ब्रिंग रेडिकल्स: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Real root of the polynomial x^5+x+a}} | {{short description|Real root of the polynomial x^5+x+a}} | ||
[[File:Bring radical plot.svg|thumb|वास्तविक तर्क के लिए रेडिकल लाओ का प्लॉट]][[बीजगणित]] में, [[वास्तविक संख्या]] a का रेडिकल या अल्ट्रारेडिकल '''लाओ''', [[बहुपद]] का अद्वितीय वास्तविक मूल है<math display="block">x^5 + x + a.</math>एक सम्मिश्र संख्या a का लाओ रेडिकल या तो उपरोक्त बहुपद की पाँच जड़ों में से कोई है (यह इस प्रकार बहु-मूल्यवान है), या एक विशिष्ट रूट, जिसे सामान्यतः इस तरह चुना जाता है कि लाओ रेडिकल वास्तविक a के लिए वास्तविक-मूल्यवान होता है और वास्तविक रेखा के | [[File:Bring radical plot.svg|thumb|वास्तविक तर्क के लिए रेडिकल लाओ का प्लॉट]][[बीजगणित]] में, [[वास्तविक संख्या]] a का रेडिकल या अल्ट्रारेडिकल '''लाओ''', [[बहुपद]] का अद्वितीय वास्तविक मूल है<math display="block">x^5 + x + a.</math>एक सम्मिश्र संख्या a का लाओ रेडिकल या तो उपरोक्त बहुपद की पाँच जड़ों में से कोई है (यह इस प्रकार बहु-मूल्यवान है), या एक विशिष्ट रूट, जिसे सामान्यतः इस तरह चुना जाता है कि लाओ रेडिकल वास्तविक a के लिए वास्तविक-मूल्यवान होता है और वास्तविक रेखा के निकटतम में एक [[विश्लेषणात्मक कार्य]] होता है। चार [[शाखा बिंदु]]ओं के अस्तित्व के कारण, रेडिकल को एक ऐसे फ़ंक्शन के रूप में परिभाषित नहीं किया जा सकता है जो पूरे [[जटिल विमान]] पर निरंतर है, और इसकी निरंतरता के डोमेन को चार शाखा कटौती को बाहर करना चाहिए। | ||
[[जॉर्ज जेरार्ड]] ने दिखाया कि कुछ क्विंटिक समीकरण | [[जॉर्ज जेरार्ड]] ने दिखाया कि कुछ क्विंटिक समीकरण नौवे रूट और लाओ रेडिकल्स का उपयोग करके [[बंद रूप अभिव्यक्ति]] हो सकते हैं, जिसे [[एरलैंड सैमुअल ब्रिंग|एरलैंड सैमुअल लाओ]] द्वारा प्रस्तुत किया गया था। | ||
इस लेख में, लाओ रेडिकल ऑफ ए को निरूपित किया गया है <math>\operatorname{BR}(a).</math> वास्तविक तर्क के लिए, यह स्पर्शोन्मुख व्यवहार के साथ विषम, नीरस रूप से घटता हुआ और असीम है <math>\operatorname{BR}(a) \sim -a^{1/5}</math> बड़े के लिए <math>a</math>. | इस लेख में, लाओ रेडिकल ऑफ ए को निरूपित किया गया है <math>\operatorname{BR}(a).</math> वास्तविक तर्क के लिए, यह स्पर्शोन्मुख व्यवहार के साथ विषम, नीरस रूप से घटता हुआ और असीम है <math>\operatorname{BR}(a) \sim -a^{1/5}</math> बड़े के लिए <math>a</math>. | ||
Line 10: | Line 10: | ||
पांच स्वतंत्र गुणांकों के साथ अपने सबसे सामान्य रूप में सीधे समाधान प्राप्त करने के लिए क्विंटिक समीकरण जबकि मुश्किल है: | पांच स्वतंत्र गुणांकों के साथ अपने सबसे सामान्य रूप में सीधे समाधान प्राप्त करने के लिए क्विंटिक समीकरण जबकि मुश्किल है: | ||
<math display="block">x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0 = 0.</math> | <math display="block">x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0 = 0.</math> | ||
क्विंटिक को हल करने के लिए विकसित किए गए विभिन्न | क्विंटिक को हल करने के लिए विकसित किए गए विभिन्न विधियाँ सामान्यतः स्वतंत्र गुणांकों की संख्या को कम करने के लिए [[चिरनहॉस परिवर्तन]] का उपयोग करके क्विंटिक को सरल बनाने का प्रयास करते हैं। | ||
=== मूल पंचक रूप === | === मूल पंचक रूप === | ||
क्वार्टिक और क्यूबिक शर्तों को हटाकर सामान्य क्विंटिक को प्रिंसिपल क्विंटिक फॉर्म के रूप में जाना जाता है: | क्वार्टिक और क्यूबिक शर्तों को हटाकर सामान्य क्विंटिक को प्रिंसिपल क्विंटिक फॉर्म के रूप में जाना जाता है: | ||
<math display="block">y^5 + c_2y^2 + c_1y + c_0 = 0 \,</math> | <math display="block">y^5 + c_2y^2 + c_1y + c_0 = 0 \,</math> | ||
यदि एक सामान्य पंचक और एक प्रमुख पंचक की जड़ें द्विघात | यदि एक सामान्य पंचक और एक प्रमुख पंचक की जड़ें द्विघात चिरनहॉस परिवर्तन से संबंधित हैं | ||
<math display="block">y_k = x_k^2 + \alpha x_k + \beta \, ,</math> | <math display="block">y_k = x_k^2 + \alpha x_k + \beta \, ,</math> | ||
गुणांक α और β [[परिणामी]] का उपयोग करके, या [[शक्ति योग सममित बहुपद]] और न्यूटन की पहचान के माध्यम से निर्धारित किया जा सकता है। यह α और β में समीकरणों की एक प्रणाली की ओर जाता है जिसमें एक द्विघात और एक रेखीय समीकरण होता है, और समाधान के दो सेटों में से किसी एक का उपयोग प्रिंसिपल क्विंटिक फॉर्म के संबंधित तीन गुणांक प्राप्त करने के लिए किया जा सकता है।<ref name=Adamchik-2003> | गुणांक α और β [[परिणामी]] का उपयोग करके, या [[शक्ति योग सममित बहुपद]] और न्यूटन की पहचान के माध्यम से निर्धारित किया जा सकता है। यह α और β में समीकरणों की एक प्रणाली की ओर जाता है जिसमें एक द्विघात और एक रेखीय समीकरण होता है, और समाधान के दो सेटों में से किसी एक का उपयोग प्रिंसिपल क्विंटिक फॉर्म के संबंधित तीन गुणांक प्राप्त करने के लिए किया जा सकता है।<ref name=Adamchik-2003> | ||
Line 31: | Line 31: | ||
}} | }} | ||
</ref> | </ref> | ||
[[फेलिक्स क्लेन]] के क्विंटिक के समाधान द्वारा इस फॉर्म का उपयोग किया जाता है।<ref name="klein"> | [[फेलिक्स क्लेन]] के क्विंटिक के समाधान द्वारा इस फॉर्म का उपयोग किया जाता है।<ref name="klein"> | ||
{{cite book | {{cite book | ||
Line 41: | Line 42: | ||
}} | }} | ||
</ref> | </ref> | ||
=== लाओ-जेरार्ड सामान्य रूप=== | |||
=== लाओ-जेरार्ड सामान्य रूप | |||
लाओ-जेरार्ड सामान्य रूप का निर्माण करते हुए, क्विंटिक को और भी सरल बनाना और द्विघात शब्द को समाप्त करना संभव है: | लाओ-जेरार्ड सामान्य रूप का निर्माण करते हुए, क्विंटिक को और भी सरल बनाना और द्विघात शब्द को समाप्त करना संभव है: | ||
