री को देखना, या तिथि के अनुसार, या ग्राहक द्वारा, या उत्पाद द्वारा, या क्षेत्र द्वारा, आदि द्वारा )।

ओएलएपी के लिए विन्यस्त किए गए आंकड़ाकोष एक बहुआयामी डेटा मॉडल का उपयोग करते हैं, जिससे तेजी से निष्पादन समय के साथ जटिल विश्लेषणात्मक और तदर्थ प्रश्नों की अनुमति मिलती है।[7] वे नेविगेशनल आंकड़ाकोष, पदानुक्रमित आंकड़ाकोष और संबंधात्मक आंकड़ाकोष के पहलुओं को उधार लेते हैं।

ओएलएपी आमतौर पर ओएलटीपी (ऑनलाइन लेनदेन प्रसंस्करण) के विपरीत माना जाता है, जो आमतौर पर व्यापार आसूचना या प्रतिवेदन के उद्देश्य के बजाय लेनदेन को संसाधित करने के लिए, बड़ी मात्रा में बहुत कम जटिल प्रश्नों की विशेषता है।। जबकि ओएलएपी प्रणालियों ज्यादातर पढ़ने के लिए अनुकूलित होते हैं, ओएलटीपी को सभी प्रकार के प्रश्नों (पढ़ना, सम्मिलित करना, नवीनीकरण करना और मिटाना) को संसाधित करना होता है।

ओएलएपी प्रणाली का अवलोकन

किसी भी ओएलएपी प्रणाली के मूल में एक ओएलएपी घन होता है (जिसे 'बहुआयामी घन' या अतिविम भी कहा जाता है)। इसमें संख्यात्मक तथ्य होते हैं जिन्हें माप कहा जाता है जिन्हें आयामों (डेटा वेयरहाउस) द्वारा वर्गीकृत किया जाता है। उपायों को अतिविम के चौराहों पर रखा गया है, जो एक सदिश स्थान के रूप में आयामों द्वारा फैला हुआ है। ओएलएपी घन में गड़बड़ी करने के लिए सामान्य अंतरापृष्ठ एक सांचा अंतरापृष्ठ है, जैसे स्प्रेडशीट प्रोग्राम में पिवट टेबल्स, जो आयामों के साथ प्रक्षेपण संचालन करती हैं, जैसे कि एकत्रीकरण या औसत।

घन अधिआंकड़ा आमतौर पर एक संबंधात्मक आंकड़ाकोष में स्टार स्कीमा या स्नोफ्लेक स्कीमा या टेबल के तथ्य नक्षत्र से बनाया जाता है। उपाय तथ्य टेबल में अभिलेख से माप प्राप्त किए जाते हैं और आयाम टेबल से आयाम प्राप्त किए जाते हैं।

प्रत्येक उपाय के बारे में सोचा जा सकता है कि इसमें लेबल का एक सेट है, या इसके साथ जुड़े अधिआंकड़ा हैं। एक आयाम वह है जो इन लेबलों का वर्णन करता है; यह उपाय के बारे में जानकारी प्रदान करता है।

एक सरल उदाहरण एक घन होगा जिसमें माप के रूप में स्टोर की बिक्री और आयाम के रूप में दिनांक/समय सम्मिलित है। प्रत्येक बिक्री में एक दिनांक/समय लेबल होता है जो उस बिक्री के बारे में अधिक वर्णन बताता है।

उदाहरण के लिए:

 बिक्री तथ्य टेबल
+-------------+----------+
| बिक्री_राशि | समय_आईडी |
+-------------+----------+ समय आयाम
| २००८.१०| १२३४ |----+ +---------+----+
+-------------+----------+ | | समय_आईडी | टाइमस्टैम्प |
 | +---------+----+
 +---->| १२३४ | २००८०९०२ १२ः३५ः४३ |
 +---------+----+

बहुआयामी आंकड़ाकोष

बहुआयामी संरचना को "संबंधात्मक मॉडल की भिन्नता के रूप में परिभाषित किया जाता है जो डेटा को व्यवस्थित करने और डेटा के बीच संबंधों को व्यक्त करने के लिए बहुआयामी संरचनाओं का उपयोग करता है"।[6]: १७७  संरचना को क्यूब्स में तोड़ा गया है और क्यूब्स प्रत्येक घन की सीमाओं के भीतर डेटा को स्टोर और एक्सेस करने में सक्षम हैं। "एक बहुआयामी संरचना के भीतर प्रत्येक सेल में इसके प्रत्येक आयाम के साथ तत्वों से संबंधित एकत्रित डेटा होता है" ।[6]: १७८  यहां तक ​​​​कि जब डेटा में गड़बड़ी किया जाता है, तब भी इसका उपयोग करना आसान रहता है और एक कॉम्पैक्ट आंकड़ाकोष प्रारूप का गठन जारी रहता है। डेटा अभी भी परस्पर जुड़ा हुआ है। बहुआयामी संरचना विश्लेषणात्मक आंकड़ाकोष के लिए काफी लोकप्रिय है जो ऑनलाइन विश्लेषणात्मक प्रसंस्करण (ओएलएपी) अनुप्रयोगों का उपयोग करने वाले विश्लेषणात्मक आंकड़ाकोष के लिए बहुआयामी संरचना काफी लोकप्रिय है।[6] विश्लेषणात्मक आंकड़ाकोष इन आंकड़ाकोष का उपयोग जटिल व्यावसायिक प्रश्नों के उत्तर तेजी से देने की उनकी क्षमता है। डेटा को विभिन्न कोणों से देखा जा सकता है, जो अन्य मॉडलों के विपरीत समस्या का व्यापक परिप्रेक्ष्य देता है।[8]

