ब्रिंग रेडिकल्स: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{short description|Real root of the polynomial x^5+x+a}}
{{short description|Real root of the polynomial x^5+x+a}}
[[File:Bring radical plot.svg|thumb|वास्तविक तर्क के लिए विलक्षण ब्रिंग का प्लॉट]][[बीजगणित]] में, [[वास्तविक संख्या]] a विलक्षण, [[बहुपद]] का अद्वितीय वास्तविक मूल होता है।<math display="block">x^5 + x + a.</math>एक सम्मिश्र संख्या a का विलक्षण या तो उपरोक्त बहुपद की पाँच संख्याओं में से कोई भी हो सकता है (यह इस प्रकार बहु-मूल्यवान है), या एक विशिष्ट संख्या, जिसे सामान्यतः इस तरह चुना जाता है कि विलक्षण वास्तविक a के लिए वास्तविक-मूल्यवान होता है और वास्तविक रेखा के निकटतम में एक [[विश्लेषणात्मक कार्य]] होता है। चार [[शाखा बिंदु]]ओं के अस्तित्व के कारण, विलक्षण को एक ऐसे फ़ंक्शन के रूप में परिभाषित नहीं किया जा सकता है, और इसकी निरंतरता के डोमेन को चार शाखा कटौती को बाहर करता है।
[[File:Bring radical plot.svg|thumb|वास्तविक तर्क के लिए विलक्षण ब्रिंग का प्लॉट]][[बीजगणित]] में, [[वास्तविक संख्या]] a विलक्षण, [[बहुपद]] का अद्वितीय वास्तविक मूल होता है।ka<math display="block">x^5 + x + a.</math>एक सम्मिश्र संख्या a का विलक्षण या तो उपरोक्त बहुपद की पाँच संख्याओं में से कोई भी हो सकता है (यह इस प्रकार बहु-मूल्यवान है), या एक विशिष्ट संख्या, जिसे सामान्यतः इस तरह चुना जाता है कि विलक्षण वास्तविक a के लिए वास्तविक-मूल्यवान होता है और वास्तविक रेखा के निकटतम में एक [[विश्लेषणात्मक कार्य]] होता है। चार [[शाखा बिंदु]]ओं के अस्तित्व के कारण, विलक्षण को एक ऐसे फ़ंक्शन के रूप में परिभाषित नहीं किया जा सकता है, और इसकी निरंतरता के डोमेन को चार शाखा कटौती को बाहर करता है।