<math display="block">v^5 + d_1v + d_0 = 0.</math> | <math display="block">v^5 + d_1v + d_0 = 0.</math> | ||
क्यूबिक परिवर्तन के साथ फिर से शक्ति-योग सूत्रों का उपयोग करना, जैसा कि [[Ehrenfried Walther von Tschirnhaus|चिरनहॉस]] ने कोशिश की, काम नहीं करता है, क्योंकि समीकरणों की परिणामी प्रणाली के परिणामस्वरूप छठी-डिग्री समीकरण होती है। लेकिन 1796 में ब्रिंग ने ब्रिंग-जेरार्ड क्विंटिक के मूल क्विंटिक की जड़ों से संबंधित करने के लिए एक क्वार्टिक [[Ehrenfried Walther von Tschirnhaus|चिरनहॉस]] परिवर्तन का उपयोग करके इसके चारों ओर एक रास्ता खोजा: | |||
<math display="block">v_k = y^4_k + \alpha y^3_k + \beta y^2_k + \gamma y_k + \delta\, .</math> | <math display="block">v_k = y^4_k + \alpha y^3_k + \beta y^2_k + \gamma y_k + \delta\, .</math> | ||
इस चौथे क्रम के परिवर्तन द्वारा प्रदान किया गया अतिरिक्त पैरामीटर अन्य मापदंडों की डिग्री को कम करने के लिए लाओ को अनुमति देता है। यह छह अज्ञात में पाँच समीकरणों की एक प्रणाली की ओर जाता है, जिसके लिए एक घन और एक द्विघात समीकरण के समाधान की आवश्यकता होती है। इस पद्धति की खोज भी जॉर्ज जेरार्ड ने 1852 में की थी।<ref> | इस चौथे क्रम के परिवर्तन द्वारा प्रदान किया गया अतिरिक्त पैरामीटर अन्य मापदंडों की डिग्री को कम करने के लिए लाओ को अनुमति देता है। यह छह अज्ञात में पाँच समीकरणों की एक प्रणाली की ओर जाता है, जिसके लिए एक घन और एक द्विघात समीकरण के समाधान की आवश्यकता होती है। इस पद्धति की खोज भी जॉर्ज जेरार्ड ने 1852 में की थी।<ref> | ||
Line 57: | Line 56: | ||
| url = https://archive.org/details/essayonresolutio00jerrrich | | url = https://archive.org/details/essayonresolutio00jerrrich | ||
}} | }} | ||
</ref> | </ref> लेकिन यह संभावना है कि वह इस क्षेत्र में लाओ के पिछले काम से अनजान थे।<ref name=Adamchik-2003/>{{rp|style=ama|pp=92–93}} गणित जैसे [[कंप्यूटर बीजगणित]] पैकेज का उपयोग करके पूर्ण परिवर्तन आसानी से पूरा किया जा सकता है<ref name="qmathematica"> | ||
लेकिन यह संभावना है कि वह इस क्षेत्र में लाओ के पिछले काम से अनजान थे।<ref name=Adamchik-2003/>{{rp|style=ama|pp=92–93}} गणित जैसे [[कंप्यूटर बीजगणित]] पैकेज का उपयोग करके पूर्ण परिवर्तन आसानी से पूरा किया जा सकता है<ref name="qmathematica"> | |||
{{cite web | {{cite web | ||
|title=Solving the Quintic with Mathematica | |title=Solving the Quintic with Mathematica | ||
Line 67: | Line 65: | ||
|archive-date=1 July 2014 | |archive-date=1 July 2014 | ||
}} | }} | ||
</ref> | </ref> या [[मेपल (सॉफ्टवेयर)]]।<ref name="drociuk"> | ||
या [[मेपल (सॉफ्टवेयर)]]।<ref name="drociuk"> | |||
{{cite arXiv | {{cite arXiv | ||
| last = Drociuk | first = Richard J. | | last = Drociuk | first = Richard J. | ||
Line 75: | Line 72: | ||
| eprint = math.GM/0005026 | | eprint = math.GM/0005026 | ||
}} | }} | ||
</ref> | </ref> जैसा कि इन परिवर्तनों की जटिलता से उम्मीद की जा सकती है, परिणामी भाव बहुत अधिक हो सकते हैं, खासकर जब कम डिग्री समीकरणों के लिए रेडिकल में समाधान की तुलना में, प्रतीकात्मक गुणांक के साथ एक सामान्य क्विंटिक के लिए कई मेगाबाइट भंडारण लेते हैं।<ref name="qmathematica"/> | ||
जैसा कि इन परिवर्तनों की जटिलता से उम्मीद की जा सकती है, परिणामी भाव बहुत अधिक हो सकते हैं, खासकर जब कम डिग्री समीकरणों के लिए रेडिकल में समाधान की तुलना में, प्रतीकात्मक गुणांक के साथ एक सामान्य क्विंटिक के लिए कई मेगाबाइट भंडारण लेते हैं।<ref name="qmathematica"/> | |||
एक बीजगणितीय कार्य के रूप में माना जाता है, | इसे एक बीजगणितीय कार्य के रूप में माना जाता है, इसके समाधान हैं | ||
<math display="block">v^5+d_1v+d_0 = 0</math> | <math display="block">v^5+d_1v+d_0 = 0</math> | ||
दो चर | दो चर सम्मलित हैं, डी<sub>1</sub> और डी<sub>0,</sub> चूँकि, कमी वास्तव में एक चर के बीजगणितीय कार्य के लिए है, जो रेडिकल में एक समाधान के समान है, क्योंकि हम लाओ-जेरार्ड फॉर्म को और कम कर सकते हैं। यदि हम उदाहरण के लिए सेट करते हैं | ||
<math display="block">z = {v \over \sqrt[4]{-d_1}}</math> | <math display="block">z = {v \over \sqrt[4]{-d_1}}</math> | ||
फिर हम समीकरण को रूप में कम करते हैं | फिर हम समीकरण को रूप में कम करते हैं | ||
<math display="block">z^5 - z + a = 0\, ,</math> | <math display="block">z^5 - z + a = 0\, ,</math> | ||
जिसमें एक एकल चर के बीजगणितीय कार्य के रूप में z | जिसमें एक एकल चर के बीजगणितीय कार्य के रूप में z सम्मलित है <math>a</math>, जहाँ <math>a=d_0(-d_1)^{-5/4}</math>. इस फॉर्म की आवश्यकता हरमाइट-क्रोनेकर-ब्रियोस्ची विधि, ग्लासर की विधि और नीचे वर्णित डिफरेंशियल रिज़ॉल्वेंट की कॉकल-हार्ले विधि द्वारा आवश्यक है। | ||
सेट करके एक वैकल्पिक रूप प्राप्त किया जाता है | सेट करके एक वैकल्पिक रूप प्राप्त किया जाता है <math>u = {v \over \sqrt[4]{d_1}}</math> ताकि <math>u^5 + u + b = 0\, ,</math> जहाँ <math>b=d_0(d_1)^{-5/4}</math>. इस फॉर्म का इस्तेमाल नीचे लाओ रेडिकल को परिभाषित करने के लिए किया जाता है। | ||
<math>u = {v \over \sqrt[4]{d_1}}</math> | |||
ताकि | |||
<math>u^5 + u + b = 0\, ,</math> | |||
=== ब्रियोस्ची सामान्य रूप === | === ब्रियोस्ची सामान्य रूप === | ||
क्विंटिक समीकरण के लिए एक और एक-पैरामीटर सामान्य रूप है, जिसे ब्रियोस्ची सामान्य रूप के रूप में जाना जाता है | क्विंटिक समीकरण के लिए एक और एक-पैरामीटर सामान्य रूप है, जिसे ब्रियोस्ची सामान्य रूप के रूप में जाना जाता है | ||