एकत्रीकरण

यह दावा किया गया है कि जटिल प्रश्नों के लिए ओएलएपी क्यूब्स ओएलटीपी संबंधात्मक डेटा पर एक ही प्रश्न के लिए आवश्यक समय के लगभग ०.१% में उत्तर दे सकते हैं।[9][10] ओएलएपी में सबसे महत्वपूर्ण तंत्र जो इस तरह के प्रदर्शन को प्राप्त करने की अनुमति देता है, वह एकत्रीकरण का उपयोग है। कुल समारोह (या एकत्रीकरण फ़ंक्शन) का उपयोग करके, विशिष्ट आयामों पर ग्रैन्युलैरिटी को बदलकर और इन आयामों के साथ डेटा एकत्र करके तथ्य टेबल से एकत्रीकरण बनाया जाता है। संभावित एकत्रीकरण की संख्या आयाम ग्रैन्युलैरिटी के प्रत्येक संभावित संयोजन द्वारा निर्धारित की जाती है।

सभी संभावित एकत्रीकरण और आधार डेटा के संयोजन में प्रत्येक प्रश्न के उत्तर होते हैं जिनका उत्तर डेटा से दिया जा सकता है।[11]

क्योंकि आमतौर पर कई एकत्रीकरण होते हैं जिनकी गणना की जा सकती है, प्रायः केवल एक पूर्व निर्धारित संख्या की ही पूरी तरह से गणना की जाती है; शेष मांग पर हल किए जाते हैं। किस एकत्रीकरण (विचारों) की गणना करने का निर्णय लेने की समस्या को दृश्य चयन समस्या के रूप में जाना जाता है। दृश्य चयन को एकत्रीकरण के चयनित सेट के कुल आकार, आधार डेटा में परिवर्तन से उन्हें अद्यतन करने का समय, या दोनों द्वारा बाधित किया जा सकता है। दृश्य चयन का उद्देश्य आमतौर पर ओएलएपी प्रश्नों का उत्तर देने के लिए औसत समय को कम करना है, यद्यपि कुछ अध्ययन अद्यतन समय को भी कम करते हैं। दृश्य चयन एनपी-पूर्ण है। समस्या के कई दृष्टिकोणों का पता लगाया गया है, जिसमें लालची एल्गोरिदम, यादृच्छिक खोज, आनुवंशिक एल्गोरिदम और ए* खोज एल्गोरिदम सम्मिलित हैं।

प्रत्येक सेल के लिए प्रीकंप्यूटिंग मानों द्वारा पूरे ओएलएपी घन के लिए कुछ एकत्रीकरण कार्यों की गणना की जा सकती है, और फिर इन समुच्चय को एकत्र करके सेल्स के रोल-अप के लिए एकत्रीकरण की गणना की जा सकती है, बहुआयामी समस्या के लिए एक विभाजन और विजय एल्गोरिदम लागू करके उन्हें कुशलतापूर्वक गणना करने के लिए।[12] उदाहरण के लिए, रोल-अप का कुल योग प्रत्येक सेल में सब-सम का योग है। ऐसे कार्य जिन्हें इस तरह से विघटित किया जा सकता है, उन्हें विघटनीय एकत्रीकरण कार्य कहा जाता है, और इसमें काउंट, मैक्स, एमआईएन और एसयूएम सम्मिलित हैं, जिन्हें प्रत्येक सेल के लिए गणना की जा सकती है और फिर सीधे एकत्रित किया जा सकता है; इन्हें स्व-विघटनीय एकत्रीकरण कार्यों के रूप में जाना जाता है।[13] अन्य मामलों में कुल फ़ंक्शन की गणना सेल्स के लिए सहायक संख्याओं की गणना करके, इन सहायक संख्याओं को एकत्र करके और अंत में अंत में समग्र संख्या की गणना करके की जा सकती है; उदाहरणों मेंऔसत (ट्रैकिंग योग और गिनती, अंत में विभाजित करना) और रेंज (अधिकतम और न्यूनतम ट्रैकिंग, अंत में घटाना) सम्मिलित हैं। अन्य मामलों में एक बार पूरे सेट का में विश्लेषण किए बिना समग्र कार्य की गणना नहीं की जा सकती है, यद्यपि कुछ मामलों में सन्निकटन की गणना की जा सकती है; उदाहरणों में विशिष्ट गणना, माध्य और मोड सम्मिलित हैं ; उदाहरण के लिए, किसी समुच्चय की माध्यिका उपसमुच्चयों की माध्यिकाओं की माध्यिका नहीं है। इन बाद वाले को ओएलएपी में कुशलता से लागू करना कठिन है, क्योंकि उन्हें आधार डेटा पर कुल फ़ंक्शन की गणना करने की आवश्यकता होती है, या तो उन्हें ऑनलाइन (धीमा) कंप्यूटिंग या संभावित रोलआउट (बड़ी जगह) के लिए प्रीकंप्यूटिंग करना पड़ता है।






प्रकार

ओएलएपी प्रणाली को पारंपरिक रूप से निम्नलिखित टैक्सोनॉमी का उपयोग करके वर्गीकृत किया गया है।[14]

बहुआयामी ओएलएपी (एमओएलएपी)

एमओएलएपी (बहु-आयामी ऑनलाइन विश्लेषणात्मक प्रसंस्करण) ओएलएपी का शास्त्रीय रूप है और इसे कभी-कभी केवल ओएलएपी के रूप में संदर्भित किया जाता है। एमओएलएपी इस डेटा को एक संबंधपरक आंकड़ाकोष के बजाय एक अनुकूलित बहु-आयामी सरणी संग्रहण में संग्रहीत करता है।

कुछ एमओएलएपी उपकरणों को व्युत्पन्न डेटा की पूर्व-गणना और भंडारण की आवश्यकता होती है, जैसे समेकन - ऑपरेशन जिसे प्रसंस्करण के रूप में जाना जाता है। ऐसे एमओएलएपी उपकरण आमतौर पर डेटा घन के रूप में संदर्भित पूर्व-परिकलित डेटा सेट का उपयोग करते हैं। डेटा घन में प्रश्नों की दी गई श्रेणी के सभी संभावित उत्तर होते हैं। नतीजतन, उनके पास प्रश्नों के लिए बहुत तेज़ प्रतिक्रिया होती है। दूसरी ओर, पूर्व-गणना की डिग्री के आधार पर अद्यतन करने में लंबा समय लग सकता है। पूर्व-गणना से डेटा विस्फोट के रूप में भी जाना जाता है।