Line 43: Line 43:
}}
}}
</ref>
</ref>
=== ब्रिंग-जेरार्ड सामान्य रूप===
=== जेरार्ड सामान्य रूप===
ब्रिंग-जेरार्ड सामान्य रूप का निर्माण करते हुए, पंचक को और भी सरल बनाना और द्विघात शब्द को समाप्त करना संभव है:
जेरार्ड सामान्य रूप का निर्माण करते हुए, पंचक को और भी सरल बनाना और द्विघात शब्द को समाप्त करना संभव है:
<math display="block">v^5 + d_1v + d_0 = 0.</math>
<math display="block">v^5 + d_1v + d_0 = 0.</math>
क्यूबिक परिवर्तन के साथ फिर से शक्ति-योग सूत्रों का उपयोग करना, जैसा कि [[Ehrenfried Walther von Tschirnhaus|चिरनहॉस]] ने कोशिश की, काम नहीं करता है, क्योंकि समीकरणों की परिणामी प्रणाली के परिणामस्वरूप छठी-डिग्री समीकरण होती है। लेकिन 1796 में ब्रिंग ने ब्रिंग-जेरार्ड पंचक के मूल पंचक की संख्याओं से संबंधित करने के लिए एक क्वार्टिक [[Ehrenfried Walther von Tschirnhaus|चिरनहॉस]] परिवर्तन का उपयोग करके इसके चारों ओर एक रास्ता खोजा:
क्यूबिक परिवर्तन के साथ फिर से शक्ति-योग सूत्रों का उपयोग करना, जैसा कि [[Ehrenfried Walther von Tschirnhaus|चिरनहॉस]] ने कोशिश की, काम नहीं करता है, क्योंकि समीकरणों की परिणामी प्रणाली के परिणामस्वरूप छठी-डिग्री समीकरण होती है। लेकिन 1796 में ब्रिंग ने जेरार्ड पंचक के मूल पंचक की संख्याओं से संबंधित करने के लिए एक क्वार्टिक [[Ehrenfried Walther von Tschirnhaus|चिरनहॉस]] परिवर्तन का उपयोग करके इसके चारों ओर एक रास्ता खोजा:
<math display="block">v_k = y^4_k + \alpha y^3_k + \beta y^2_k + \gamma y_k + \delta\, .</math>
<math display="block">v_k = y^4_k + \alpha y^3_k + \beta y^2_k + \gamma y_k + \delta\, .</math>
इसे चौथे क्रम के परिवर्तन द्वारा प्रदान किया गया अतिरिक्त पैरामीटर अन्य मापदंडों की डिग्री को कम करने के लिए ब्रिंग को अनुमति देता है। यह छह अज्ञात में पाँच समीकरणों की एक प्रणाली की ओर जाता है, जिसके लिए एक घन और एक द्विघात समीकरण के समाधान की आवश्यकता होती है। इस पद्धति की खोज भी जॉर्ज जेरार्ड ने 1852 में की थी।<ref>
इसे चौथे क्रम के परिवर्तन द्वारा प्रदान किया गया अतिरिक्त पैरामीटर अन्य मापदंडों की डिग्री को कम करने के लिए ब्रिंग को अनुमति देता है। यह छह अज्ञात में पाँच समीकरणों की एक प्रणाली की ओर जाता है, जिसके लिए एक घन और एक द्विघात समीकरण के समाधान की आवश्यकता होती है। इस पद्धति की खोज भी जॉर्ज जेरार्ड ने 1852 में की थी।<ref>
Line 77: Line 77:
इसे एक बीजगणितीय कार्य के रूप में माना जाता है, इसके समाधान है
इसे एक बीजगणितीय कार्य के रूप में माना जाता है, इसके समाधान है
<math display="block">v^5+d_1v+d_0 = 0</math>
<math display="block">v^5+d_1v+d_0 = 0</math>
इसमें दो चर सम्मलित है, डी<sub>1</sub> और डी<sub>0,</sub> चूँकि, कमी वास्तव में एक चर के बीजगणितीय कार्य के लिए है, जो विलक्षण में एक समाधान के समान है, क्योंकि हम ब्रिंग-जेरार्ड फॉर्म को और कम कर सकते है। यदि हम उदाहरण के लिए सेट करते है
इसमें दो चर सम्मलित है, डी<sub>1</sub> और डी<sub>0,</sub> चूँकि, कमी वास्तव में एक चर के बीजगणितीय कार्य के लिए है, जो विलक्षण में एक समाधान के समान है, क्योंकि हम जेरार्ड फॉर्म को और कम कर सकते है। यदि हम उदाहरण के लिए सेट करते है
<math display="block">z = {v \over \sqrt[4]{-d_1}}</math>
<math display="block">z = {v \over \sqrt[4]{-d_1}}</math>
फिर हम समीकरण को रूप में कम करते है
फिर हम समीकरण को रूप में कम करते है
Line 100: Line 100:
  | pages = [https://archive.org/details/beyondquarticequ00king_290/page/n68 131]
  | pages = [https://archive.org/details/beyondquarticequ00king_290/page/n68 131]
}}
}}
</ref> यह चिरनहॉस परिवर्तन एक प्रमुख पंचक को ब्रिंग-जेरार्ड रूप में बदलने के लिए उपयोग किए जाने वाले कठिन की तुलना में सरल होती है। इस सामान्य रूप का उपयोग डॉयल-मैकमुलेन पुनरावृति विधि और कीपर्ट विधि द्वारा किया जाता है।
</ref> यह चिरनहॉस परिवर्तन एक प्रमुख पंचक को जेरार्ड रूप में बदलने के लिए उपयोग किए जाने वाले कठिन की तुलना में सरल होती है। इस सामान्य रूप का उपयोग डॉयल-मैकमुलेन पुनरावृति विधि और कीपर्ट विधि द्वारा किया जाता है।


== श्रृंखला प्रतिनिधित्व ==
== श्रृंखला प्रतिनिधित्व ==
Line 118: Line 118:
विलक्षण के रूप में व्यक्त किया जा सकता है
विलक्षण के रूप में व्यक्त किया जा सकता है
<math display="block">\sqrt[4]{p}\,\operatorname{BR}\left(p^{-\frac{5}{4}}q\right)</math>
<math display="block">\sqrt[4]{p}\,\operatorname{BR}\left(p^{-\frac{5}{4}}q\right)</math>
और इसके चार कठिन संयुग्म है। हल करने योग्य बहुपद समीकरणों के संदर्भ में अब समस्या को ब्रिंग-जेरार्ड रूप में कम कर दिया गया है, और संख्याओं में बहुपद अभिव्यक्तियों को सम्मलित करने वाले परिवर्तनों का उपयोग केवल चौथी डिग्री तक किया जाता है, जिसका अर्थ है कि बहुपद की संख्याओं को खोजने के द्वारा परिवर्तन को उलटा किया जा सकता है। यह प्रक्रिया बाहरी समाधान देती है, लेकिन जब संख्यात्मक विधियों से सही पाया जाता है, तो पंचक की संख्याओं को वर्गमूल, घनमूल और विलक्षण के रूप में लिखा जा सकता है, जो कि बीजगणितीय के संदर्भ में एक बीजगणितीय समाधान है। एकल चर के कार्य (मोटे तौर पर विलक्षण्स को सम्मलित करने के लिए परिभाषित) सामान्य पंचक का एक बीजगणितीय समाधान है।
और इसके चार कठिन संयुग्म है। हल करने योग्य बहुपद समीकरणों के संदर्भ में अब समस्या को जेरार्ड रूप में कम कर दिया गया है, और संख्याओं में बहुपद अभिव्यक्तियों को सम्मलित करने वाले परिवर्तनों का उपयोग केवल चौथी डिग्री तक किया जाता है, जिसका अर्थ है कि बहुपद की संख्याओं को खोजने के द्वारा परिवर्तन को उलटा किया जा सकता है। यह प्रक्रिया बाहरी समाधान देती है, लेकिन जब संख्यात्मक विधियों से सही पाया जाता है, तो पंचक की संख्याओं को वर्गमूल, घनमूल और विलक्षण के रूप में लिखा जा सकता है, जो कि बीजगणितीय के संदर्भ में एक बीजगणितीय समाधान है। एकल चर के कार्य (मोटे तौर पर विलक्षण्स को सम्मलित करने के लिए परिभाषित) सामान्य पंचक का एक बीजगणितीय समाधान है।