<math display="block">w^5 - 10Cw^3 + 45C^2w - C^2 = 0,</math> | <math display="block">w^5 - 10Cw^3 + 45C^2w - C^2 = 0,</math> | ||
जिसे तर्कसंगत | जिसे तर्कसंगत चिरनहॉस रूपांतरण का उपयोग करके प्राप्त किया जा सकता है | ||
<math display="block">w_k = \frac{\lambda + \mu x_k}{\frac{x_k^2}{C}-3}</math> | <math display="block">w_k = \frac{\lambda + \mu x_k}{\frac{x_k^2}{C}-3}</math> | ||
एक ब्रियोस्की पंचक के लिए एक सामान्य पंचक की जड़ों से संबंधित | एक ब्रियोस्की पंचक के लिए एक सामान्य पंचक की जड़ों से संबंधित करता है। मापदंडों का मान <math>\lambda</math> और <math>\mu</math> [[रीमैन क्षेत्र]] पर [[बहुफलकीय समारोह]] का उपयोग करके प्राप्त किया जा सकता है, और आईकोसाहेड्रल समरूपता के एक वस्तु के विभाजन से संबंधित होता है जो [[टेट्राहेड्रल समरूपता]] की पांच वस्तुओं में होता है।<ref name="king">{{cite book | ||
| last = King | first = R. Bruce | | last = King | first = R. Bruce | ||
| year = 1996 | | year = 1996 | ||
Line 107: | Line 99: | ||
| pages = [https://archive.org/details/beyondquarticequ00king_290/page/n68 131] | | pages = [https://archive.org/details/beyondquarticequ00king_290/page/n68 131] | ||
}} | }} | ||
</ref> | </ref> यह चिरनहॉस परिवर्तन एक प्रमुख पंचक को लाओ-जेरार्ड रूप में बदलने के लिए उपयोग किए जाने वाले कठिन की तुलना में सरल होती है। इस सामान्य रूप का उपयोग डॉयल-मैकमुलेन पुनरावृति विधि और कीपर्ट विधि द्वारा किया जाता है। | ||
यह | |||
== श्रृंखला प्रतिनिधित्व == | == श्रृंखला प्रतिनिधित्व == | ||
लाओ रेडिकल्स के लिए एक [[टेलर श्रृंखला]], साथ ही सामान्यीकृत हाइपरज्यामितीय कार्यों के संदर्भ में एक प्रतिनिधित्व निम्नानुसार प्राप्त किया जा सकता है। समीकरण <math>x^5+x+a=0</math> के रूप में पुनः लिखा जा सकता है <math>x^5+x=-a.</math> व्यवस्थित करके <math>f(x)=x^5+x,</math> वांछित समाधान है <math>x = f^{-1}(-a) = -f^{-1}(a)</math> तब से <math>f(x)</math> अजीब है। | लाओ रेडिकल्स के लिए एक [[टेलर श्रृंखला]], साथ ही सामान्यीकृत हाइपरज्यामितीय कार्यों के संदर्भ में एक प्रतिनिधित्व निम्नानुसार प्राप्त किया जा सकता है। समीकरण <math>x^5+x+a=0</math> के रूप में पुनः लिखा जा सकता है <math>x^5+x=-a.</math> व्यवस्थित करके <math>f(x)=x^5+x,</math> वांछित समाधान है <math>x = f^{-1}(-a) = -f^{-1}(a)</math> तब से <math>f(x)</math> अजीब होता है। | ||
के लिए श्रृंखला <math>f^{-1}</math> इसके बाद टेलर श्रृंखला के [[लैग्रेंज उलटा प्रमेय]] द्वारा प्राप्त किया जा सकता है <math>f(x)</math> (जो सरल है <math>x+x^5</math>), | के लिए श्रृंखला <math>f^{-1}</math> इसके बाद टेलर श्रृंखला के [[लैग्रेंज उलटा प्रमेय]] द्वारा प्राप्त किया जा सकता है <math>f(x)</math> (जो सरल है <math>x+x^5</math>), देता है | ||
<math display="block">\operatorname{BR}(a) = -f^{-1}(a) = \sum_{k=0}^\infty \binom{5k}{k} \frac{(-1)^{k+1} a^{4k+1}}{4k+1} = -a + a^5 - 5 a^9 + 35 a^{13} - 285 a^{17} + \cdots,</math> | <math display="block">\operatorname{BR}(a) = -f^{-1}(a) = \sum_{k=0}^\infty \binom{5k}{k} \frac{(-1)^{k+1} a^{4k+1}}{4k+1} = -a + a^5 - 5 a^9 + 35 a^{13} - 285 a^{17} + \cdots,</math> | ||
जहां पूर्णांक अनुक्रमों के ऑन-लाइन विश्वकोश में गुणांकों के निरपेक्ष मान अनुक्रम OEIS:A002294 बनाते हैं। श्रृंखला के [[अभिसरण की त्रिज्या]] है <math> 4/(5 \cdot \sqrt[4]{5}) \approx 0.53499. </math> [[ हाइपरज्यामितीय समारोह ]] फॉर्म में, लाओ रेडिकल को इस रूप में लिखा जा सकता है<ref name="qmathematica" /> | जहां पूर्णांक अनुक्रमों के ऑन-लाइन विश्वकोश में गुणांकों के निरपेक्ष मान अनुक्रम OEIS:A002294 बनाते हैं। श्रृंखला के [[अभिसरण की त्रिज्या]] है <math> 4/(5 \cdot \sqrt[4]{5}) \approx 0.53499. </math> | ||
[[ हाइपरज्यामितीय समारोह |हाइपरज्यामितीय समारोह]] फॉर्म में, लाओ रेडिकल को इस रूप में लिखा जा सकता है<ref name="qmathematica" /> | |||
<math display="block">\operatorname{BR}(a) = -a \,\,_4F_3\left(\frac{1}{5},\frac{2}{5},\frac{3}{5},\frac{4}{5};\frac{1}{2},\frac{3}{4},\frac{5}{4};-5\left(\frac{5a}{4}\right)^4\right).</math> | <math display="block">\operatorname{BR}(a) = -a \,\,_4F_3\left(\frac{1}{5},\frac{2}{5},\frac{3}{5},\frac{4}{5};\frac{1}{2},\frac{3}{4},\frac{5}{4};-5\left(\frac{5a}{4}\right)^4\right).</math> | ||
ग्लासर की व्युत्पत्ति और डिफरेंशियल रिज़ॉल्वेंट की विधि में नीचे उत्पन्न होने वाले हाइपरजियोमेट्रिक फ़ंक्शंस के साथ तुलना करना | ग्लासर की व्युत्पत्ति और डिफरेंशियल रिज़ॉल्वेंट की विधि में नीचे उत्पन्न होने वाले हाइपरजियोमेट्रिक फ़ंक्शंस के साथ तुलना करना रोचक हो सकता है। | ||
== सामान्य पंचक == | == सामान्य पंचक का समाधान == | ||
बहुपद की जड़ें | बहुपद की जड़ें | ||
<math display="block">x^5 + px +q</math> | <math display="block">x^5 + px +q</math> | ||
लाओ रेडिकल के रूप में व्यक्त किया जा सकता है | लाओ रेडिकल के रूप में व्यक्त किया जा सकता है | ||
<math display="block">\sqrt[4]{p}\,\operatorname{BR}\left(p^{-\frac{5}{4}}q\right)</math> | <math display="block">\sqrt[4]{p}\,\operatorname{BR}\left(p^{-\frac{5}{4}}q\right)</math> | ||
और इसके चार जटिल | और इसके चार जटिल संयुग्म है। हल करने योग्य बहुपद समीकरणों के संदर्भ में अब समस्या को लाओ-जेरार्ड रूप में कम कर दिया गया है, और जड़ों में बहुपद अभिव्यक्तियों को सम्मलित करने वाले परिवर्तनों का उपयोग केवल चौथी डिग्री तक किया जाता है, जिसका अर्थ है कि बहुपद की जड़ों को खोजने के द्वारा परिवर्तन को उलटा किया जा सकता है। यह प्रक्रिया बाहरी समाधान देती है, लेकिन जब संख्यात्मक विधियों से सही पाया जाता है, तो क्विंटिक की जड़ों को वर्गमूल, घनमूल और लाओ रेडिकल के रूप में लिखा जा सकता है, जो कि बीजगणितीय के संदर्भ में एक बीजगणितीय समाधान है। एकल चर के कार्य (मोटे तौर पर रेडिकल्स को सम्मलित करने के लिए परिभाषित) सामान्य क्विंटिक का एक बीजगणितीय समाधान है। | ||