अन्य एमओएलएपी उपकरण, विशेष रूप से वे जो कार्यात्मक आंकड़ाकोष मॉडल को लागू करते हैं, व्युत्पन्न डेटा की पूर्व-गणना नहीं करते हैं, लेकिन उन लोगों के अतिरिक्त मांग पर सभी गणना करते हैं जो पहले अनुरोध किए गए थे और कैश में संग्रहीत किए गए थे।

एमओएलएपी के लाभ

  • अनुकूलित भंडारण, बहुआयामी अनुक्रमण और कैशिंग के कारण तेज़ प्रश्न प्रदर्शन।
  • संपीड़न प्रौद्योगिकीों के कारण संबंधात्मक आंकड़ाकोष में संग्रहीत डेटा की तुलना में डेटा का छोटा ऑन-डिस्क आकार।
  • डेटा के उच्च स्तर के समुच्चय की स्वचालित गणना।
  • यह कम आयाम वाले डेटा सेट के लिए बहुत संकुचित है।
  • सरणी मॉडल प्राकृतिक अनुक्रमण प्रदान करते हैं।
  • एकत्रित डेटा की पूर्व-संरचना के माध्यम से प्राप्त प्रभावी डेटा निष्कर्षण।

एमओएलएपी के नुकसान

  • कुछ एमओएलएपी प्रणाली में प्रोसेसिंग चरण (डेटा लोड) काफी लंबा हो सकता है, विशेष रूप से बड़े डेटा वॉल्यूम पर। आमतौर पर केवल वृद्धिशील प्रसंस्करण करके इसका उपचार किया जाता है, यानी पूरे डेटा सेट को पुन: संसाधित करने के बजाय केवल उस डेटा को संसाधित करना जो बदल गया है (आमतौर पर नया डेटा)।
  • कुछ एमओएलएपी कार्यप्रणालियाँ डेटा अतिरेक का परिचय देती हैं।

उत्पाद

एमओएलएपी का उपयोग करने वाले वाणिज्यिक उत्पादों के उदाहरण कॉग्नोस पावरप्ले, ओरेकल ओएलएपी, सूक्ष्म रणनीति, माइक्रोसॉफ्ट विश्लेषण सेवाएँ, ईएसएसबेस, एप्लिक्स, जेडॉक्स और आईसीक्यूब हैं।

संबंधपरक ओएलएपी (आरओएलएपी)

आरओएलएपी सीधे संबंधपरक आंकड़ाकोष के साथ काम करता है और इसके लिए पूर्व-गणना की आवश्यकता नहीं होती है। आधार डेटा और आयाम टेबल्स को संबंधपरक टेबल्स के रूप में संग्रहीत किया जाता है और एकत्रित जानकारी रखने के लिए नई टेबल्स बनाई जाती हैं। यह एक विशेष स्कीमा डिजाइन पर निर्भर करता है। यह कार्यप्रणाली पारंपरिक ओएलएपी की स्लाइसिंग और डाइसिंग कार्यक्षमता का आभास देने के लिए संबंधात्मक आंकड़ाकोष में संग्रहीत डेटा में गड़बड़ी करने पर निर्भर करती है। संक्षेप में, स्लाइसिंग और डाइसिंग की प्रत्येक क्रिया एसक्यूएल कथन में "डब्ल्यएचईआरई" खंड जोड़ने के समान है। आरओएलएपी उपकरण पूर्व-परिकलित डेटा क्यूब्स का उपयोग नहीं करते हैं, बल्कि प्रश्न का उत्तर देने के लिए आवश्यक डेटा को वापस लाने के लिए मानक संबंधात्मक आंकड़ाकोष और इसकी टेबल्स में प्रश्न करते हैं। आरओएलएपी उपकरण में कोई भी प्रश्न पूछने की क्षमता होती है क्योंकि कार्यप्रणाली घन की सामग्री तक सीमित नहीं है। आरओएलएपी में आंकड़ाकोष में विवरण के निम्नतम स्तर तक ड्रिल डाउन करने की क्षमता भी रखता है।

जबकि आरओएलएपी एक संबंधात्मक आंकड़ाकोष स्रोत का उपयोग करता है, आम तौर पर आंकड़ाकोष को सावधानीपूर्वक आरओएलएपी उपयोग के लिए डिज़ाइन किया जाना चाहिए। एक आंकड़ाकोष जो ओएलटीपी के लिए डिज़ाइन किया गया था, वह आरओएलएपी आंकड़ाकोष के रूप में अच्छी तरह से काम नहीं करेगा। इसलिए, आरओएलएपी में अभी भी डेटा की एक अतिरिक्त प्रति बनाना सम्मिलित है। तथापि, चूंकि यह एक आंकड़ाकोष है, इसलिए आंकड़ाकोष को भरने के लिए विभिन्न प्रौद्योगिकीों का उपयोग किया जा सकता है।

आरओएलएपी के फायदे

  • आरओएलएपी को बड़े डेटा वॉल्यूम को संभालने में अधिक मापनीय माना जाता है, विशेष रूप से बहुत अधिक गणनांक वाले आयाम वाले मॉडल प्रमुखता (यानी, लाखों सदस्य) के साथ।
  • विभिन्न प्रकार के डेटा लोडिंग उपकरण उपलब्ध होने के साथ, और विशेष डेटा मॉडल में अर्क, परिणत, लोड (ईटीएल) कोड को ठीक करने की क्षमता के साथ, लोड समय आम तौर पर स्वचालित एमओएलएपी लोड की तुलना में बहुत कम होता है .
  • डेटा को एक मानक संबंधात्मक आंकड़ाकोष में संग्रहीत किया जाता है और इसे किसी भी एसक्यूएल प्रतिवेदन उपकरण द्वारा एक्सेस किया जा सकता है (उपकरण को ओएलएपी उपकरण आवश्यकता नहीं है)।
  • आरओएलएपी उपकरण गैर-अस्पष्ट तथ्यों (जैसे, पाठ्य विवरण) को संभालने में सुधार हैं। इन तत्वों को प्रश्न करते समय एमओएलएपी उपकरण धीमे प्रदर्शन से पीड़ित होते हैं।
  • बहु-आयामी मॉडल से डेटा भंडारण को डिकूप्लिंग (इलेक्ट्रॉनिक्स) करके, डेटा को सफलतापूर्वक मॉडल करना संभव है जो अन्यथा सख्त आयामी मॉडल में फिट नहीं होगा।
  • आरओएलएपी दृष्टिकोण आंकड़ाकोष प्राधिकरण नियंत्रणों जैसे कि पंक्ति-स्तरीय सुरक्षा का लाभ उठा सकता है, जिससे प्रश्न परिणाम लागू किए गए पूर्व निर्धारित मानदंडों के आधार पर फ़िल्टर किए जाते हैं, उदाहरण के लिए, किसी दिए गए उपयोगकर्ता या उपयोगकर्ताओं के समूह ( एसक्यूएल डब्ल्यूएचईआरई खंड) के लिए।