== अन्य लक्षण वर्णन ==
== अन्य लक्षण वर्णन ==
Line 148: Line 148:
  | volume = XLVI | issue = I | pages = 1150–1152
  | volume = XLVI | issue = I | pages = 1150–1152
}}
}}
</ref> समकक्ष समाधानों पर आए। हर्मिट त्रिकोणमितीय कार्यों के संदर्भ में क्यूबिक समीकरण के प्रसिद्ध समाधान को सामान्यीकृत करके इस समाधान पर पहुंचे और ब्रिंग-जेरार्ड रूप में पंचक का समाधान खोजते है:
</ref> समकक्ष समाधानों पर आए। हर्मिट त्रिकोणमितीय कार्यों के संदर्भ में क्यूबिक समीकरण के प्रसिद्ध समाधान को सामान्यीकृत करके इस समाधान पर पहुंचे और जेरार्ड रूप में पंचक का समाधान खोजते है:
<math display="block">x^5 - x + a = 0</math>
<math display="block">x^5 - x + a = 0</math>
जिसमें दिखाया गया है कि चिरनहॉस परिवर्तनों के माध्यम से किसी भी पंचक समीकरण को कम किया जा सकता है। उन्होंने देखा कि गोलाकार कार्यों की ब्रिंग-जेरार्ड पंचक के समाधान में खेलने के लिए एक समान भूमिका थी क्योंकि क्यूबिक के लिए त्रिकोणमितीय कार्यों के पास था। इसके लिए <math>K</math> और <math>K',</math> उन्हें गोलाकार अभिन्न के रूप में लिखें पहली तरह का पूर्ण गोलाकार अभिन्न:
जिसमें दिखाया गया है कि चिरनहॉस परिवर्तनों के माध्यम से किसी भी पंचक समीकरण को कम किया जा सकता है। उन्होंने देखा कि गोलाकार कार्यों की जेरार्ड पंचक के समाधान में खेलने के लिए एक समान भूमिका थी क्योंकि क्यूबिक के लिए त्रिकोणमितीय कार्यों के पास था। इसके लिए <math>K</math> और <math>K',</math> उन्हें गोलाकार अभिन्न के रूप में लिखें पहली तरह का पूर्ण गोलाकार अभिन्न:
<math display="block">K(k) = \int_0^{\frac{\pi}{2}} \frac{d\varphi}{\sqrt{1-k^2 \sin^2\varphi}}</math>
<math display="block">K(k) = \int_0^{\frac{\pi}{2}} \frac{d\varphi}{\sqrt{1-k^2 \sin^2\varphi}}</math>
<math display="block">K'(k) = \int_0^{\frac{\pi}{2}} \frac{d\varphi}{\sqrt{1-k'^2 \sin^2\varphi}}</math>
<math display="block">K'(k) = \int_0^{\frac{\pi}{2}} \frac{d\varphi}{\sqrt{1-k'^2 \sin^2\varphi}}</math>
Line 173: Line 173:
छह संख्याओं के साथ <math>u</math> जैसा कि उपर दिखाया गया है।
छह संख्याओं के साथ <math>u</math> जैसा कि उपर दिखाया गया है।


n = 5 के साथ मॉड्यूलर समीकरण मॉड्यूलर समीकरण की छह संख्याओं के निम्नलिखित कार्य द्वारा ब्रिंग-जेरार्ड पंचक से संबंधित हो सकता है, पहला कारक गलत विधियाँ से दिया गया है <math>[\varphi(5\tau)+\varphi(\tau/5)]</math>:<ref>{{Cite book |last1=Borwein |first1=Jonathan M. |last2=Borwein| first2=Peter B. |title=Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity |publisher=Wiley-Interscience |year=1987 |edition=First |isbn=0-471-83138-7}} p. 135</ref>
n = 5 के साथ मॉड्यूलर समीकरण मॉड्यूलर समीकरण की छह संख्याओं के निम्नलिखित कार्य द्वारा जेरार्ड पंचक से संबंधित हो सकता है, पहला कारक गलत विधियाँ से दिया गया है <math>[\varphi(5\tau)+\varphi(\tau/5)]</math>:<ref>{{Cite book |last1=Borwein |first1=Jonathan M. |last2=Borwein| first2=Peter B. |title=Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity |publisher=Wiley-Interscience |year=1987 |edition=First |isbn=0-471-83138-7}} p. 135</ref>