== अन्य लक्षण == | == अन्य लक्षण वर्णन == | ||
लाओ रैडिकल के कई अन्य लक्षण विकसित किए गए हैं, जिनमें से पहला 1858 में [[चार्ल्स हर्मिट]] द्वारा अण्डाकार ट्रांसेंडेंट ([[अण्डाकार समारोह]] और मॉड्यूलर | लाओ रैडिकल के कई अन्य लक्षण विकसित किए गए हैं, जिनमें से पहला 1858 में [[चार्ल्स हर्मिट]] द्वारा अण्डाकार ट्रांसेंडेंट ([[अण्डाकार समारोह|अण्डाकार]] और मॉड्यूलर कार्यों से संबंधित) के संदर्भ में है, और बाद में अन्य गणितज्ञों द्वारा विकसित किए गए विधियाँ है। | ||
=== हर्मिट-क्रोनेकर-ब्रियोस्ची लक्षण वर्णन === | === हर्मिट-क्रोनेकर-ब्रियोस्ची लक्षण वर्णन === | ||
Line 138: | Line 131: | ||
| volume = XLVI | issue = I | pages = 508–515 | | volume = XLVI | issue = I | pages = 508–515 | ||
}} | }} | ||
</ref> | </ref> ने "एलिप्टिक ट्रांसेंडेंट्स" के संदर्भ में सामान्य क्विंटिक समीकरण का पहला ज्ञात समाधान प्रकाशित किया, और लगभग उसी समय [[ फ्रांसेस्को ब्रियोस्की |फ्रांसेस्को ब्रियोस्की]]<ref> | ||
{{cite journal | {{cite journal | ||
| last = Brioschi | first = Francesco | | last = Brioschi | first = Francesco | ||
Line 147: | Line 139: | ||
| volume = I | pages = 275–282 | | volume = I | pages = 275–282 | ||
}} | }} | ||
</ref> | </ref> और [[लियोपोल्ड क्रोनकर]]<ref> | ||
और [[लियोपोल्ड क्रोनकर]]<ref> | |||
{{cite journal | {{cite journal | ||
| last = Kronecker | first = Leopold | | last = Kronecker | first = Leopold | ||
Line 156: | Line 147: | ||
| volume = XLVI | issue = I | pages = 1150–1152 | | volume = XLVI | issue = I | pages = 1150–1152 | ||
}} | }} | ||
</ref> | </ref> समकक्ष समाधानों पर आए। हर्मिट त्रिकोणमितीय कार्यों के संदर्भ में क्यूबिक समीकरण के प्रसिद्ध समाधान को सामान्यीकृत करके इस समाधान पर पहुंचे और ब्रिंग-जेरार्ड रूप में क्विंटिक का समाधान ढूंढते हैं: | ||
समकक्ष समाधानों पर | |||
<math display="block">x^5 - x + a = 0</math> | <math display="block">x^5 - x + a = 0</math> | ||
जिसमें दिखाया गया है कि चिरनहॉस परिवर्तनों के माध्यम से किसी भी क्विंटिक समीकरण को कम किया जा सकता है। उन्होंने देखा कि अण्डाकार कार्यों की लाओ-जेरार्ड क्विंटिक के समाधान में खेलने के लिए एक समान भूमिका थी क्योंकि क्यूबिक के लिए त्रिकोणमितीय कार्यों | जिसमें दिखाया गया है कि चिरनहॉस परिवर्तनों के माध्यम से किसी भी क्विंटिक समीकरण को कम किया जा सकता है। उन्होंने देखा कि अण्डाकार कार्यों की लाओ-जेरार्ड क्विंटिक के समाधान में खेलने के लिए एक समान भूमिका थी क्योंकि क्यूबिक के लिए त्रिकोणमितीय कार्यों के पास था। इसके लिए <math>K</math> और <math>K',</math> उन्हें अण्डाकार अभिन्न के रूप में लिखें # पहली तरह का पूर्ण अण्डाकार अभिन्न: | ||
<math display="block">K(k) = \int_0^{\frac{\pi}{2}} \frac{d\varphi}{\sqrt{1-k^2 \sin^2\varphi}}</math> | <math display="block">K(k) = \int_0^{\frac{\pi}{2}} \frac{d\varphi}{\sqrt{1-k^2 \sin^2\varphi}}</math> | ||
<math display="block">K'(k) = \int_0^{\frac{\pi}{2}} \frac{d\varphi}{\sqrt{1-k'^2 \sin^2\varphi}}</math> | <math display="block">K'(k) = \int_0^{\frac{\pi}{2}} \frac{d\varphi}{\sqrt{1-k'^2 \sin^2\varphi}}</math> | ||
जहाँ | |||
<math display="block">k^2 + k'^2 = 1.</math> | <math display="block">k^2 + k'^2 = 1.</math> | ||
दो अण्डाकार पारलौकिक को परिभाषित करें:<ref group="note"><math>\varphi^8(\tau)+\psi^8(\tau)=1</math> and <math>\psi(\tau)=\varphi(-1/\tau).</math> These functions are related to the [[Theta function|Jacobi theta functions]] by <math>\varphi^2(\tau)=\vartheta_{10}(0;\tau)/\vartheta_{00}(0;\tau)</math> and <math>\psi^2(\tau)=\vartheta_{01}(0;\tau)/\vartheta_{00}(0;\tau).</math></ref> | दो अण्डाकार पारलौकिक को परिभाषित करें:<ref group="note"><math>\varphi^8(\tau)+\psi^8(\tau)=1</math> and <math>\psi(\tau)=\varphi(-1/\tau).</math> These functions are related to the [[Theta function|Jacobi theta functions]] by <math>\varphi^2(\tau)=\vartheta_{10}(0;\tau)/\vartheta_{00}(0;\tau)</math> and <math>\psi^2(\tau)=\vartheta_{01}(0;\tau)/\vartheta_{00}(0;\tau).</math></ref> | ||
Line 178: | Line 168: | ||
और | और | ||
<math display="block">u=\varepsilon (n)\varphi\left(\frac{\tau + 16m}{n}\right)</math> | <math display="block">u=\varepsilon (n)\varphi\left(\frac{\tau + 16m}{n}\right)</math> | ||
जहाँ <math>\varepsilon (n)</math> 1 या -1 है जो इस बात पर निर्भर करता है कि 2 एक द्विघात अवशेष है या नहीं, क्रमशः,<ref group="note">Equivalently, <math>\varepsilon (n) = (-1)^{(n^2-1)/8}</math> (by the [[Quadratic reciprocity|law of quadratic reciprocity]]).</ref> और <math>m\in\{0,1,\ldots,n-1\}</math>. n = 5 के लिए, हमारे पास मॉड्यूलर समीकरण है:<ref>{{Cite book |last1=Borwein |first1=Jonathan M. |last2=Borwein| first2=Peter B. |title=Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity |publisher=Wiley-Interscience |year=1987 |edition=First |isbn=0-471-83138-7 | page = 127}} The table gives <math>\begin{align}\Omega_5(u,v)=&-u^6+4u^5v^5-5u^4v^2+5u^2v^4\\&-4uv+v^6.\end{align}</math> Setting it equal to zero and multiplying by <math>-1</math> gives the equation in this article.</ref> | |||
