वर्नियर स्पेक्ट्रोस्कोपी: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
वर्नियर स्पेक्ट्रोस्कोपी एक प्रकार की गुहा वर्धित लेजर [[अवशोषण स्पेक्ट्रोस्कोपी]] है जो गैसों का पता लगाने के लिए विशेष रूप से संवेदनशील है। अत्यधिक समानांतर विधि से किसी अवशोषण वर्णक्रम का उत्पादन करने के लिए यह विधि एक उच्च कुशलता<ref>{{cite book |last1=Paschotta |first1=R |title=लेजर भौतिकी और प्रौद्योगिकी का विश्वकोश|date=October 2008 |publisher=Wiley-VCH |location="Article on finesse" |isbn=978-3-527-40828-3 |edition=1 |url=https://www.rp-photonics.com/encyclopedia.html/finesse.html |ref=finesse}}</ref> वाले [[ऑप्टिकल गुहा|प्रकाशीय गुहा]] के साथ संयुक्त, [[आवृत्ति कंघी]] लेजर का उपयोग | वर्नियर स्पेक्ट्रोस्कोपी एक प्रकार की गुहा वर्धित लेजर [[अवशोषण स्पेक्ट्रोस्कोपी]] है जो गैसों का पता लगाने के लिए विशेष रूप से संवेदनशील है। अत्यधिक समानांतर विधि से किसी अवशोषण वर्णक्रम का उत्पादन करने के लिए यह विधि एक उच्च कुशलता<ref>{{cite book |last1=Paschotta |first1=R |title=लेजर भौतिकी और प्रौद्योगिकी का विश्वकोश|date=October 2008 |publisher=Wiley-VCH |location="Article on finesse" |isbn=978-3-527-40828-3 |edition=1 |url=https://www.rp-photonics.com/encyclopedia.html/finesse.html |ref=finesse}}</ref> वाले [[ऑप्टिकल गुहा|प्रकाशीय गुहा]] के साथ संयुक्त, [[आवृत्ति कंघी]] लेजर का उपयोग करती है। प्रभावी प्रकाशीय पथ लंबाई पर प्रकाशीय अनुनादक यंत्र के वृद्धि प्रभाव के कारण यह विधि बहुत कम सांद्रता में भी अवशेष गैसों का पता लगाने में सक्षम है।<ref name="Zhu_Paper">{{cite journal | last=Zhu | first=Feng | last2=Bounds | first2=James | last3=Bicer | first3=Aysenur | last4=Strohaber | first4=James | last5=Kolomenskii | first5=Alexandre A. | last6=Gohle | first6=Christoph | last7=Amani | first7=Mahmood | last8=Schuessler | first8=Hans A. |display-authors=5| title=ब्रॉडबैंड ट्रेस गैस डिटेक्शन के लिए इन्फ्रारेड फ्रीक्वेंसी कंघी वर्नियर स्पेक्ट्रोमीटर के पास| journal=Optics Express | publisher=The Optical Society | volume=22 | issue=19 | date=2014-09-15 | issn=1094-4087 | doi=10.1364/oe.22.023026 | pages=23026–23033|doi-access=free}}</ref> | ||
== विधि का अवलोकन == | == विधि का अवलोकन == |
Revision as of 01:41, 31 March 2023
वर्नियर स्पेक्ट्रोस्कोपी एक प्रकार की गुहा वर्धित लेजर अवशोषण स्पेक्ट्रोस्कोपी है जो गैसों का पता लगाने के लिए विशेष रूप से संवेदनशील है। अत्यधिक समानांतर विधि से किसी अवशोषण वर्णक्रम का उत्पादन करने के लिए यह विधि एक उच्च कुशलता[1] वाले प्रकाशीय गुहा के साथ संयुक्त, आवृत्ति कंघी लेजर का उपयोग करती है। प्रभावी प्रकाशीय पथ लंबाई पर प्रकाशीय अनुनादक यंत्र के वृद्धि प्रभाव के कारण यह विधि बहुत कम सांद्रता में भी अवशेष गैसों का पता लगाने में सक्षम है।[2]
विधि का अवलोकन
वर्नियर स्पेक्ट्रोस्कोपी के संचालन के सिद्धांत को समझने के लिए आवृत्ति कंघी लेजरों के समझ की आवश्यकता होती है। किसी लेजर के दोलनशील विद्युत क्षेत्र को फूरियर श्रृंखला का उपयोग करके आवृत्ति क्षेत्र में साइनसोइडल संकेतों के योग द्वारा दर्शाया जा सकता है। संसक्त, सतत-तरंग लेज़र के दोलनशील विद्युत क्षेत्र को आवृत्ति क्षेत्र प्रतिनिधित्व में एकल संकीर्ण शीर्ष के रूप में दर्शाया गया है। यदि लेज़र सामान्यतः विधा-अभिबंधन के माध्यम से बहुत कम स्पंदों की एक स्थिर श्रेणी का उत्पादन करने के लिए आयाम अधिमिश्रण तकनीक का उपयोग करता है, तो समकक्ष आवृत्ति क्षेत्र, प्रतिनिधित्व लेज़र की मूल सतत-तरंग आवृत्ति के निकट केंद्रित संकीर्ण आवृत्ति शीर्षों की एक श्रृंखला है। इन आवृत्ति शीर्षों को समय क्षेत्र पल्स की आवृत्ति से अलग किया जाता है। इसे आवृत्ति कंघी की पुनरावृत्ति दर कहा जाता है।