<math display="block">\Phi(\tau) = \left[-\varphi(5\tau) - \varphi\left(\frac{\tau}{5}\right)\right]\left[\varphi\left(\frac{\tau+16}{5}\right) - \varphi\left(\frac{\tau + 64}{5}\right)\right]\left[\varphi\left(\frac{\tau+32}{5}\right) - \varphi\left(\frac{\tau + 48}{5}\right)\right]</math>
<math display="block">\Phi(\tau) = \left[-\varphi(5\tau) - \varphi\left(\frac{\tau}{5}\right)\right]\left[\varphi\left(\frac{\tau+16}{5}\right) - \varphi\left(\frac{\tau + 64}{5}\right)\right]\left[\varphi\left(\frac{\tau+32}{5}\right) - \varphi\left(\frac{\tau + 48}{5}\right)\right]</math>
Line 190: Line 190:
पाँच मात्राएँ <math>\Phi(\tau)</math>, <math>\Phi(\tau+16)</math>, <math>\Phi(\tau+32)</math>, <math>\Phi(\tau+48)</math>, <math>\Phi(\tau+64)</math> परिमेय गुणांक वाले पंचक समीकरण की संख्यायें है <math>\varphi(\tau)</math>:<ref>{{Cite book |last1=Borwein |first1=Jonathan M. |last2=Borwein| first2=Peter B. |title=Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity |publisher=Wiley-Interscience |year=1987 |edition=First |isbn=0-471-83138-7}} p. 136</ref>
पाँच मात्राएँ <math>\Phi(\tau)</math>, <math>\Phi(\tau+16)</math>, <math>\Phi(\tau+32)</math>, <math>\Phi(\tau+48)</math>, <math>\Phi(\tau+64)</math> परिमेय गुणांक वाले पंचक समीकरण की संख्यायें है <math>\varphi(\tau)</math>:<ref>{{Cite book |last1=Borwein |first1=Jonathan M. |last2=Borwein| first2=Peter B. |title=Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity |publisher=Wiley-Interscience |year=1987 |edition=First |isbn=0-471-83138-7}} p. 136</ref>
<math display="block">\Phi^5 - 2000\varphi^4(\tau)\psi^{16}(\tau)\Phi - 64\sqrt{5^5}\varphi^3(\tau)\psi^{16}(\tau) \left[1 + \varphi^8(\tau)\right] = 0</math>
<math display="block">\Phi^5 - 2000\varphi^4(\tau)\psi^{16}(\tau)\Phi - 64\sqrt{5^5}\varphi^3(\tau)\psi^{16}(\tau) \left[1 + \varphi^8(\tau)\right] = 0</math>
जिसे प्रतिस्थापन द्वारा आसानी से ब्रिंग-जेरार्ड रूप में परिवर्तित किया जा सकता है:
जिसे प्रतिस्थापन द्वारा आसानी से जेरार्ड रूप में परिवर्तित किया जा सकता है:
<math display="block">\Phi = 2\sqrt[4]{125}\varphi(\tau)\psi^4(\tau)x</math>
<math display="block">\Phi = 2\sqrt[4]{125}\varphi(\tau)\psi^4(\tau)x</math>
ब्रिंग-जेरार्ड पंचक के लिए अग्रणी है:
जेरार्ड पंचक के लिए अग्रणी है:
<math display="block">x^5 - x + a = 0</math>
<math display="block">x^5 - x + a = 0</math>
जहाँ
जहाँ
Line 199: Line 199:
हर्मिट-क्रोनेकर-ब्रियोस्ची विधि तब के लिए एक मूल्य खोजने के बराबर है <math>\tau</math> जो के मान से मेल खाता है <math>a</math>, और फिर उस मान का उपयोग करना <math>\tau</math> इसी मॉड्यूलर समीकरण की संख्यायें प्राप्त करने के लिए होता है। हम खोजने के लिए [[रूट-फाइंडिंग एल्गोरिदम|संख्या-फाइंडिंग एल्गोरिदम]] का उपयोग कर सकते है <math>\tau</math> समीकरण से {{EquationNote|*|(*)}} (अर्थात एक व्युत्क्रम फलन सामान्यीकरण की गणना करता है <math>a</math>).
हर्मिट-क्रोनेकर-ब्रियोस्ची विधि तब के लिए एक मूल्य खोजने के बराबर है <math>\tau</math> जो के मान से मेल खाता है <math>a</math>, और फिर उस मान का उपयोग करना <math>\tau</math> इसी मॉड्यूलर समीकरण की संख्यायें प्राप्त करने के लिए होता है। हम खोजने के लिए [[रूट-फाइंडिंग एल्गोरिदम|संख्या-फाइंडिंग एल्गोरिदम]] का उपयोग कर सकते है <math>\tau</math> समीकरण से {{EquationNote|*|(*)}} (अर्थात एक व्युत्क्रम फलन सामान्यीकरण की गणना करता है <math>a</math>).


फिर ब्रिंग-जेरार्ड पंचक की संख्यायें इस प्रकार दी गई है:
फिर जेरार्ड पंचक की संख्यायें इस प्रकार दी गई है:
<math display="block">x_r = \frac{\Phi(\tau + 16r)}{2\sqrt[4]{125}\varphi(\tau)\psi^4(\tau)}</math>
<math display="block">x_r = \frac{\Phi(\tau + 16r)}{2\sqrt[4]{125}\varphi(\tau)\psi^4(\tau)}</math>
के लिए <math>r = 0, \ldots, 4</math>.
के लिए <math>r = 0, \ldots, 4</math>.
Line 220: Line 220:
जहाँ <math>\sin \alpha = 4/A^2</math><ref name="Davis"/>(ध्यान दें कि कुछ महत्वपूर्ण संदर्भ गलत विधियाँ से इसे देते है <math>\sin \alpha = 1/(4A^2)</math><ref name="king"/><ref name="hermite"/>). इन संख्याओं में से एक को गोलाकार मापांक के रूप में इस्तेमाल किया जा सकता है <math>k</math>.
जहाँ <math>\sin \alpha = 4/A^2</math><ref name="Davis"/>(ध्यान दें कि कुछ महत्वपूर्ण संदर्भ गलत विधियाँ से इसे देते है <math>\sin \alpha = 1/(4A^2)</math><ref name="king"/><ref name="hermite"/>). इन संख्याओं में से एक को गोलाकार मापांक के रूप में इस्तेमाल किया जा सकता है <math>k</math>.