<math display="block">\Omega_5(u,v) = 0 \iff u^6 - v^6 + 5u^2v^2(u^2-v^2)+4uv(1-u^4v^4)=0</math> | <math display="block">\Omega_5(u,v) = 0 \iff u^6 - v^6 + 5u^2v^2(u^2-v^2)+4uv(1-u^4v^4)=0</math> | ||
छह जड़ों के साथ <math>u</math> जैसा कि उपर दिखाया गया है। | छह जड़ों के साथ <math>u</math> जैसा कि उपर दिखाया गया है। | ||
n = 5 के साथ मॉड्यूलर समीकरण मॉड्यूलर समीकरण की छह जड़ों के निम्नलिखित कार्य द्वारा लाओ-जेरार्ड क्विंटिक से संबंधित हो सकता है (हर्माइट के सुर ला थ्योरी डेस इक्वेशन मॉड्यूलेयर्स एट ला रेज़ोल्यूशन डे ल'एक्वेशन डु सिन्क्विमे डिग्रे, पहला कारक गलत | n = 5 के साथ मॉड्यूलर समीकरण मॉड्यूलर समीकरण की छह जड़ों के निम्नलिखित कार्य द्वारा लाओ-जेरार्ड क्विंटिक से संबंधित हो सकता है (हर्माइट के सुर ला थ्योरी डेस इक्वेशन मॉड्यूलेयर्स एट ला रेज़ोल्यूशन डे ल'एक्वेशन डु सिन्क्विमे डिग्रे, पहला कारक गलत विधियाँ से दिया गया है <math>[\varphi(5\tau)+\varphi(\tau/5)]</math>):<ref>{{Cite book |last1=Borwein |first1=Jonathan M. |last2=Borwein| first2=Peter B. |title=Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity |publisher=Wiley-Interscience |year=1987 |edition=First |isbn=0-471-83138-7}} p. 135</ref> | ||
<math display="block">\Phi(\tau) = \left[-\varphi(5\tau) - \varphi\left(\frac{\tau}{5}\right)\right]\left[\varphi\left(\frac{\tau+16}{5}\right) - \varphi\left(\frac{\tau + 64}{5}\right)\right]\left[\varphi\left(\frac{\tau+32}{5}\right) - \varphi\left(\frac{\tau + 48}{5}\right)\right]</math> | <math display="block">\Phi(\tau) = \left[-\varphi(5\tau) - \varphi\left(\frac{\tau}{5}\right)\right]\left[\varphi\left(\frac{\tau+16}{5}\right) - \varphi\left(\frac{\tau + 64}{5}\right)\right]\left[\varphi\left(\frac{\tau+32}{5}\right) - \varphi\left(\frac{\tau + 48}{5}\right)\right]</math> | ||
Line 203: | Line 193: | ||
लाओ-जेरार्ड क्विंटिक के लिए अग्रणी: | लाओ-जेरार्ड क्विंटिक के लिए अग्रणी: | ||
<math display="block">x^5 - x + a = 0</math> | <math display="block">x^5 - x + a = 0</math> | ||
जहाँ | |||
{{NumBlk||<math display="block">a = -\frac{2[1 + \varphi^8(\tau)]}{\sqrt[4]{5^5}\varphi^2(\tau)\psi^4(\tau)}</math>|{{EquationRef|<nowiki>*</nowiki>}}}} | {{NumBlk||<math display="block">a = -\frac{2[1 + \varphi^8(\tau)]}{\sqrt[4]{5^5}\varphi^2(\tau)\psi^4(\tau)}</math>|{{EquationRef|<nowiki>*</nowiki>}}}} | ||
हर्मिट-क्रोनेकर-ब्रियोस्ची विधि तब के लिए एक मूल्य खोजने के बराबर है <math>\tau</math> जो के मान से मेल खाता है <math>a</math>, और फिर उस मान का उपयोग करना <math>\tau</math> इसी मॉड्यूलर समीकरण की जड़ें प्राप्त करने के | हर्मिट-क्रोनेकर-ब्रियोस्ची विधि तब के लिए एक मूल्य खोजने के बराबर है <math>\tau</math> जो के मान से मेल खाता है <math>a</math>, और फिर उस मान का उपयोग करना <math>\tau</math> इसी मॉड्यूलर समीकरण की जड़ें प्राप्त करने के लिए होता है। हम खोजने के लिए [[रूट-फाइंडिंग एल्गोरिदम]] का उपयोग कर सकते हैं <math>\tau</math> समीकरण से {{EquationNote|*|(*)}} (अर्थात एक व्युत्क्रम फलन सामान्यीकरण की गणना करता है <math>a</math>). | ||
फिर लाओ-जेरार्ड क्विंटिक की जड़ें इस प्रकार दी गई हैं: | फिर लाओ-जेरार्ड क्विंटिक की जड़ें इस प्रकार दी गई हैं: | ||
Line 214: | Line 204: | ||
एक वैकल्पिक, अभिन्न, दृष्टिकोण निम्नलिखित है: | एक वैकल्पिक, अभिन्न, दृष्टिकोण निम्नलिखित है: | ||
विचार करना <math>x^5-x+a=0</math> | विचार करना <math>x^5-x+a=0</math> जहाँ <math>a\in\mathbb{C}\setminus\{0\}.</math> तब | ||
<math display="block">\tau=i\frac{K'(k)}{K(k)}</math> | <math display="block">\tau=i\frac{K'(k)}{K(k)}</math> | ||
का समाधान है | का समाधान है | ||
<math display="block">a = s\frac{2[1+\varphi^8(\tau)]}{\sqrt[4]{5^5}\varphi^2(\tau)\psi^4(\tau)}</math> | <math display="block">a = s\frac{2[1+\varphi^8(\tau)]}{\sqrt[4]{5^5}\varphi^2(\tau)\psi^4(\tau)}</math> | ||
जहाँ | |||
<math display="block">s = \begin{cases} | <math display="block">s = \begin{cases} | ||
-\operatorname{sgn}\operatorname{Im}a&\text{ if }\operatorname{Re}a=0\\ | -\operatorname{sgn}\operatorname{Im}a&\text{ if }\operatorname{Re}a=0\\ | ||
Line 227: | Line 217: | ||
समीकरण की जड़ें {{EquationNote|**|(**)}} हैं: | समीकरण की जड़ें {{EquationNote|**|(**)}} हैं: | ||
<math display="block">k = \tan \frac{\alpha}{4}, \tan \frac{\alpha+2\pi}{4}, \tan \frac{\pi - \alpha}{4}, \tan \frac{3\pi - \alpha}{4} </math> | <math display="block">k = \tan \frac{\alpha}{4}, \tan \frac{\alpha+2\pi}{4}, \tan \frac{\pi - \alpha}{4}, \tan \frac{3\pi - \alpha}{4} </math> | ||
जहाँ <math>\sin \alpha = 4/A^2</math><ref name="Davis"/>(ध्यान दें कि कुछ महत्वपूर्ण संदर्भ गलत विधियाँ से इसे देते हैं <math>\sin \alpha = 1/(4A^2)</math><ref name="king"/><ref name="hermite"/>). इन जड़ों में से एक को अण्डाकार मापांक के रूप में इस्तेमाल किया जा सकता है <math>k</math>. | |||
फिर लाओ-जेरार्ड क्विंटिक की जड़ें इस प्रकार दी गई हैं: | फिर लाओ-जेरार्ड क्विंटिक की जड़ें इस प्रकार दी गई हैं: | ||
Line 233: | Line 223: | ||
के लिए <math>r = 0, \ldots, 4</math>. | के लिए <math>r = 0, \ldots, 4</math>. | ||
