रैखिक ध्रुवीकरण: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Electromagnetic radiation special case}} {{Use American English|date=March 2021}} {{Use mdy dates|date=March 2021}} {{More footnotes|date=May 2020}} File...")
 
No edit summary
Line 3: Line 3:
{{Use mdy dates|date=March 2021}}
{{Use mdy dates|date=March 2021}}
{{More footnotes|date=May 2020}}
{{More footnotes|date=May 2020}}
[[File:Linear polarization schematic.png|162px|thumb|right|एक प्रकाश तरंग (नीला) के विद्युत क्षेत्र का आरेख, एक विमान (बैंगनी रेखा) के साथ रैखिक-ध्रुवीकृत, और दो ऑर्थोगोनल, इन-फेज घटकों (लाल और हरी तरंगों) से मिलकर बनता है]][[ बिजली का गतिविज्ञान ]] में, [[विद्युत चुम्बकीय विकिरण]] के रैखिक ध्रुवीकरण या विमान ध्रुवीकरण प्रसार की दिशा में दिए गए विमान के लिए [[विद्युत क्षेत्र]] वेक्टर या [[चुंबकीय क्षेत्र]] वेक्टर का एक बंधन है। शब्द ''रैखिक ध्रुवीकरण'' (फ्रेंच: ''ध्रुवीकरण रेक्टिलिग्ने'') 1822 में [[ऑगस्टिन-जीन फ्रेस्नेल]] द्वारा गढ़ा गया था।<ref name=fresnel-1822z>A. Fresnel, "Mémoire sur la double réfraction que les rayons lumineux éprouvent en traversant les aiguilles de cristal de roche suivant les directions parallèles à l'axe", read 9&nbsp;December 1822; printed in H.&nbsp;de Senarmont, E.&nbsp;Verdet, and L.&nbsp;Fresnel (eds.), ''Oeuvres complètes d'Augustin Fresnel'', vol.&nbsp;1 (1866), pp.{{nnbsp}}731–51; translated as "Memoir on the double refraction that light rays undergo in traversing the needles of quartz in the directions parallel to the axis", {{Zenodo|4745976}}, 2021 (open&nbsp;access); §9.</ref> अधिक जानकारी के लिए ध्रुवीकरण (तरंगें) और ध्रुवीकरण का तल देखें।
[[File:Linear polarization schematic.png|162px|thumb|right|एक प्रकाश तरंग (नीला) के विद्युत क्षेत्र का आरेख, एक विमान (बैंगनी रेखा) के साथ रैखिक-ध्रुवीकृत, और दो ऑर्थोगोनल, इन-फेज घटकों (लाल और हरी तरंगों) से मिलकर बनता है]][[ बिजली का गतिविज्ञान | विद्युत् '''का''' गतिविज्ञान]] में, [[विद्युत चुम्बकीय विकिरण]] के रैखिक ध्रुवीकरण या विमान ध्रुवीकरण प्रसार की दिशा में दिए गए विमान के लिए [[विद्युत क्षेत्र]] वेक्टर या [[चुंबकीय क्षेत्र]] वेक्टर का एक बंधन है। शब्द रैखिक ध्रुवीकरण (फ्रेंच: ध्रुवीकरण रेक्टिलिग्ने) 1822 में [[ऑगस्टिन-जीन फ्रेस्नेल]] द्वारा गढ़ा गया था।<ref name=fresnel-1822z>A. Fresnel, "Mémoire sur la double réfraction que les rayons lumineux éprouvent en traversant les aiguilles de cristal de roche suivant les directions parallèles à l'axe", read 9&nbsp;December 1822; printed in H.&nbsp;de Senarmont, E.&nbsp;Verdet, and L.&nbsp;Fresnel (eds.), ''Oeuvres complètes d'Augustin Fresnel'', vol.&nbsp;1 (1866), pp.{{nnbsp}}731–51; translated as "Memoir on the double refraction that light rays undergo in traversing the needles of quartz in the directions parallel to the axis", {{Zenodo|4745976}}, 2021 (open&nbsp;access); §9.</ref> अधिक जानकारी के लिए ध्रुवीकरण (तरंगें) और ध्रुवीकरण का तल देखें।