फिर ब्रिंग-जेरार्ड पंचक की संख्यायें इस प्रकार दी गई है:
फिर जेरार्ड पंचक की संख्यायें इस प्रकार दी गई है:
<math display="block">x_r = -s\frac{\Phi(\tau + 16r)}{2\sqrt[4]{125}\varphi(\tau)\psi^4(\tau)}</math>
<math display="block">x_r = -s\frac{\Phi(\tau + 16r)}{2\sqrt[4]{125}\varphi(\tau)\psi^4(\tau)}</math>
के लिए <math>r = 0, \ldots, 4</math>.
के लिए <math>r = 0, \ldots, 4</math>.
Line 341: Line 341:
\end{bmatrix},n=1,2,\cdots,N-2
\end{bmatrix},n=1,2,\cdots,N-2
\end{align}</math>
\end{align}</math>
इस प्रकार समीकरण के मूल को अधिकतम N − 1 अतिज्यामितीय कार्यों के योग के रूप में व्यक्त किया जा सकता है। इस विधि को कम किए गए ब्रिंग-जेरार्ड पंचक पर लागू करते हुए, निम्नलिखित कार्यों को परिभाषित करा है:
इस प्रकार समीकरण के मूल को अधिकतम N − 1 अतिज्यामितीय कार्यों के योग के रूप में व्यक्त किया जा सकता है। इस विधि को कम किए गए जेरार्ड पंचक पर लागू करते हुए, निम्नलिखित कार्यों को परिभाषित करा है:
<math display="block">\begin{align}
<math display="block">\begin{align}
F_1(t) & = \,_4F_3\left(-\frac{1}{20}, \frac{3}{20}, \frac{7}{20}, \frac{11}{20}; \frac{1}{4}, \frac{1}{2}, \frac{3}{4}; \frac{3125t^4}{256}\right) \\[6pt]
F_1(t) & = \,_4F_3\left(-\frac{1}{20}, \frac{3}{20}, \frac{7}{20}, \frac{11}{20}; \frac{1}{4}, \frac{1}{2}, \frac{3}{4}; \frac{3125t^4}{256}\right) \\[6pt]
Line 377: Line 377:
  | volume = 5 | pages = 337–361
  | volume = 5 | pages = 337–361
}}
}}
</ref> 1860 में डिफरेंशियल इक्वेशन के माध्यम से पंचक को हल करने के लिए एक विधि विकसित की गई थी। वे संख्याओं को गुणांकों के कार्य के रूप में मानते है, और इन समीकरणों के आधार पर एक विभेदक विलायक की गणना करते है। ब्रिंग-जेरार्ड पंचक को एक समारोह के रूप में व्यक्त किया गया है:
</ref> 1860 में डिफरेंशियल इक्वेशन के माध्यम से पंचक को हल करने के लिए एक विधि विकसित की गई थी। वे संख्याओं को गुणांकों के कार्य के रूप में मानते है, और इन समीकरणों के आधार पर एक विभेदक विलायक की गणना करते है। जेरार्ड पंचक को एक समारोह के रूप में व्यक्त किया गया है:
<math display="block">f(x) = x^5 - x + a</math>
<math display="block">f(x) = x^5 - x + a</math>
और एक समारोह <math>\,\phi(a)\,</math> इस प्रकार निर्धारित किया जाना है कि:
और एक समारोह <math>\,\phi(a)\,</math> इस प्रकार निर्धारित किया जाना है कि:

Revision as of 09:36, 24 March 2023

वास्तविक तर्क के लिए विलक्षण ब्रिंग का प्लॉट

बीजगणित में, वास्तविक संख्या a विलक्षण, बहुपद का अद्वितीय वास्तविक मूल होता है।ka

एक सम्मिश्र संख्या a का विलक्षण या तो उपरोक्त बहुपद की पाँच संख्याओं में से कोई भी हो सकता है (यह इस प्रकार बहु-मूल्यवान है), या एक विशिष्ट संख्या, जिसे सामान्यतः इस तरह चुना जाता है कि विलक्षण वास्तविक a के लिए वास्तविक-मूल्यवान होता है और वास्तविक रेखा के निकटतम में एक विश्लेषणात्मक कार्य होता है। चार शाखा बिंदुओं के अस्तित्व के कारण, विलक्षण को एक ऐसे फ़ंक्शन के रूप में परिभाषित नहीं किया जा सकता है, और इसकी निरंतरता के डोमेन को चार शाखा कटौती को बाहर करता है।


जॉर्ज जेरार्ड ने दिखाया कि कुछ पंचक समीकरण नौवे संख्या और विलक्षण्स का उपयोग करके बंद रूप अभिव्यक्ति हो सकते है, जिसे एरलैंड सैमुअल ब्रिंग द्वारा प्रस्तुत किया गया था।

इस लेख में, विलक्षण ऑफ ए को निरूपित किया गया है वास्तविक तर्क के लिए, यह स्पर्शोन्मुख व्यवहार के साथ विषम, नीरस रूप से घटता हुआ और असीम है बड़े के लिए .