आरओएलएपी के नुकसान

  • उद्योग में इस बात पर सहमति है कि आरओएलएपी उपकरण का प्रदर्शन एमओएलएपी उपकरण की तुलना में धीमा है। तथापि, आरओएलएपी प्रदर्शन के बारे में नीचे चर्चा देखें।
  • कुल टेबल की लोडिंग कस्टम ईटीएल कोड द्वारा प्रबंधित किया जाना चाहिए। आरओएलएपी उपकरण इस कार्य में सहायता नहीं करते हैं। इसका अर्थ है कि समर्थन करने के लिए अतिरिक्त विकास समय और अधिक कोड।
  • जब समग्र टेबल्स बनाने का चरण छोड़ दिया जाता है, तो प्रश्न प्रदर्शन तब प्रभावित होता है क्योंकि बड़ी विस्तृत टेबल को प्रश्न करना चाहिए। अतिरिक्त समग्र टेबल्स जोड़कर इसका आंशिक रूप से उपचार किया जा सकता है, तथापि आयामों/विशेषताओं के सभी संयोजनों के लिए समग्र टेबल्स बनाना अभी भी व्यावहारिक नहीं है।
  • आरओएलएपी प्रश्न और कैशिंग के लिए सामान्य उद्देश्य आंकड़ाकोष पर निर्भर करता है, और इसलिए एमओएलएपी उपकरण द्वारा नियोजित कई विशेष प्रौद्योगिकीें उपलब्ध नहीं हैं (जैसे विशेष श्रेणीबद्ध अनुक्रमण)। तथापि, आधुनिक आरओएलएपी उपकरण एसक्यूएल भाषा में नवीनतम सुधारों का लाभ उठाते हैं जैसे क्यूब और रोलअप संचालक, डीबी२ घन व्यूज़, साथ ही अन्य एसक्यूएल ओएलएपी एक्सटेंशन। ये एसक्यूएल सुधार एमओएलएपी उपकरण के लाभों को कम कर सकते हैं।
  • चूँकि आरओएलएपी उपकरण सभी संगणनाओं के लिए एसक्यूएल पर भरोसा करते हैं, वे उपयुक्त नहीं होते हैं जब मॉडल गणना पर भारी होता है जो एसक्यूएल में अच्छी तरह से अनुवाद नहीं करता है। ऐसे मॉडलों के उदाहरणों में बजट, आवंटन, वित्तीय प्रतिवेदन और अन्य परिदृश्य सम्मिलित हैं।

आरओएलएपी का प्रदर्शन

ओएलएपी उद्योग में आरओएलएपी को आमतौर पर बड़े डेटा वॉल्यूम के लिए स्केल करने में सक्षम माना जाता है, लेकिन एमओएलएपी के विपरीत धीमी प्रश्न प्रदर्शन से पीड़ित है। ओएलएपी सर्वेक्षण, जो सभी प्रमुख ओएलएपी उत्पादों का सबसे बड़ा स्वतंत्र सर्वेक्षण है, जो ६ वर्षों (२००१ से २००६) के लिए आयोजित किया जा रहा है, ने लगातार पाया है कि आरओएलएपी का उपयोग करने वाली कंपनियां प्रदर्शन की तुलना में धीमी रिपोर्ट करती हैं जो डेटा की मात्रा को ध्यान में रखते हुए भी एमओएलएपी का उपयोग कर रहे हैं।

यद्यपि, जैसा कि किसी भी सर्वेक्षण के साथ होता है, ऐसे कई सूक्ष्म मुद्दे हैं जिन्हें परिणामों की व्याख्या करते समय ध्यान में रखा जाना चाहिए।

  • सर्वेक्षण से पता चलता है कि आरओएलएपी उपकरण के पास प्रत्येक कंपनी के भीतर एमओएलएपी उपकरण की तुलना में ७ गुना अधिक उपयोगकर्ता हैं। अधिक उपयोगकर्ताओं वाले प्रणाली को चरम उपयोग के समय अधिक प्रदर्शन समस्याओं का सामना करना पड़ेगा।
  • मॉडल की जटिलता के बारे में भी एक सवाल है, जिसे आयामों की संख्या और गणनाओं की समृद्धि दोनों में मापा जाता है। विश्लेषण किए जा रहे डेटा में इन विविधताओं को नियंत्रित करने के लिए सर्वेक्षण एक अच्छा तरीका प्रदान नहीं करता है।

लचीलेपन का नकारात्मक पक्ष

कुछ कंपनियां आरओएलएपी का चयन करती हैं क्योंकि वे वर्तमान संबंधपरक आंकड़ाकोष टेबल का पुन: उपयोग करने का आशय रखती हैं - ये टेबल को प्रायः ओएलएपी उपयोग के लिए इष्टतम रूप से डिज़ाइन नहीं किया जाएगा। आरओएलएपी उपकरण का बेहतर लचीलापन इसे काम करने के लिए इष्टतम डिज़ाइन से कम अनुमति देता है, लेकिन प्रदर्शन प्रभावित होता है। इसके विपरीत ओएलएपी उपकरण डेटा को एक इष्टतम ओएलएपी डिज़ाइन में पुनः लोड करने के लिए बाध्य करेंगे।