एक रैखिक रूप से ध्रुवीकृत विद्युत चुम्बकीय तरंग का अभिविन्यास विद्युत क्षेत्र वेक्टर की दिशा द्वारा परिभाषित किया गया है।<ref name="Shapira,">{{cite book   
एक रैखिक रूप से ध्रुवीकृत विद्युत चुम्बकीय तरंग का अभिविन्यास विद्युत क्षेत्र वेक्टर की दिशा द्वारा परिभाषित किया गया है।<ref name="Shapira,">{{cite book   
Line 17: Line 17:


== गणितीय विवरण ==
== गणितीय विवरण ==
विद्युत क्षेत्र और चुंबकीय क्षेत्र क्षेत्रों के लिए [[विद्युत चुम्बकीय तरंग समीकरण]] का [[शास्त्रीय भौतिकी]] [[sinusoidal]] समतल तरंग समाधान है (cgs इकाइयाँ)
विद्युत क्षेत्र और चुंबकीय क्षेत्र क्षेत्रों के लिए [[विद्युत चुम्बकीय तरंग समीकरण]] का [[शास्त्रीय भौतिकी]] [[sinusoidal|साइनसोइडल]] समतल तरंग समाधान है (सीजीएस इकाइयाँ)
   
   
:<math> \mathbf{E} ( \mathbf{r} , t ) = \mid\mathbf{E}\mid  \mathrm{Re} \left \{  |\psi\rangle  \exp \left [ i \left  ( kz-\omega t  \right ) \right ] \right \}  </math>
:<math> \mathbf{E} ( \mathbf{r} , t ) = \mid\mathbf{E}\mid  \mathrm{Re} \left \{  |\psi\rangle  \exp \left [ i \left  ( kz-\omega t  \right ) \right ] \right \}  </math>
Line 29: Line 29:


:<math>  |\psi\rangle  \ \stackrel{\mathrm{def}}{=}\  \begin{pmatrix} \psi_x  \\ \psi_y  \end{pmatrix} =  \begin{pmatrix} \cos\theta \exp \left ( i \alpha_x \right )  \\ \sin\theta \exp \left ( i \alpha_y \right )  \end{pmatrix}  </math>
:<math>  |\psi\rangle  \ \stackrel{\mathrm{def}}{=}\  \begin{pmatrix} \psi_x  \\ \psi_y  \end{pmatrix} =  \begin{pmatrix} \cos\theta \exp \left ( i \alpha_x \right )  \\ \sin\theta \exp \left ( i \alpha_y \right )  \end{pmatrix}  </math>
एक्स प्लेन में [[जोन्स वेक्टर]] है।
x-y  समतल में [[जोन्स वेक्टर]] है।


चरण कोण होने पर तरंग रैखिक रूप से ध्रुवीकृत होती है <math> \alpha_x^{ } , \alpha_y </math> बराबर हैं,
चरण कोण होने पर तरंग रैखिक रूप से ध्रुवीकृत होती है <math> \alpha_x^{ } , \alpha_y </math> बराबर हैं,
Line 35: Line 35:
:<math>    \alpha_x =  \alpha_y \ \stackrel{\mathrm{def}}{=}\  \alpha    </math>.
:<math>    \alpha_x =  \alpha_y \ \stackrel{\mathrm{def}}{=}\  \alpha    </math>.


यह एक कोण पर ध्रुवीकृत तरंग का प्रतिनिधित्व करता है <math> \theta    </math> एक्स अक्ष के संबंध में। उस स्थिति में, जोन्स सदिश लिखा जा सकता है
यह एक कोण पर ध्रुवीकृत तरंग का प्रतिनिधित्व करता है <math> \theta    </math> , x अक्ष के संबंध में। उस स्थिति में, जोन्स सदिश लिखा जा सकता है


:<math>  |\psi\rangle  =  \begin{pmatrix} \cos\theta    \\ \sin\theta  \end{pmatrix} \exp \left ( i \alpha \right )  </math>.
:<math>  |\psi\rangle  =  \begin{pmatrix} \cos\theta    \\ \sin\theta  \end{pmatrix} \exp \left ( i \alpha \right )  </math>.