यह देखा जा सकता है कि यह प्रक्रिया | यह देखा जा सकता है कि यह प्रक्रिया नौवे रूट के सामान्यीकरण का उपयोग करती है, जिसे इस प्रकार व्यक्त किया जा सकता है: | ||
<math display="block">\sqrt[n]{x} = \exp \left( {\frac{1}{n}\ln x} \right)</math> | <math display="block">\sqrt[n]{x} = \exp \left( {\frac{1}{n}\ln x} \right)</math> | ||
या अधिक बिंदु तक, जैसा | या अधिक बिंदु तक, जैसा | ||
<math display="block">\sqrt[n]{x} = \exp \left(\frac{1}{n}\int^x_1\frac{dt}{t}\right)=\exp\left(\frac{1}{n} \exp^{-1} x\right). </math> | <math display="block">\sqrt[n]{x} = \exp \left(\frac{1}{n}\int^x_1\frac{dt}{t}\right)=\exp\left(\frac{1}{n} \exp^{-1} x\right). </math> | ||
हर्मिट-क्रोनेकर-ब्रियोस्ची विधि अनिवार्य रूप से एक अण्डाकार पारलौकिक द्वारा घातांक को प्रतिस्थापित करती है, और अभिन्न <math display="inline">\int^x_1 dt/t</math> (या इसका उलटा <math>\exp</math> वास्तविक रेखा पर) एक दीर्घवृत्तीय समाकलन द्वारा (या दीर्घवृत्तीय पारलौकिक के आंशिक व्युत्क्रम द्वारा)। क्रोनेकर ने सोचा कि यह सामान्यीकरण और भी अधिक सामान्य प्रमेय का एक विशेष | हर्मिट-क्रोनेकर-ब्रियोस्ची विधि अनिवार्य रूप से एक अण्डाकार पारलौकिक द्वारा घातांक को प्रतिस्थापित करती है, और अभिन्न <math display="inline">\int^x_1 dt/t</math> (या इसका उलटा <math>\exp</math> वास्तविक रेखा पर) एक दीर्घवृत्तीय समाकलन द्वारा (या दीर्घवृत्तीय पारलौकिक के आंशिक व्युत्क्रम द्वारा)। क्रोनेकर ने सोचा कि यह सामान्यीकरण और भी अधिक सामान्य प्रमेय का एक विशेष स्थिति थी। यह प्रमेय, जिसे थोमे के सूत्र के रूप में जाना जाता है, पूरी तरह से हिरोशी उमेमुरा द्वारा व्यक्त किया गया था<ref> | ||
{{cite book | {{cite book | ||
|last=Umemura |first=Hiroshi | |last=Umemura |first=Hiroshi | ||
Line 250: | Line 240: | ||
|pages=261–270 |doi=10.1007/978-0-8176-4578-6_18 | |pages=261–270 |doi=10.1007/978-0-8176-4578-6_18 | ||
}} | }} | ||
</ref> | </ref> 1984 में, जिन्होंने एक्सपोनेंशियल/एलिप्टिक ट्रांसेंडेंट के स्थान पर [[सील मॉड्यूलर रूप]] का इस्तेमाल किया और इंटीग्रल को [[हाइपरेलिप्टिक इंटीग्रल]] से बदल दिया था। | ||
1984 में, जिन्होंने एक्सपोनेंशियल/एलिप्टिक ट्रांसेंडेंट के स्थान पर [[सील मॉड्यूलर रूप]] का इस्तेमाल किया और इंटीग्रल को [[हाइपरेलिप्टिक इंटीग्रल]] से बदल | |||
===ग्लासर की व्युत्पत्ति=== | ===ग्लासर की व्युत्पत्ति=== | ||
Line 263: | Line 252: | ||
</ref> प्रपत्र के किसी भी त्रिपदीय समीकरण का हल खोजने के लिए इस लेख में पहले प्रस्तुत श्रृंखला पद्धति का सामान्यीकरण करता है: | </ref> प्रपत्र के किसी भी त्रिपदीय समीकरण का हल खोजने के लिए इस लेख में पहले प्रस्तुत श्रृंखला पद्धति का सामान्यीकरण करता है: | ||
<math display="block">x^N - x + t=0 </math> | <math display="block">x^N - x + t=0 </math> | ||
विशेष रूप से, जैसा कि ऊपर दिखाया गया है, | विशेष रूप से, जैसा कि ऊपर दिखाया गया है, चिरनहॉस परिवर्तनों के उपयोग से पंचक समीकरण को इस रूप में कम किया जा सकता है। <math>x = \zeta^{-\frac{1}{N-1}}\,</math>, सामान्य रूप बन जाता है: | ||
<math display="block">\zeta = e^{2\pi i} + t\phi(\zeta) </math> | <math display="block">\zeta = e^{2\pi i} + t\phi(\zeta) </math> | ||
जहाँ | |||
<math display="block">\phi(\zeta) = \zeta^{\frac{N}{N-1}} </math> | <math display="block">\phi(\zeta) = \zeta^{\frac{N}{N-1}} </math> | ||
[[जोसेफ लुइस लाग्रेंज]] के कारण एक सूत्र में कहा गया है कि किसी भी विश्लेषणात्मक कार्य के लिए <math>f \,</math>के संदर्भ में रूपांतरित सामान्य समीकरण की जड़ के | [[जोसेफ लुइस लाग्रेंज]] के कारण एक सूत्र में कहा गया है कि किसी भी विश्लेषणात्मक कार्य के लिए <math>f \,</math>के संदर्भ में रूपांतरित सामान्य समीकरण की जड़ के निकटतम में <math>\zeta \,</math>, ऊपर एक [[अनंत श्रृंखला]] के रूप में व्यक्त किया जा सकता है: | ||
<math display="block"> | <math display="block"> | ||
f(\zeta) = f(e^{2\pi i}) + \sum^\infty_{n=1} \frac{t^n}{n!}\frac{d^{n-1}}{da^{n-1}}[f'(a)|\phi(a)|^n]_{a = e^{2\pi i}} | f(\zeta) = f(e^{2\pi i}) + \sum^\infty_{n=1} \frac{t^n}{n!}\frac{d^{n-1}}{da^{n-1}}[f'(a)|\phi(a)|^n]_{a = e^{2\pi i}} | ||
Line 351: | Line 340: | ||
\end{bmatrix},n=1,2,\cdots,N-2 | \end{bmatrix},n=1,2,\cdots,N-2 | ||
\end{align}</math> | \end{align}</math> | ||
इस प्रकार समीकरण के मूल को अधिकतम N − 1 अतिज्यामितीय कार्यों के योग के रूप में व्यक्त किया जा सकता है। इस विधि को कम किए गए लाओ-जेरार्ड क्विंटिक पर लागू करते हुए, निम्नलिखित कार्यों को परिभाषित | इस प्रकार समीकरण के मूल को अधिकतम N − 1 अतिज्यामितीय कार्यों के योग के रूप में व्यक्त किया जा सकता है। इस विधि को कम किए गए लाओ-जेरार्ड क्विंटिक पर लागू करते हुए, निम्नलिखित कार्यों को परिभाषित करा है: | ||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
F_1(t) & = \,_4F_3\left(-\frac{1}{20}, \frac{3}{20}, \frac{7}{20}, \frac{11}{20}; \frac{1}{4}, \frac{1}{2}, \frac{3}{4}; \frac{3125t^4}{256}\right) \\[6pt] | F_1(t) & = \,_4F_3\left(-\frac{1}{20}, \frac{3}{20}, \frac{7}{20}, \frac{11}{20}; \frac{1}{4}, \frac{1}{2}, \frac{3}{4}; \frac{3125t^4}{256}\right) \\[6pt] | ||
Line 416: | Line 405: | ||
</ref> जिसका समाधान ऊपर ग्लासर की व्युत्पत्ति में उत्पन्न हाइपरज्यामितीय कार्यों की श्रृंखला के समान है।<ref name="drociuk"/> | </ref> जिसका समाधान ऊपर ग्लासर की व्युत्पत्ति में उत्पन्न हाइपरज्यामितीय कार्यों की श्रृंखला के समान है।<ref name="drociuk"/> | ||