हाइब्रिड ओलाप (होलाप)

अतिरिक्त ईटीएल लागत लागत और धीमी प्रश्न प्रदर्शन के बीच अवांछनीय व्यापार-बंद ने सुनिश्चित किया है कि अधिकांश वाणिज्यिक ओएलएपी उपकरण अब "हाइब्रिड ओएलएपी" (एचओएलएपी) दृष्टिकोण का उपयोग करते हैं, जो मॉडल डिज़ाइनर को यह तय करने की अनुमति देता है कि डेटा का कौन सा भाग एमओएलएपी में संग्रहीत किया जाएगा और आरओएलएपी में कौन सा हिस्सा।

"हाइब्रिड ओएलएपी" का गठन करने के लिए पूरे उद्योग में कोई स्पष्ट समझौता नहीं है, सिवाय इसके कि एक आंकड़ाकोष संबंधपरक और विशेष भंडारण के बीच डेटा को विभाजित करेगा।[15] उदाहरण के लिए, कुछ विक्रेताओं के लिए, एक एचओएलएपी आंकड़ाकोष बड़ी मात्रा में विस्तृत डेटा रखने के लिए संबंधात्मक टेबल का उपयोग करेगा, और अधिक-एकत्रित या कम-विस्तृत डेटा की छोटी मात्रा के कम से कम कुछ पहलुओं के लिए विशेष भंडारण का उपयोग करेगा। एचओएलएपी दोनों दृष्टिकोणों की क्षमताओं को जोड़कर एमओएलएपी और आरओएलएपी की कमियों को संबोधित करता है। एचओएलएपी उपकरण पूर्व-परिकलित क्यूब्स और संबंधपरक डेटा स्रोतों दोनों का उपयोग कर सकते हैं।

कार्यक्षेत्र विभाजन

इस मोड में एचओएलएपी एकत्रीकरण को एमओएलएपी में तेजी से प्रश्न प्रदर्शन के लिए संग्रहीत करता है, और घन प्रसंस्करण के समय को अनुकूलित करने के लिए आरओएलएपी में विस्तृत डेटा।

क्षैतिज विभाजन

इस मोड में एचओएलएपी डेटा के कुछ हिस्से को संग्रहीत करता है, आमतौर पर नवीनतम डेटा (अर्थात समय आयाम द्वारा विभाजित) को एमओएलएपी में तेजी से प्रश्न प्रदर्शन के लिए, और पुराने डेटा को आरओएलएपी में संग्रहीत करता है। इसके अतिरिक्त, हम कुछ डाइसों को एमओएलएपी में और अन्य को आरओएलएपी में स्टोर कर सकते हैं, इस तथ्य का लाभ उठाते हुए कि एक बड़े घनाभ में घने और विरल उपक्षेत्र होंगे।[16]

उत्पाद

एचओएलएपी संग्रहण प्रदान करने वाला पहला उत्पाद होलोस था, लेकिन यह प्रौद्योगिकी अन्य वाणिज्यिक उत्पादों जैसे माइक्रोसॉफ्ट विश्लेषण सेवाओं, देववाणी ओएलएपी, सूक्ष्म रणनीति और एसएपी एजी बीआई एक्सेलेरेटर में भी उपलब्ध हो गई। हाइब्रिड ओएलएपी दृष्टिकोण आरओएलएपी और एमओएलएपी प्रौद्योगिकी को जोड़ती है, जो आरओएलएपी की अधिक मापनीयता और एमओएलएपी की तेज़ गणना से लाभान्वित होती है। उदाहरण के लिए, एक एचओएलएपी सर्वर बड़ी मात्रा में विस्तृत डेटा को संबंधात्मक आंकड़ाकोष में संग्रहीत कर सकता है, जबकि एकत्रीकरण को एक अलग एमओएलएपी स्टोर में रखा जाता है। माइक्रोसॉफ्ट एसक्यूएल सर्वर ७.० ओएलएपी सेवाएँ हाइब्रिड ओएलएपी सर्वर का समर्थन करती हैं

तुलना

प्रत्येक प्रकार के कुछ लाभ हैं, यद्यपि प्रदाताओं के बीच लाभों की बारीकियों के बारे में असहमति है।

  • कुछ एमओएलएपी कार्यान्वयन आंकड़ाकोष विस्फोट के लिए प्रवण होते हैं, एक ऐसी घटना जिसके कारण एमओएलएपी आंकड़ाकोष द्वारा बड़ी मात्रा में भंडारण स्थान का उपयोग किया जाता है जब कुछ सामान्य स्थितियाँ पूरी होती हैं: उच्च संख्या में आयाम, पूर्व-परिकलित परिणाम और विरल बहुआयामी डेटा।
  • एमओएलएपी आमतौर पर विशिष्ट अनुक्रमण और भंडारण अनुकूलन के कारण बेहतर प्रदर्शन प्रदान करता है। एमओएलएपी को आरओएलएपी की तुलना में कम संग्रहण स्थान की आवश्यकता होती है क्योंकि विशिष्ट संग्रहण में आमतौर पर डेटा संपीड़न प्रौद्योगिकीें सम्मिलित होती हैं।[15] आरओएलएपी आमतौर पर अधिक मापनीय है।[15]यद्यपि, बड़ी मात्रा में पूर्व-प्रसंस्करण कुशलता से लागू करना कठिन है, इसलिए इसे प्रायः छोड़ दिया जाता है। आरओएलएपी प्रश्न प्रदर्शन इसलिए जबरदस्त रूप से प्रभावित हो सकता है।
  • चूँकि आरओएलएपी गणना करने के लिए आंकड़ाकोष पर अधिक निर्भर करता है, इसलिए इसके द्वारा उपयोग किए जा सकने वाले विशेष कार्यों में इसकी अधिक सीमाएँ हैं।
  • एचओएलएपी आरओएलएपी और एमओएलएपी के सर्वोत्तम मिश्रण का प्रयास करता है। यह आमतौर पर तेजी से पूर्व प्रक्रमक कर सकता है, अच्छी तरह से स्केल कर सकता है और अच्छे फंक्शन समर्थन की प्रस्ताव कर सकता है।