एक्स या वाई में रैखिक ध्रुवीकरण के लिए राज्य वैक्टर इस राज्य वेक्टर के विशेष मामले हैं।
x या y में रैखिक ध्रुवीकरण के लिए राज्य वैक्टर इस राज्य वेक्टर के विशेष स्थितियों हैं।


यदि यूनिट वैक्टर को इस तरह परिभाषित किया गया है
यदि यूनिट वैक्टर को इस तरह परिभाषित किया गया है

Revision as of 17:44, 3 April 2023

एक प्रकाश तरंग (नीला) के विद्युत क्षेत्र का आरेख, एक विमान (बैंगनी रेखा) के साथ रैखिक-ध्रुवीकृत, और दो ऑर्थोगोनल, इन-फेज घटकों (लाल और हरी तरंगों) से मिलकर बनता है

विद्युत् का गतिविज्ञान में, विद्युत चुम्बकीय विकिरण के रैखिक ध्रुवीकरण या विमान ध्रुवीकरण प्रसार की दिशा में दिए गए विमान के लिए विद्युत क्षेत्र वेक्टर या चुंबकीय क्षेत्र वेक्टर का एक बंधन है। शब्द रैखिक ध्रुवीकरण (फ्रेंच: ध्रुवीकरण रेक्टिलिग्ने) 1822 में ऑगस्टिन-जीन फ्रेस्नेल द्वारा गढ़ा गया था।[1] अधिक जानकारी के लिए ध्रुवीकरण (तरंगें) और ध्रुवीकरण का तल देखें।

एक रैखिक रूप से ध्रुवीकृत विद्युत चुम्बकीय तरंग का अभिविन्यास विद्युत क्षेत्र वेक्टर की दिशा द्वारा परिभाषित किया गया है।[2] उदाहरण के लिए, यदि विद्युत क्षेत्र सदिश लंबवत है (तरंग यात्रा के रूप में वैकल्पिक रूप से ऊपर और नीचे) तो विकिरण को लंबवत ध्रुवीकृत कहा जाता है।

गणितीय विवरण

विद्युत क्षेत्र और चुंबकीय क्षेत्र क्षेत्रों के लिए विद्युत चुम्बकीय तरंग समीकरण का शास्त्रीय भौतिकी साइनसोइडल समतल तरंग समाधान है (सीजीएस इकाइयाँ)

चुंबकीय क्षेत्र के लिए, जहाँ k तरंग संख्या है,

तरंग की कोणीय आवृत्ति है, और प्रकाश की गति है।

यहाँ क्षेत्र का आयाम है और

x-y समतल में जोन्स वेक्टर है।

चरण कोण होने पर तरंग रैखिक रूप से ध्रुवीकृत होती है बराबर हैं,

.

यह एक कोण पर ध्रुवीकृत तरंग का प्रतिनिधित्व करता है , x अक्ष के संबंध में। उस स्थिति में, जोन्स सदिश लिखा जा सकता है

.

x या y में रैखिक ध्रुवीकरण के लिए राज्य वैक्टर इस राज्य वेक्टर के विशेष स्थितियों हैं।

यदि यूनिट वैक्टर को इस तरह परिभाषित किया गया है

और

तब ध्रुवीकरण की स्थिति को x-y के आधार पर लिखा जा सकता है

.

यह भी देखें

संदर्भ

  • Jackson, John D. (1998). Classical Electrodynamics (3rd ed.). Wiley. ISBN 0-471-30932-X.
  1. A. Fresnel, "Mémoire sur la double réfraction que les rayons lumineux éprouvent en traversant les aiguilles de cristal de roche suivant les directions parallèles à l'axe", read 9 December 1822; printed in H. de Senarmont, E. Verdet, and L. Fresnel (eds.), Oeuvres complètes d'Augustin Fresnel, vol. 1 (1866), pp. 731–51; translated as "Memoir on the double refraction that light rays undergo in traversing the needles of quartz in the directions parallel to the axis", Zenodo4745976, 2021 (open access); §9.
  2. Shapira, Joseph; Shmuel Y. Miller (2007). CDMA radio with repeaters. Springer. p. 73. ISBN 978-0-387-26329-8.


बाहरी संबंध

Public Domain This article incorporates public domain material from Federal Standard 1037C. General Services Administration. Archived from the original on January 22, 2022.