इस विधि को मनमाने ढंग से उच्च डिग्री के समीकरणों के लिए सामान्यीकृत किया जा सकता है, विभेदक रिज़ॉल्वेंट के साथ जो आंशिक अंतर समीकरण हैं, जिनके समाधान में कई चर के हाइपरज्यामितीय कार्य | इस विधि को मनमाने ढंग से उच्च डिग्री के समीकरणों के लिए सामान्यीकृत किया जा सकता है, विभेदक रिज़ॉल्वेंट के साथ जो आंशिक अंतर समीकरण हैं, जिनके समाधान में कई चर के हाइपरज्यामितीय कार्य सम्मलित हैं।<ref> | ||
{{cite journal | {{cite journal | ||
| last = Birkeland | first = Richard | | last = Birkeland | first = Richard | ||
Line 478: | Line 467: | ||
# तय करना <math>Z = 1 - 1728C</math> | # तय करना <math>Z = 1 - 1728C</math> | ||
# तर्कसंगत कार्य की गणना करें <math display="block">T_Z(w) = w - 12\frac{g(Z,w)}{g'(Z,w)}</math> | # तर्कसंगत कार्य की गणना करें <math display="block">T_Z(w) = w - 12\frac{g(Z,w)}{g'(Z,w)}</math> जहाँ <math>g(Z,w)</math> नीचे दिया गया एक बहुपद फलन है, और <math>g'</math> का व्युत्पन्न है <math>g(Z,w)</math> इसके संबंध में <math>w</math> | ||
# पुनरावृति <math>T_Z[T_Z(w)]</math> एक यादृच्छिक प्रारंभिक अनुमान पर जब तक यह अभिसरण नहीं हो जाता। [[अनुक्रम की सीमा]] को बुलाओ <math>w_1</math> और जाने <math>w_2 = T_Z(w_1)\,</math>. | # पुनरावृति <math>T_Z[T_Z(w)]</math> एक यादृच्छिक प्रारंभिक अनुमान पर जब तक यह अभिसरण नहीं हो जाता। [[अनुक्रम की सीमा]] को बुलाओ <math>w_1</math> और जाने <math>w_2 = T_Z(w_1)\,</math>. | ||
# गणना करें <math display="block">\mu_i = \frac{100Z(Z-1)h(Z,w_i)}{g(Z, w_i)}</math> | # गणना करें <math display="block">\mu_i = \frac{100Z(Z-1)h(Z,w_i)}{g(Z, w_i)}</math> जहाँ <math>h(Z,w)</math> नीचे दिया गया एक बहुपद फलन है। यह दोनों के लिए करें <math>w_1\,</math> और <math>w_2 = T_Z(w_1)\,</math>. | ||
# अंत में, गणना करें <math display="block">x_i = \frac{(9 + \sqrt{15}i) \mu_i + (9 - \sqrt{15}i)\mu_{3-i}}{90}</math> के लिए {{math|1=''i'' = 1, 2}}. ये Brioschi quintic की दो जड़ें हैं। | # अंत में, गणना करें <math display="block">x_i = \frac{(9 + \sqrt{15}i) \mu_i + (9 - \sqrt{15}i)\mu_{3-i}}{90}</math> के लिए {{math|1=''i'' = 1, 2}}. ये Brioschi quintic की दो जड़ें हैं। | ||
Revision as of 05:09, 16 March 2023
बीजगणित में, वास्तविक संख्या a का रेडिकल या अल्ट्रारेडिकल लाओ, बहुपद का अद्वितीय वास्तविक मूल है
जॉर्ज जेरार्ड ने दिखाया कि कुछ क्विंटिक समीकरण नौवे रूट और लाओ रेडिकल्स का उपयोग करके बंद रूप अभिव्यक्ति हो सकते हैं, जिसे एरलैंड सैमुअल लाओ द्वारा प्रस्तुत किया गया था।
इस लेख में, लाओ रेडिकल ऑफ ए को निरूपित किया गया है वास्तविक तर्क के लिए, यह स्पर्शोन्मुख व्यवहार के साथ विषम, नीरस रूप से घटता हुआ और असीम है बड़े के लिए .
सामान्य रूप
पांच स्वतंत्र गुणांकों के साथ अपने सबसे सामान्य रूप में सीधे समाधान प्राप्त करने के लिए क्विंटिक समीकरण जबकि मुश्किल है:
मूल पंचक रूप
क्वार्टिक और क्यूबिक शर्तों को हटाकर सामान्य क्विंटिक को प्रिंसिपल क्विंटिक फॉर्म के रूप में जाना जाता है:
फेलिक्स क्लेन के क्विंटिक के समाधान द्वारा इस फॉर्म का उपयोग किया जाता है।[2]
लाओ-जेरार्ड सामान्य रूप
लाओ-जेरार्ड सामान्य रूप का निर्माण करते हुए, क्विंटिक को और भी सरल बनाना और द्विघात शब्द को समाप्त करना संभव है:
इसे एक बीजगणितीय कार्य के रूप में माना जाता है, इसके समाधान हैं
सेट करके एक वैकल्पिक रूप प्राप्त किया जाता है ताकि जहाँ . इस फॉर्म का इस्तेमाल नीचे लाओ रेडिकल को परिभाषित करने के लिए किया जाता है।
ब्रियोस्ची सामान्य रूप
क्विंटिक समीकरण के लिए एक और एक-पैरामीटर सामान्य रूप है, जिसे ब्रियोस्ची सामान्य रूप के रूप में जाना जाता है
श्रृंखला प्रतिनिधित्व
लाओ रेडिकल्स के लिए एक टेलर श्रृंखला, साथ ही सामान्यीकृत हाइपरज्यामितीय कार्यों के संदर्भ में एक प्रतिनिधित्व निम्नानुसार प्राप्त किया जा सकता है। समीकरण के रूप में पुनः लिखा जा सकता है व्यवस्थित करके वांछित समाधान है तब से अजीब होता है।
के लिए श्रृंखला इसके बाद टेलर श्रृंखला के लैग्रेंज उलटा प्रमेय द्वारा प्राप्त किया जा सकता है (जो सरल है ), देता है
हाइपरज्यामितीय समारोह फॉर्म में, लाओ रेडिकल को इस रूप में लिखा जा सकता है[4]
सामान्य पंचक का समाधान
बहुपद की जड़ें
अन्य लक्षण वर्णन
लाओ रैडिकल के कई अन्य लक्षण विकसित किए गए हैं, जिनमें से पहला 1858 में चार्ल्स हर्मिट द्वारा अण्डाकार ट्रांसेंडेंट (अण्डाकार और मॉड्यूलर कार्यों से संबंधित) के संदर्भ में है, और बाद में अन्य गणितज्ञों द्वारा विकसित किए गए विधियाँ है।
हर्मिट-क्रोनेकर-ब्रियोस्ची लक्षण वर्णन
1858 में, चार्ल्स हर्मिट[7] ने "एलिप्टिक ट्रांसेंडेंट्स" के संदर्भ में सामान्य क्विंटिक समीकरण का पहला ज्ञात समाधान प्रकाशित किया, और लगभग उसी समय फ्रांसेस्को ब्रियोस्की[8] और लियोपोल्ड क्रोनकर[9] समकक्ष समाधानों पर आए। हर्मिट त्रिकोणमितीय कार्यों के संदर्भ में क्यूबिक समीकरण के प्रसिद्ध समाधान को सामान्यीकृत करके इस समाधान पर पहुंचे और ब्रिंग-जेरार्ड रूप में क्विंटिक का समाधान ढूंढते हैं:
n = 5 के साथ मॉड्यूलर समीकरण मॉड्यूलर समीकरण की छह जड़ों के निम्नलिखित कार्य द्वारा लाओ-जेरार्ड क्विंटिक से संबंधित हो सकता है (हर्माइट के सुर ला थ्योरी डेस इक्वेशन मॉड्यूलेयर्स एट ला रेज़ोल्यूशन डे ल'एक्वेशन डु सिन्क्विमे डिग्रे, पहला कारक गलत विधियाँ से दिया गया है ):[12]
|
(*) |
हर्मिट-क्रोनेकर-ब्रियोस्ची विधि तब के लिए एक मूल्य खोजने के बराबर है जो के मान से मेल खाता है , और फिर उस मान का उपयोग करना इसी मॉड्यूलर समीकरण की जड़ें प्राप्त करने के लिए होता है। हम खोजने के लिए रूट-फाइंडिंग एल्गोरिदम का उपयोग कर सकते हैं समीकरण से (*) (अर्थात एक व्युत्क्रम फलन सामान्यीकरण की गणना करता है ).
