अनियमित संहत समुच्चय: Difference between revisions
No edit summary |
(→संदर्भ) |
||
Line 44: | Line 44: | ||
* Stoyan D., and H.Stoyan (1994) ''Fractals, Random Shapes and Point Fields''. John Wiley & Sons, Chichester, New York. | * Stoyan D., and H.Stoyan (1994) ''Fractals, Random Shapes and Point Fields''. John Wiley & Sons, Chichester, New York. | ||
[[Category:Collapse templates]] | |||
[[Category: | |||
[[Category:Created On 21/03/2023]] | [[Category:Created On 21/03/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] |
Revision as of 12:22, 29 March 2023
गणित में, यादृच्छिक संहत समुच्चय अनिवार्य रूप से संहत समुच्चय -मान अनियमित परिवर्तनशील वस्तु है। यादृच्छिक संहत समुच्चय यादृच्छिक गतिशील प्रणालियों के लिए आकर्षित करने वालों के अध्ययन में उपयोगी होते हैं।
परिभाषा
माना एक पूर्ण स्थान वियोज्य अंतरिक्ष मापीय स्थान हो। माना के सभी संहत उपसमुच्चय के समुच्चय को निरूपित करें . हॉसडॉर्फ मापीय पर द्वारा परिभाषित किया गया है
एक पूर्ण वियोज्य मापीय स्थान भी है। संबंधित खुले उपसमुच्चय एक सिग्मा बीजगणित σ-बीजगणित पर उत्पन्न करते हैं, बोरेल सिग्मा बीजगणित का .
एक यादृच्छिक संहत समुच्चय औसत दर्जे का कार्य है संभाव्यता स्थान से में .
दूसरा विधि रखो, एक यादृच्छिक संहत समुच्चय औसत दर्जे का कार्य है ऐसा है कि लगभग निश्चित रूप से संहत है और
प्रत्येक के लिए मापने योग्य कार्य है .
विचार
इस अर्थ में अनियमित संहत समुच्चय भी यादृच्छिक बंद समुच्चय हैं जैसा कि जॉर्जेस माथेरॉन (1975) में है। परिणाम स्वरुप , अतिरिक्त धारणा के तहत कि वाहक स्थान स्थानीय रूप से संहत है, उनका वितरण संभावनाओं द्वारा दिया जाता है
- के लिए
(एक यादृच्छिक संहत उत्तल समुच्चय का वितरण भी सभी समावेशन संभावनाओं की प्रणाली द्वारा दिया जाता है )
के लिए , संभावना प्राप्त होता है, जो संतुष्ट करता है
इस प्रकार आवरण कार्य द्वारा दिया गया है
- के लिए
बिल्कुल, संकेतक फलन के माध्य के रूप में भी व्याख्या की जा सकती है :
कवरिंग फलन के बीच मान लेता है और . समुच्चय के सभी साथ का समर्थन कहा जाता है . समुच्चय , के सभी साथ कर्नेल कहा जाता है, निश्चित बिंदुओं का समूह या आवश्यक न्यूनतम . अगर , i.i.d. का क्रम है। यादृच्छिक संहत समुच्चय, फिर लगभग निश्चित रूप से
और लगभग निश्चित रूप से अभिसरण करता है
संदर्भ
- Matheron, G. (1975) Random Sets and Integral Geometry. J.Wiley & Sons, New York.
- Molchanov, I. (2005) The Theory of Random Sets. Springer, New York.
- Stoyan D., and H.Stoyan (1994) Fractals, Random Shapes and Point Fields. John Wiley & Sons, Chichester, New York.