अन्य प्रकार

निम्नलिखित परिवर्णी शब्द भी कभी-कभी उपयोग किए जाते हैं, यद्यपि वे ऊपर के रूप में व्यापक नहीं हैं:

  • डब्ल्यूओएलएपी - वेब आधारित ओएलएपी
  • डीओएलएपी - डेस्कटॉप कंप्यूटर ओएलएपी
  • आरटीओएलएपी - रीयल-टाइम ओएलएपी
  • जीओएलएपी - ग्राफ़ ओएलएपी[17][18]
  • कैसिओएलएपी - संदर्भ-जागरूक सिमेंटिक ओएलएपी,[19] जैव चिकित्सा अनुप्रयोगों के लिए विकसित।[20] कैसिओएलएपी प्लेटफ़ॉर्म में डेटा पूर्वप्रक्रमण (जैसे, डाउनलोड करना, निष्कर्षण और टेक्स्ट दस्तावेज़ों को पार्स करना), इलास्टिक्स खोज के साथ अनुक्रमण और खोज करना, टेक्स्ट-घन नामक एक कार्यात्मक दस्तावेज़ संरचना बनाना सम्मिलित है,[21][22][23][24][25] और मुख्य कैसिओएलएपी एल्गोरिथ्म का उपयोग करके उपयोगकर्ता-परिभाषित वाक्यांश-श्रेणी संबंधों को परिमाणित करना।

एपीआई और प्रश्न भाषाएं

संबंधपरक आंकड़ाकोष के विपरीत, जिसमें मानक प्रश्न भाषा के रूप में एसक्यूएल था, और ओडीबीसी, जेडीबीसी और ओएलईडीबी जैसे व्यापक अप्लिकेशन प्रोग्रामिंग अंतरफलक थे, ओएलएपी दुनिया में लंबे समय तक ऐसा कोई एकीकरण नहीं था। माइक्रोसॉफ्ट से ओएलएपी विनिर्देशन के लिए पहला वास्तविक मानक एपीआई ओएलई डीबी था जो १९९७ में सामने आया और बहुआयामी अभिव्यक्ति प्रश्न भाषा पेश की। कई ओएलएपी वेंडर – सर्वर और क्लाइंट दोनों – ने इसे अपनाया। २००१ में माइक्रोसॉफ्ट और हाइपरियन सॉल्यूशंस कॉर्पोरेशन ने विश्लेषण विनिर्देश के लिए एक्सएमएल की घोषणा की, जिसे अधिकांश ओएलएपी विक्रेताओं द्वारा समर्थन दिया गया था। चूँकि इसने एमडीएक्स को प्रश्न भाषा के रूप में भी उपयोग किया, एमडीएक्स वास्तविक मानक बन गया।[26]

सितंबर-२०११ से माइक्रोसॉफ्ट .एनएफटी से माइक्रोसॉफ्ट विश्लेषण सेवाओं ओएलएपी क्यूब्स को प्रश्न करने के लिए एलआईएनक्यू का उपयोग किया जा सकता है।[27]

उत्पाद

इतिहास

ओएलएपी प्रश्नों का प्रदर्शन करने वाला पहला उत्पाद एक्सप्रेस था, जिसे १९७० में जारी किया गया था (और १९९५ में ओरेकल निगम द्वारा सूचना संसाधनों से अधिग्रहित किया गया था)।[28] यद्यपि, यह शब्द १९९३ तक प्रकट नहीं हुआ था जब इसे एडगर एफ. कॉड द्वारा गढ़ा गया था, जिसे संबंधपरक आंकड़ाकोष के पिता के रूप में वर्णित किया गया है। कॉड का पेपर[1] एक छोटे से परामर्श कार्य के परिणामस्वरूप हुआ, जिसे कॉड ने पूर्व आर्बर सॉफ्टवेयर (बाद में हाइपरियन सॉल्यूशंस, और २००७ में ओरेकल द्वारा अधिग्रहित) एक प्रकार के विपणन तख्तापलट के रूप में लिया था। कंपनी ने एक साल पहले अपना ओएलएपी उत्पाद एस्बेस जारी किया था। नतीजतन, कॉड के ऑनलाइन विश्लेषणात्मक प्रसंस्करण के बारह कानून एस्बेस के संदर्भ में स्पष्ट थे। इसके बाद कुछ विवाद हुआ और जब कंप्यूटरवर्ल्ड को पता चला कि कॉड को आर्बर द्वारा भुगतान किया गया था, तो उसने लेख को वापस ले लिया। ओएलएपी बाजार ने १९९० के दशक के अंत में दर्जनों वाणिज्यिक उत्पादों के बाजार में आने के साथ मजबूत वृद्धि का अनुभव किया। १९९८ में, माइक्रोसॉफ्ट ने अपना पहला ओएलएपी सर्वर जारी किया – माइक्रोसॉफ्ट विश्लेषण सेवाएँ, जिसने ओएलएपी प्रौद्योगिकी को व्यापक रूप से अपनाया और इसे मुख्यधारा में लाया।

उत्पाद तुलना

ओएलएपी ग्राहक

ओएलएपी क्लाइंट में एक्सेल, वेब एप्लिकेशन, एसक्यूएल, डैशबोर्ड उपकरण आदि जैसे कई स्प्रेडशीट प्रोग्राम सम्मिलित हैं। कई ग्राहक इंटरएक्टिव डेटा अन्वेषण का समर्थन करते हैं जहां उपयोगकर्ता रुचि के आयामों और उपायों का चयन करते हैं। कुछ आयामों का उपयोग फिल्टर के रूप में किया जाता है (डेटा को स्लाइस करने और डाइस करने के लिए) जबकि अन्य को धुरी टेबल या धुरी चार्ट के अक्ष के रूप में चुना जाता है। उपयोगकर्ता प्रदर्शित दृश्य में एकत्रीकरण स्तर (ड्रिलिंग-डाउन या रोलिंग-अप के लिए) भी भिन्न हो सकते हैं। ग्राहक विभिन्न प्रकार के ग्राफिकल विजेट्स जैसे स्लाइडर्स, भौगोलिक मानचित्र, हीट मैप्स और बहुत कुछ प्रदान कर सकते हैं जिन्हें डैशबोर्ड के रूप में समूहीकृत और समन्वित किया जा सकता है। ओएलएपी सर्वर टेबल की तुलना के विज़ुअलाइज़ेशन कॉलम में ग्राहकों की एक विस्तृत सूची दिखाई देती है।