चूंकि अवशोषण स्पेक्ट्रोस्कोपी की संवेदनशीलता परीक्षण प्रारूप में प्रकाश की पथ लंबाई पर निर्भर करती है, गुहा वर्धित स्पेक्ट्रोस्कोपी प्रारूप के माध्यम से कई पथ बनाकर उच्च संवेदनशीलता प्राप्त करती है तथा प्रभावी विधि से पथ की लंबाई को गुणा करती है। वर्नियर स्पेक्ट्रोस्कोपी एक बड़ी वृद्धि का उत्पादन करने के लिए एक उच्च कुशल गुहा का उपयोग करता है। एक उच्च कुशल प्रकाशीय गुहा, तेज अनुनाद स्थिति भी उत्पन्न करती है, जहां प्रकाश, जो गुहा की मुक्त वर्णक्रमिक सीमा के अनुकंपी आवृत्तियों के साथ युग्मित होता है तथा रचनात्मक हस्तक्षेप और गुहा के पर्याप्त निर्गत का उत्पादन करता है।
प्रकाशीयअनुनाद यंत्र से पर्याप्त निर्गत केवल तब होगा जब आवृत्ति-कंघी लेजर से आवृत्ति शीर्ष गुहा की मुक्त वर्णक्रमीय सीमा के गुणवृत्ति के समान हों। वर्नियर स्पेक्ट्रोस्कोपी में, गुहा की मुक्त वर्णक्रमीय श्रेणी में आवृत्ति कंघी की पुनरावृत्ति दर का अनुपात N / (N-1) है, जहां N एक पूर्णांक है, जिससे आवृत्ति कंघी का प्रत्येक N शीर्ष संतुष्ट हो प्रकाशीय गुहा की अनुनाद स्थिति और इसके और प्रारूप के माध्यम से प्रसार करें। यह चुना जाता है ताकि अनुनाद के दो समुच्चय एक वर्नियर स्केल बनाते हैं, जो तकनीक को अपना नाम देते हैं। यह आवश्यक है क्योंकि एक विशिष्ट आवृत्ति कंघी पुनरावृत्ति दर रेडियो आवृत्तियों के क्रम पर होती है, जिससे व्यक्तिगत आवृत्ति घटकों को हल करने और पहचानने का कार्य कठिन हो जाता है। यदि N को बड़ा बनाया जाता है, तो अनुनाद यंत्र निर्गत शीर्षों की आवृत्ति पृथक्करण एक साधारण विवर्तन झंझरी द्वारा हल किए जाने के लिए पर्याप्त होगा। यदि गुहा की लंबाई को पीजोइलेक्ट्रिक प्रवर्तक द्वारा कुछ परिवर्तित कर दिया जाता है, तो गुहा की मुक्त वर्णक्रमीय सीमा भी परिवर्तित हों जाएगी। यह परवर्ती एफएसआर आवृत्ति कंघी के साथ अनुनादों का एक नया समुच्चय विकसित करता है जिससे स्कैन आगे बढ़ता है और आवृत्ति कंघी के 'फ़िल्टर्ड आउट' शीर्षों के समुच्चय के माध्यम से प्रभावी ढंग से स्कैन किया जा सकता है।
प्रेषित प्रकाश के व्यक्तिगत आवृत्ति घटकों को एक साधारण स्पेक्ट्रोमीटर जैसे विवर्तन ग्रेटिंग का उपयोग करके स्थानिक रूप से अलग किया जाता है। प्रारूपों के माध्यम से गुहा के बाहर प्रेषित व्यक्तिगत आवृत्ति घटकों के अत्यधिक समानांतर माप को प्राप्त करने के लिए, लेजर प्रकाश की वर्णक्रमीय सीमा में संचालित करने में सक्षम चार्ज-युग्मित कैमरा उपकरण का उपयोग किया जाता है। विवर्तन ग्रैटिंग की स्थिति में, आवृत्ति घटकों को एक स्थानिक दिशा में अलग किया जाता है और सीसीडी कैमरे में केंद्रित किया जाता है। सीसीडी की अन्य स्थानिक दिशा का लाभ उठाने के लिए, सीसीडी की लंबवत दिशा में प्रकाश को उसी समय स्कैन किया जाता है जब गुहा की लंबाई किसी प्रवर्तक का उपयोग करके स्कैन की जाती है। यह आवृत्ति कंघी और प्रकाशीय गुहा के मध्य एक मोड मिलान स्थिति के अनुरूप सीसीडी छवि पर शीर्षों का एक ग्रिड उत्पन्न करता है।
उदाहरण तंत्र