सामान्य रूप

पांच स्वतंत्र गुणांकों के साथ अपने सबसे सामान्य रूप में सीधे समाधान प्राप्त करने के लिए पंचक समीकरण जबकि कठिन है:

पंचक को हल करने के लिए विकसित किए गए विभिन्न विधियाँ सामान्यतः स्वतंत्र गुणांकों की संख्या को कम करने के लिए चिरनहॉस परिवर्तन का उपयोग करके पंचक को सरल बनाने का प्रयास करते है।

मूल पंचक रूप

क्वार्टिक और क्यूबिक शर्तों को हटाकर सामान्य पंचक को प्रिंसिपल पंचक फॉर्म के रूप में जाना जाता है:

यदि एक सामान्य पंचक और एक प्रमुख पंचक की संख्यायें द्विघात चिरनहॉस परिवर्तन से संबंधित है
गुणांक α और β परिणामी का उपयोग करके, या शक्ति योग सममित बहुपद और न्यूटन की पहचान के माध्यम से निर्धारित किया जा सकता है। यह α और β में समीकरणों की एक प्रणाली की ओर जाता है जिसमें एक द्विघात और एक रेखीय समीकरण होता है, और समाधान के दो सेटों में से किसी एक का उपयोग प्रिंसिपल पंचक फॉर्म के संबंधित तीन गुणांक प्राप्त करने के लिए किया जा सकता है।[1]

फेलिक्स क्लेन के पंचक के समाधान द्वारा इस फॉर्म का उपयोग किया जाता है।[2]

जेरार्ड सामान्य रूप

जेरार्ड सामान्य रूप का निर्माण करते हुए, पंचक को और भी सरल बनाना और द्विघात शब्द को समाप्त करना संभव है:

क्यूबिक परिवर्तन के साथ फिर से शक्ति-योग सूत्रों का उपयोग करना, जैसा कि चिरनहॉस ने कोशिश की, काम नहीं करता है, क्योंकि समीकरणों की परिणामी प्रणाली के परिणामस्वरूप छठी-डिग्री समीकरण होती है। लेकिन 1796 में ब्रिंग ने जेरार्ड पंचक के मूल पंचक की संख्याओं से संबंधित करने के लिए एक क्वार्टिक चिरनहॉस परिवर्तन का उपयोग करके इसके चारों ओर एक रास्ता खोजा:
इसे चौथे क्रम के परिवर्तन द्वारा प्रदान किया गया अतिरिक्त पैरामीटर अन्य मापदंडों की डिग्री को कम करने के लिए ब्रिंग को अनुमति देता है। यह छह अज्ञात में पाँच समीकरणों की एक प्रणाली की ओर जाता है, जिसके लिए एक घन और एक द्विघात समीकरण के समाधान की आवश्यकता होती है। इस पद्धति की खोज भी जॉर्ज जेरार्ड ने 1852 में की थी।[3] लेकिन यह संभावना है कि वह इस क्षेत्र में ब्रिंग के पिछले काम से अनजान थे।[1](pp92–93) गणित जैसे कंप्यूटर बीजगणित पैकेज का उपयोग करके पूर्ण परिवर्तन आसानी से पूरा किया जा सकता है[4] या मेपल (सॉफ्टवेयर)[5] जैसा कि इन परिवर्तनों की कठिनता से उम्मीद की जा सकती है, परिणामी भाव बहुत अधिक हो सकते है, खासकर जब कम डिग्री समीकरणों के लिए विलक्षण में समाधान की तुलना में, प्रतीकात्मक गुणांक के साथ एक सामान्य पंचक के लिए कई मेगाबाइट भंडारण लेते है।[4]

इसे एक बीजगणितीय कार्य के रूप में माना जाता है, इसके समाधान है

इसमें दो चर सम्मलित है, डी1 और डी0, चूँकि, कमी वास्तव में एक चर के बीजगणितीय कार्य के लिए है, जो विलक्षण में एक समाधान के समान है, क्योंकि हम जेरार्ड फॉर्म को और कम कर सकते है। यदि हम उदाहरण के लिए सेट करते है
फिर हम समीकरण को रूप में कम करते है
जिसमें एक एकल चर के बीजगणितीय कार्य के रूप में z सम्मलित है , जहाँ . इस फॉर्म की आवश्यकता हरमाइट-क्रोनेकर-ब्रियोस्ची विधि, ग्लासर की विधि और नीचे वर्णित अंतर समाधान की कॉकल-हार्ले विधि द्वारा आवश्यक है।

सेट करके एक वैकल्पिक रूप प्राप्त किया जाता है ताकि जहाँ . इस फॉर्म का इस्तेमाल नीचे विलक्षण को परिभाषित करने के लिए किया जाता है।

ब्रियोस्ची सामान्य रूप

पंचक समीकरण के लिए एक और एक-पैरामीटर सामान्य रूप है, जिसे ब्रियोस्ची सामान्य रूप के रूप में जाना जाता है