बाजार संरचना

नीचे २००६ में शीर्ष ओएलएपी विक्रेताओं की सूची दी गई है, जिसमें आंकड़े लाखों अमेरिकी डॉलर में हैं।[29]

विक्रेता भूमंडलीय

कर

समेकित कंपनी
माइक्रोसॉफ्ट निगम १,८०६ माइक्रोसॉफ्ट
हाइपरियन समाधान निगम १,०७७ ओरेकल
कोगन ७३५ आईबीएम
व्यापार ऑब्जेक्ट ४१६ एसएपी
सूक्ष्म रणनीति ४१६ सूक्ष्म रणनीति
एसएपी एजी ३३० एसएपी
कार्तीय (एसएपी ) २१० एसएपी
प्प्लिक्ष २०५ आईबीएम
इन्फोर १९९ इन्फोर
ओरेकल निगम १५९ ओरेकल
अन्य १५२ अन्य
एकूण ५,७००


ओपन-सोर्स

  • अपाचे पिनोट का उपयोग लिंक्डइन, सिस्को, उबेर, स्लैक, स्ट्राइप, डोरडैश, टारगेट, वॉलमार्ट, अमेज़ॅन और माइक्रोसॉफ्ट में कम विलंबता के साथ स्केलेबल रियल टाइम एनालिटिक्स देने के लिए किया जाता है।[30] यह ऑफ़लाइन डेटा स्रोतों (जैसे हडूप और फ्लैट फ़ाइलें) के साथ-साथ ऑनलाइन स्रोतों (जैसे काफ्का) से डेटा ग्रहण कर सकता है। पिनोट को क्षैतिज रूप से स्केल करने के लिए डिज़ाइन किया गया है।
  • मोंड्रियन ओलाप सर्वर एक खुला स्रोत सॉफ्टवेयर है। ओपन-सोर्स ओएलएपी सर्वर जावा (प्रोग्रामिंग भाषा) में लिखा गया है। यह बहुआयामी अभिव्यक्ति प्रश्न भाषा, विश्लेषण के लिए एक्सएमएल और ओएलएपी4j इंटरफ़ेस विनिर्देशों का समर्थन करता है।
  • अपाचे ड्र्यूड ओएलएपी प्रश्नों के लिए एक लोकप्रिय ओपन-सोर्स वितरित डेटा स्टोर है जिसका उपयोग विभिन्न संगठनों द्वारा बड़े पैमाने पर उत्पादन में किया जाता है।
  • अपाचे किलिन मूल रूप से ईबे द्वारा विकसित ओएलएपी प्रश्नों के लिए एक वितरित डेटा स्टोर है।
  • क्यूब्स (ओएलएपी सर्वर) एक और हल्का ओपन-सोर्स सॉफ्टवेयर है। अंतर्निहित रोलैप के साथ पायथन (प्रोग्रामिंग भाषा) में ओएलएपी कार्यक्षमता का ओपन-सोर्स उपकरणकिट कार्यान्वयन।
  • क्लिकहाउस तेजी से प्रसंस्करण और प्रतिक्रिया समय पर ध्यान केंद्रित करने वाला एक बिल्कुल नया कॉलम उन्मुख डीबीएमएस है।
  • डकडब[31] एक इन-प्रोसेस एसक्यूएल ​​ओएलएपी है[32] आंकड़ाकोष प्रबंधन प्रणाली।

यह भी देखें

  • ओलाप सर्वरों की तुलना
  • कार्यात्मक आंकड़ाकोष मॉडल

ग्रन्थसूची

  • डैनियल लेमिरे (दिसम्बर २००७). "डेटा वेयरहाउसिंग और ओएलएपी-ए अनुसंधान-उन्मुख ग्रन्थसूची". {{cite web}}: Check date values in: |date= (help)
  • एरिक थॉमसेन। (१९९७). ओएलएपी समाधान: बहुआयामी सूचना प्रणाली का निर्माण, दूसरा संस्करण. जॉन विली एंड संस. ISBN ९७८-०४७१-१४९३१-६. {{cite book}}: Check |isbn= value: invalid character (help); Check date values in: |year= (help)