फिर लाओ-जेरार्ड क्विंटिक की जड़ें इस प्रकार दी गई हैं:
एक वैकल्पिक, अभिन्न, दृष्टिकोण निम्नलिखित है:
विचार करना जहाँ तब
|
(**) |
फिर लाओ-जेरार्ड क्विंटिक की जड़ें इस प्रकार दी गई हैं:
यह देखा जा सकता है कि यह प्रक्रिया नौवे रूट के सामान्यीकरण का उपयोग करती है, जिसे इस प्रकार व्यक्त किया जा सकता है:
ग्लासर की व्युत्पत्ति
एम एल ग्लासर के कारण यह व्युत्पत्ति[17] प्रपत्र के किसी भी त्रिपदीय समीकरण का हल खोजने के लिए इस लेख में पहले प्रस्तुत श्रृंखला पद्धति का सामान्यीकरण करता है:
विभेदकों की विधि
जेम्स कॉकल[18] और रॉबर्ट हार्ले[19] 1860 में डिफरेंशियल इक्वेशन के माध्यम से क्विंटिक को हल करने के लिए एक विधि विकसित की गई। वे जड़ों को गुणांकों के कार्य के रूप में मानते हैं, और इन समीकरणों के आधार पर एक विभेदक विलायक की गणना करते हैं। लाओ-जेरार्ड क्विंटिक को एक समारोह के रूप में व्यक्त किया गया है:
इस विधि को मनमाने ढंग से उच्च डिग्री के समीकरणों के लिए सामान्यीकृत किया जा सकता है, विभेदक रिज़ॉल्वेंट के साथ जो आंशिक अंतर समीकरण हैं, जिनके समाधान में कई चर के हाइपरज्यामितीय कार्य सम्मलित हैं।[21][22] मनमाना अविभाज्य बहुपदों के अवकल विलायकों के लिए एक सामान्य सूत्र नाहे के घात योग सूत्र द्वारा दिया जाता है। [23][24]
डॉयल-मैकमुलेन पुनरावृत्ति
1989 में, पीटर डॉयल और कर्ट मैकमुलेन ने एक पुनरावृति विधि निकाली[25] जो ब्रियोस्की सामान्य रूप में एक पंचक को हल करता है:
- तय करना
- तर्कसंगत कार्य की गणना करें जहाँ नीचे दिया गया एक बहुपद फलन है, और का व्युत्पन्न है इसके संबंध में
- पुनरावृति एक यादृच्छिक प्रारंभिक अनुमान पर जब तक यह अभिसरण नहीं हो जाता। अनुक्रम की सीमा को बुलाओ और जाने .
- गणना करें जहाँ नीचे दिया गया एक बहुपद फलन है। यह दोनों के लिए करें और .
- अंत में, गणना करें के लिए i = 1, 2. ये Brioschi quintic की दो जड़ें हैं।
दो बहुपद कार्य और निम्नानुसार हैं:
यह भी देखें
संदर्भ
टिप्पणियाँ
- ↑ and These functions are related to the Jacobi theta functions by and
- ↑ When n = 2, the parameters are linked by an equation of degree 8 in .
- ↑ Some references define and Then the modular equation is solved in instead and has the roots and
- ↑ Equivalently, (by the law of quadratic reciprocity).
अन्य
- ↑ 1.0 1.1 Adamchik, Victor (2003). "Polynomial Transformations of Tschirnhaus, Bring, and Jerrard" (PDF). ACM SIGSAM Bulletin. 37 (3): 91. CiteSeerX 10.1.1.10.9463. doi:10.1145/990353.990371. S2CID 53229404. Archived from the original (PDF) on 2009-02-26.
- ↑ 2.0 2.1 Klein, Felix (1888). Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree. Trübner & Co. ISBN 978-0-486-49528-6.
- ↑ Jerrard, George Birch (1859). An essay on the resolution of equations. London, UK: Taylor and Francis.
- ↑ 4.0 4.1 4.2 "Solving the Quintic with Mathematica". Wolfram Research. Archived from the original on 1 July 2014.
- ↑ 5.0 5.1 Drociuk, Richard J. (2000). "On the Complete Solution to the Most General Fifth Degree Polynomial". arXiv:math.GM/0005026.
- ↑ 6.0 6.1 King, R. Bruce (1996). Beyond the Quartic Equation. Birkhäuser. pp. 131. ISBN 978-3-7643-3776-6.
- ↑ 7.0 7.1 Hermite, Charles (1858). "Sur la résolution de l'équation du cinquème degré". Comptes Rendus de l'Académie des Sciences. XLVI (I): 508–515.
- ↑ Brioschi, Francesco (1858). "Sul Metodo di Kronecker per la Risoluzione delle Equazioni di Quinto Grado". Atti Dell'i. R. Istituto Lombardo di Scienze, Lettere ed Arti. I: 275–282.
- ↑ Kronecker, Leopold (1858). "Sur la résolution de l'equation du cinquième degré, extrait d'une lettre adressée à M. Hermite". Comptes Rendus de l'Académie des Sciences. XLVI (I): 1150–1152.
- ↑ Borwein, Jonathan M.; Borwein, Peter B. (1987). Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity (First ed.). Wiley-Interscience. ISBN 0-471-83138-7. p. 126. Note that if , and if . There is a typo on the page: should be instead.
- ↑ Borwein, Jonathan M.; Borwein, Peter B. (1987). Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity (First ed.). Wiley-Interscience. p. 127. ISBN 0-471-83138-7. The table gives Setting it equal to zero and multiplying by gives the equation in this article.
- ↑ Borwein, Jonathan M.; Borwein, Peter B. (1987). Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity (First ed.). Wiley-Interscience. ISBN 0-471-83138-7. p. 135
- ↑ 13.0 13.1 Davis, Harold T. (1962). Introduction to Nonlinear Differential and Integral Equations. Dover. pp. 173. ISBN 978-0-486-60971-3.
- ↑ Hermite's Sur la théorie des équations modulaires et la résolution de l'équation du cinquième degré (1859), p. 7
- ↑ Borwein, Jonathan M.; Borwein, Peter B. (1987). Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity (First ed.). Wiley-Interscience. ISBN 0-471-83138-7. p. 136
- ↑ Umemura, Hiroshi (2007). "Resolution of algebraic equations by theta constants". In Mumford, David (ed.). Tata Lectures on Theta II. Modern Birkhäuser Classics (in English). Boston, MA: Birkhäuser. pp. 261–270. doi:10.1007/978-0-8176-4578-6_18. ISBN 9780817645694.
- ↑ Glasser, M. Lawrence (1994). "The quadratic formula made hard: A less radical approach to solving equations". arXiv:math.CA/9411224.
- ↑ Cockle, James (1860). "Sketch of a theory of transcendental roots". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 20 (131): 145–148. doi:10.1080/14786446008642921.
- ↑ Harley, Robert (1862). "On the transcendental solution of algebraic equations". Quart. J. Pure Appl. Math. 5: 337–361.
- ↑ Slater, Lucy Joan (1966). Generalized Hypergeometric Functions. Cambridge University Press. pp. 42–44. ISBN 978-0-521-06483-5.
- ↑
Birkeland, Richard (1927). "Über die Auflösung algebraischer Gleichungen durch hypergeometrische Funktionen" [On the solution of algebraic equations via hypergeometric functions]. Mathematische Zeitschrift (in Deutsch). 26: 565–578. doi:10.1007/BF01475474. S2CID 120762456. Retrieved 1 July 2017.
{{cite journal}}
: CS1 maint: url-status (link)[permanent dead link] - ↑ Mayr, Karl (1937). "Über die Auflösung algebraischer Gleichungssysteme durch hypergeometrische Funktionen". Monatshefte für Mathematik und Physik. 45: 280–313. doi:10.1007/BF01707992. S2CID 197662587.
- ↑ Nahay, John (2004). "Powersum formula for differential resolvents". International Journal of Mathematics and Mathematical Sciences. 2004 (7): 365–371. doi:10.1155/S0161171204210602.
- ↑ Nahay, John (2000). Linear Differential Resolvents (Ph.D. thesis). Piscataway, NJ: Rutgers University. Richard M. Cohn, advisor.
- ↑ Doyle, Peter; McMullen, Curt (1989). "Solving the quintic by iteration" (PDF). Acta Math. 163: 151–180. doi:10.1007/BF02392735. S2CID 14827783.
स्रोत
- Mirzaei, Raoof (2012). nth डिग्री के समीकरण को हल करने के लिए स्पिनर और विशेष कार्य. International Mathematica Symposium.
- Klein, F. (1888). इकोसैहेड्रोन पर व्याख्यान और पांचवीं डिग्री के समीकरणों का समाधान. Translated by Morrice, George Gavin. Trübner & Co. ISBN 0-486-49528-0.
- King, R. Bruce (1996). क्वार्टिक समीकरण से परे. Birkhäuser. ISBN 3-7643-3776-1.
- Davis, Harold T. (1962). नॉनलाइनियर डिफरेंशियल और इंटीग्रल इक्वेशन का परिचय. Dover. Chapter 6, especially §20 and §21. ISBN 0-486-60971-5.