वर्नियर स्पेक्ट्रोस्कोपी व्ययस्थापन के एक सरल अनुभूति में पांच आधारभूत घटक होते हैं: एक आवृत्ति कंघी, एक स्कैन करने योग्य उच्च सूक्ष्म प्रकाशीय गुहा, एक विवर्तन झंझरी, घूर्णन दर्पण और एक सीसीडी कैमरा। प्रकाशीय पथ वृद्धि की अनुमति देने के लिए प्रकाशीय गुहा के दर्पणों के मध्य मापी जाने वाली अवशेष गैस को रखा जाता है। आवृत्ति कंघी को अनुनाद यंत्र में युग्मित किया जाता है और प्रतिक्रिया फलन के सापेक्ष एक वर्नियर अनुपात बनाने के लिए निर्मित किया जाता है। गुहा का उत्पादन एक विवर्तन झंझरी से परिलक्षित होता है, जो किरणों के आवृत्ति घटकों को कोणीय पृथक्करण प्रदान करता है। विवर्तित किरण फिर घूर्णनीय दर्पण से परावर्तित होती है और फिर सीसीडी कैमरे पर केंद्रित होती है। ये तीनों चीजें तब तुल्यकालन में होनी चाहिए। प्रकाशीय गुहा, गुहा की एक मुक्त वर्णक्रमीय सीमा के माध्यम से स्कैन करता है जबकि घूर्णन दर्पण एक साथ विवर्तन झंझरी के विवर्तन तल की दिशा को लंबवत स्कैन करता है। इन दो क्रियाओं को आवधिक रैंप विभव के माध्यम से समक्रमित किया जा सकता है जो किसी पीजोइलेक्ट्रिक प्रवर्तक द्वारा पूरा किए गए गुहा स्कैन और एक स्टेपर मोटर द्वारा नियंत्रित दर्पण घूर्णनों को नियंत्रित करता है। यदि सीसीडी कैमरे का एक्सपोजर समय रैंप विभव अवधि के समान निर्धारित किया गया है, तो परिणामी सीसीडी छवि लगभग गॉसियन शीर्षों का दो आयामी आव्यूह है। इस प्रकार, रैंप विभव की अवधि में एक संपूर्ण वर्णक्रम का उत्पादन होता है। वर्णक्रम प्राप्त करने में लगने वाला समय गुहा स्कैन समय, घूर्णन दर्पण प्रतिक्रिया और न्यूनतम कैमरा एक्सपोजर समय द्वारा सीमित होता है। यह विशेष रूप से वर्नियर स्पेक्ट्रोस्कोपी योजना एक सेकंड से भी कम समय में हजारों डेटा बिंदुओं के साथ अवशेष गैस (<1 ppmV) के अवशोषण स्पेक्ट्रम का उत्पादन करने में सक्षम है।[2]
वर्नियर स्पेक्ट्रोस्कोपी सीसीडी छवि पर एक प्रकार का द्वि आयामी वर्णक्रमीय प्रतिरूप उत्पन्न करता है। प्रत्येक गॉसियन शीर्ष की एकीकृत तीव्रता, परीक्षण गैस के माध्यम से संचरित तीव्रता उत्पन्न करती है, जबकि शीर्ष की स्थिति, शीर्ष की सापेक्ष आवृत्ति के बारे में भी जानकारी देती है। परीक्षण गैस द्वारा प्रेषित प्रकाश की चरण परिवर्तन के बारे में अतिरिक्त जानकारी छवि पर उपलब्ध भिन्न-भिन्न शीर्षों के आकार से निकाली जा सकती है। यद्यपि सभी वर्णक्रमीय सूचनाएं सीसीडी द्वारा निर्मित छवियों में समाहित है, सीसीडी छवि को पारंपरिक एक-आयामी वर्णक्रम में परिवर्तित करने के लिए कुछ मात्रा में छवि प्रसंस्करण की आवश्यकता होती है।[3]
संदर्भ
- ↑ Paschotta, R (October 2008). लेजर भौतिकी और प्रौद्योगिकी का विश्वकोश (1 ed.). "Article on finesse": Wiley-VCH. ISBN 978-3-527-40828-3.
- ↑ 2.0 2.1 Zhu, Feng; Bounds, James; Bicer, Aysenur; Strohaber, James; Kolomenskii, Alexandre A.; et al. (2014-09-15). "ब्रॉडबैंड ट्रेस गैस डिटेक्शन के लिए इन्फ्रारेड फ्रीक्वेंसी कंघी वर्नियर स्पेक्ट्रोमीटर के पास". Optics Express. The Optical Society. 22 (19): 23026–23033. doi:10.1364/oe.22.023026. ISSN 1094-4087.
- ↑ Gohle, Christoph; Stein, Björn; Schliesser, Albert; Udem, Thomas; Hänsch, Theodor W. (2007-12-28). "ब्रॉडबैंड, उच्च-रिज़ॉल्यूशन, उच्च-संवेदनशीलता अवशोषण और फैलाव स्पेक्ट्रा के लिए फ्रीक्वेंसी कॉम्ब वर्नियर स्पेक्ट्रोस्कोपी". Physical Review Letters. American Physical Society (APS). 99 (26): 263902. arXiv:0706.1582. doi:10.1103/physrevlett.99.263902. ISSN 0031-9007.