संदर्भ

उद्धरण

  1. 1.0 1.1 Codd E.F.; Codd S.B. & Salley C.T. (1993). "Providing OLAP (On-line Analytical Processing) to User-Analysts: An IT Mandate" (PDF). Codd & Date, Inc. Retrieved 2008-03-05.[permanent dead link]
  2. Deepak Pareek (2007). Business Intelligence for Telecommunications. CRC Press. pp. 294 pp. ISBN 978-0-8493-8792-0. Retrieved 2008-03-18.
  3. Apostolos Benisis (2010). Business Process Management:A Data Cube To Analyze Business Process Simulation Data For Decision Making. VDM Verlag Dr. Müller e.K. pp. 204 pp. ISBN 978-3-639-22216-6.
  4. Abdullah, Ahsan (November 2009). "Analysis of mealybug incidence on the cotton crop using ADSS-OLAP (Online Analytical Processing) tool". Computers and Electronics in Agriculture. 69 (1): 59–72. doi:10.1016/j.compag.2009.07.003.
  5. "OLAP Council White Paper" (PDF). OLAP Council. 1997. Retrieved 2008-03-18.
  6. 6.0 6.1 6.2 6.3 O'Brien, J. A., & Marakas, G. M. (2009). Management information systems (9th ed.). Boston, MA: McGraw-Hill/Irwin.
  7. Hari Mailvaganam (2007). "Introduction to OLAP – Slice, Dice and Drill!". Data Warehousing Review. Retrieved 2008-03-18.
  8. Williams, C., Garza, V.R., Tucker, S, Marcus, A.M. (1994, January 24). Multidimensional models boost viewing options. InfoWorld, 16(4)
  9. MicroStrategy, Incorporated (1995). "The Case for Relational OLAP" (PDF). Retrieved 2008-03-20.
  10. Surajit Chaudhuri & Umeshwar Dayal (1997). "An overview of data warehousing and OLAP technology". SIGMOD Rec. 26 (1): 65. CiteSeerX 10.1.1.211.7178. doi:10.1145/248603.248616. S2CID 8125630.
  11. Gray, Jim; Chaudhuri, Surajit; Layman, Andrew; Reichart, Don; Venkatrao, Murali; Pellow, Frank; Pirahesh, Hamid (1997). "Data Cube: {A} Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals". J. Data Mining and Knowledge Discovery. 1 (1): 29–53. arXiv:cs/0701155. doi:10.1023/A:1009726021843. S2CID 12502175. Retrieved 2008-03-20.
  12. Zhang 2017, p. 1.
  13. Jesus, Baquero & Almeida 2011, 2.1 Decomposable functions, pp. 3–4.
  14. Nigel Pendse (2006-06-27). "OLAP architectures". OLAP Report. Archived from the original on January 24, 2008. Retrieved 2008-03-17.
  15. 15.0 15.1 15.2 Bach Pedersen, Torben; S. Jensen, Christian (December 2001). "बहुआयामी डेटाबेस प्रौद्योगिकी". Distributed Systems Online. 34 (12): 40–46. doi:10.1109/2.970558. ISSN 0018-9162.
  16. Kaser, Owen; Lemire, Daniel (2006). "Attribute value reordering for efficient hybrid OLAP". Information Sciences. 176 (16): 2304–2336. arXiv:cs/0702143. doi:10.1016/j.ins.2005.09.005.
  17. "This Week in Graph and Entity Analytics". Datanami (in English). 2016-12-07. Retrieved 2018-03-08.
  18. "Cambridge Semantics Announces AnzoGraph Support for Amazon Neptune and Graph Databases". Database Trends and Applications (in English). 2018-02-15. Retrieved 2018-03-08.
  19. Tao, Fangbo; Zhuang, Honglei; Yu, Chi Wang; Wang, Qi; Cassidy, Taylor; Kaplan, Lance; Voss, Clare; Han, Jiawei (2016). "Multi-Dimensional, Phrase-Based Summarization in Text Cubes" (PDF).
  20. Liem, David A.; Murali, Sanjana; Sigdel, Dibakar; Shi, Yu; Wang, Xuan; Shen, Jiaming; Choi, Howard; Caufield, John H.; Wang, Wei; Ping, Peipei; Han, Jiawei (2018-10-01). "Phrase mining of textual data to analyze extracellular matrix protein patterns across cardiovascular disease". American Journal of Physiology. Heart and Circulatory Physiology. 315 (4): H910–H924. doi:10.1152/ajpheart.00175.2018. ISSN 1522-1539. PMC 6230912. PMID 29775406.
  21. Lee, S.; Kim, N.; Kim, J. (2014). A Multi-dimensional Analysis and Data Cube for Unstructured Text and Social Media. pp. 761–764. doi:10.1109/BDCloud.2014.117. ISBN 978-1-4799-6719-3. S2CID 229585. {{cite book}}: |journal= ignored (help)
  22. Ding, B.; Lin, X.C.; Han, J.; Zhai, C.; Srivastava, A.; Oza, N.C. (December 2011). "Efficient Keyword-Based Search for Top-K Cells in Text Cube". IEEE Transactions on Knowledge and Data Engineering. 23 (12): 1795–1810. doi:10.1109/TKDE.2011.34. S2CID 13960227.
  23. Ding, B.; Zhao, B.; Lin, C.X.; Han, J.; Zhai, C. (2010). TopCells: Keyword-based search of top-k aggregated documents in text cube. pp. 381–384. CiteSeerX 10.1.1.215.7504. doi:10.1109/ICDE.2010.5447838. ISBN 978-1-4244-5445-7. S2CID 14649087. {{cite book}}: |journal= ignored (help)
  24. Lin, C.X.; Ding, B.; Han, K.; Zhu, F.; Zhao, B. (2008). "Text Cube: Computing IR Measures for Multidimensional Text Database Analysis". IEEE Data Mining: 905–910. doi:10.1109/icdm.2008.135. ISBN 978-0-7695-3502-9. S2CID 1522480.
  25. Liu, X.; Tang, K.; Hancock, J.; Han, J.; Song, M.; Xu, R.; Pokorny, B. (2013-03-21). "Social Computing, Behavioral-Cultural Modeling and Prediction. SBP 2013. Lecture Notes in Computer Science". In Greenberg, A.M.; Kennedy, W.G.; Bos, N.D. (eds.). A Text Cube Approach to Human, Social and Cultural Behavior in the Twitter Stream (7812 ed.). Berlin, Heidelberg: Springer. pp. 321–330. ISBN 978-3-642-37209-4.
  26. Nigel Pendse (2007-08-23). "Commentary: OLAP API wars". OLAP Report. Archived from the original on May 28, 2008. Retrieved 2008-03-18.
  27. "SSAS Entity Framework Provider for LINQ to SSAS OLAP".
  28. Nigel Pendse (2007-08-23). "The origins of today's OLAP products". OLAP Report. Archived from the original on December 21, 2007. Retrieved November 27, 2007.
  29. Nigel Pendse (2006). "OLAP Market". OLAP Report. Retrieved 2008-03-17.
  30. Yegulalp, Serdar (2015-06-11). "LinkedIn fills another SQL-on-Hadoop niche". InfoWorld. Retrieved 2016-11-19.
  31. "An in-process SQL OLAP database management system". DuckDB (in English). Retrieved 2022-12-10.
  32. Anand, Chillar (2022-11-17). "Common Crawl On Laptop - Extracting Subset Of Data". Avil Page (in English). Retrieved 2022-12-10.


स्रोत