जिसे तर्कसंगत चिरनहॉस रूपांतरण का उपयोग करके प्राप्त किया जा सकता है
एक ब्रियोस्की पंचक के लिए एक सामान्य पंचक की संख्याओं से संबंधित करता है। मापदंडों का मान और रीमैन क्षेत्र पर बहुफलकीय समारोह का उपयोग करके प्राप्त किया जा सकता है, और आईकोसाहेड्रल समरूपता के एक वस्तु के विभाजन से संबंधित होता है जो टेट्राहेड्रल समरूपता की पांच वस्तुओं में होता है।[6] यह चिरनहॉस परिवर्तन एक प्रमुख पंचक को जेरार्ड रूप में बदलने के लिए उपयोग किए जाने वाले कठिन की तुलना में सरल होती है। इस सामान्य रूप का उपयोग डॉयल-मैकमुलेन पुनरावृति विधि और कीपर्ट विधि द्वारा किया जाता है।

श्रृंखला प्रतिनिधित्व

विलक्षण्स के लिए एक टेलर श्रृंखला, साथ ही सामान्यीकृत हाइपरज्यामितीय कार्यों के संदर्भ में एक प्रतिनिधित्व निम्नानुसार प्राप्त किया जा सकता है। समीकरण के रूप में पुनः लिखा जा सकता है व्यवस्थित करके वांछित समाधान है तब से होता है।

के लिए श्रृंखला इसके बाद टेलर श्रृंखला के लैग्रेंज उलटा प्रमेय द्वारा प्राप्त किया जा सकता है (जो सरल है ), देता है

जहां पूर्णांक अनुक्रमों के ऑन-लाइन विश्वकोश में गुणांकों के निरपेक्ष मान अनुक्रम OEIS:A002294 बनाते है। श्रृंखला के अभिसरण की त्रिज्या है

हाइपरज्यामितीय समारोह फॉर्म में, विलक्षण को इस रूप में लिखा जा सकता है[4]

ग्लासर की व्युत्पत्ति और अंतर समाधान की विधि में नीचे उत्पन्न होने वाले हाइपरजियोमेट्रिक फ़ंक्शंस के साथ तुलना करना रोचक हो सकता है।

सामान्य पंचक का समाधान

बहुपद की संख्यायें

विलक्षण के रूप में व्यक्त किया जा सकता है
और इसके चार कठिन संयुग्म है। हल करने योग्य बहुपद समीकरणों के संदर्भ में अब समस्या को जेरार्ड रूप में कम कर दिया गया है, और संख्याओं में बहुपद अभिव्यक्तियों को सम्मलित करने वाले परिवर्तनों का उपयोग केवल चौथी डिग्री तक किया जाता है, जिसका अर्थ है कि बहुपद की संख्याओं को खोजने के द्वारा परिवर्तन को उलटा किया जा सकता है। यह प्रक्रिया बाहरी समाधान देती है, लेकिन जब संख्यात्मक विधियों से सही पाया जाता है, तो पंचक की संख्याओं को वर्गमूल, घनमूल और विलक्षण के रूप में लिखा जा सकता है, जो कि बीजगणितीय के संदर्भ में एक बीजगणितीय समाधान है। एकल चर के कार्य (मोटे तौर पर विलक्षण्स को सम्मलित करने के लिए परिभाषित) सामान्य पंचक का एक बीजगणितीय समाधान है।

अन्य लक्षण वर्णन

ब्रिंग रैडिकल के कई अन्य लक्षण विकसित किए गए है, जिनमें से पहला 1858 में चार्ल्स हर्मिट द्वारा गोलाकार ट्रांसेंडेंट (गोलाकार और मॉड्यूलर कार्यों से संबंधित) के संदर्भ में है, और बाद में अन्य गणितज्ञों द्वारा विकसित किए गए विधियाँ है।

हर्मिट-क्रोनेकर-ब्रियोस्ची लक्षण वर्णन

1858 में, चार्ल्स हर्मिट[7] ने "एलिप्टिक ट्रांसेंडेंट्स" के संदर्भ में सामान्य पंचक समीकरण का पहला ज्ञात समाधान प्रकाशित किया, और लगभग उसी समय फ्रांसेस्को ब्रियोस्की[8] और लियोपोल्ड क्रोनकर[9] समकक्ष समाधानों पर आए। हर्मिट त्रिकोणमितीय कार्यों के संदर्भ में क्यूबिक समीकरण के प्रसिद्ध समाधान को सामान्यीकृत करके इस समाधान पर पहुंचे और जेरार्ड रूप में पंचक का समाधान खोजते है:

जिसमें दिखाया गया है कि चिरनहॉस परिवर्तनों के माध्यम से किसी भी पंचक समीकरण को कम किया जा सकता है। उन्होंने देखा कि गोलाकार कार्यों की जेरार्ड पंचक के समाधान में खेलने के लिए एक समान भूमिका थी क्योंकि क्यूबिक के लिए त्रिकोणमितीय कार्यों के पास था। इसके लिए और उन्हें गोलाकार अभिन्न के रूप में लिखें पहली तरह का पूर्ण गोलाकार अभिन्न:
जहाँ
दो गोलाकार पारलौकिक को परिभाषित करता है:[note 1]
उन्हें समान रूप से अनंत श्रृंखला द्वारा परिभाषित किया जा सकता है:
यदि n एक अभाज्य संख्या है, तो हम दो मानों को परिभाषित कर सकते है और निम्नलिखित अनुसार है:
और
जब n एक विषम अभाज्य संख्या है, तो पैरामीटर और डिग्री n + 1 इंच के समीकरण से जुड़े हुए है ,[note 2] , मॉड्यूलर समीकरण के रूप में जाना जाता है, जिसका n+1 मूल है द्वारा दिया गया है:[10][note 3]
और
जहाँ 1 या -1 है जो इस बात पर निर्भर करता है कि 2 एक द्विघात अवशेष है या नहीं है, क्रमशः,[note 4] और . n = 5 के लिए, हमारे पास मॉड्यूलर समीकरण है:[11]
छह संख्याओं के साथ जैसा कि उपर दिखाया गया है।

n = 5 के साथ मॉड्यूलर समीकरण मॉड्यूलर समीकरण की छह संख्याओं के निम्नलिखित कार्य द्वारा जेरार्ड पंचक से संबंधित हो सकता है, पहला कारक गलत विधियाँ से दिया गया है :[12]

वैकल्पिक रूप से, सूत्र[13]
के संख्यात्मक मूल्यांकन के लिए उपयोगी है . हर्मिट के अनुसार, का गुणांक विस्तार में प्रत्येक के लिए शून्य है .[14] पाँच मात्राएँ , , , , परिमेय गुणांक वाले पंचक समीकरण की संख्यायें है :[15]
जिसे प्रतिस्थापन द्वारा आसानी से जेरार्ड रूप में परिवर्तित किया जा सकता है:
जेरार्ड पंचक के लिए अग्रणी है:
जहाँ

 

 

 

 

(*)

हर्मिट-क्रोनेकर-ब्रियोस्ची विधि तब के लिए एक मूल्य खोजने के बराबर है जो के मान से मेल खाता है , और फिर उस मान का उपयोग करना इसी मॉड्यूलर समीकरण की संख्यायें प्राप्त करने के लिए होता है। हम खोजने के लिए संख्या-फाइंडिंग एल्गोरिदम का उपयोग कर सकते है समीकरण से (*) (अर्थात एक व्युत्क्रम फलन सामान्यीकरण की गणना करता है ).

फिर जेरार्ड पंचक की संख्यायें इस प्रकार दी गई है:

के लिए .

एक वैकल्पिक, अभिन्न, दृष्टिकोण निम्नलिखित है:

विचार करना जहाँ तब

का समाधान है
जहाँ

 

 

 

 

(**)

समीकरण की संख्यायें (**) है:
जहाँ [13](ध्यान दें कि कुछ महत्वपूर्ण संदर्भ गलत विधियाँ से इसे देते है [6][7]). इन संख्याओं में से एक को गोलाकार मापांक के रूप में इस्तेमाल किया जा सकता है .

फिर जेरार्ड पंचक की संख्यायें इस प्रकार दी गई है:

के लिए .

यह देखा जा सकता है कि यह प्रक्रिया नौवे संख्या के सामान्यीकरण का उपयोग करता है, जिसे इस प्रकार व्यक्त किया जा सकता है:

या अधिक बिंदु तक है, जैसे
हर्मिट-क्रोनेकर-ब्रियोस्ची विधि अनिवार्य रूप से एक गोलाकार पारलौकिक द्वारा घातांक को प्रतिस्थापित करती है, और अभिन्न (या इसका उलटा वास्तविक रेखा पर) एक दीर्घवृत्तीय समाकलन द्वारा (या दीर्घवृत्तीय पारलौकिक के आंशिक व्युत्क्रम द्वारा)। क्रोनेकर ने सोचा कि यह सामान्यीकरण और भी अधिक सामान्य प्रमेय का एक विशेष स्थिति थी। यह प्रमेय, जिसे थोमे के सूत्र के रूप में जाना जाता है, पूरी तरह से हिरोशी उमेमुरा द्वारा व्यक्त किया गया था[16] 1984 में, जिन्होंने एक्सपोनेंशियल/एलिप्टिक ट्रांसेंडेंट के स्थान पर सील मॉड्यूलर रूप का इस्तेमाल किया और इंटीग्रल को हाइपरेलिप्टिक इंटीग्रल से बदल दिया था।

ग्लासर की व्युत्पत्ति

एम एल ग्लासर के कारण यह व्युत्पत्ति[17] प्रपत्र के किसी भी त्रिपदीय समीकरण का हल खोजने के लिए इस लेख में पहले प्रस्तुत श्रृंखला पद्धति का सामान्यीकरण करता है:

विशेष रूप से, जैसा कि ऊपर दिखाया गया है, चिरनहॉस परिवर्तनों के उपयोग से पंचक समीकरण को इस रूप में कम किया जा सकता है। , सामान्य रूप बन जाता है:
जहाँ
जोसेफ लुइस लाग्रेंज के कारण एक सूत्र में कहा गया है कि किसी भी विश्लेषणात्मक कार्य के लिए के संदर्भ में रूपांतरित सामान्य समीकरण की संख्या के निकटतम में , ऊपर एक अनंत श्रृंखला के रूप में व्यक्त किया जा सकता है:
अगर हम जाने दें इस सूत्र में, हम संख्या के साथ आ सकते है:
गॉस गुणन प्रमेय के उपयोग से ऊपर की अनंत श्रृंखला को अतिज्यामितीय कार्यों की एक परिमित श्रृंखला में तोड़ा जा सकता है:

और रूप के त्रिपद की संख्यायें है