हिल्बर्ट ट्रांसफॉर्म: Difference between revisions
(→कारणता) |
|||
Line 235: | Line 235: | ||
ताकि {{math|1=''F'' = ''u'' + ''i v''}} कॉची के अभिन्न सूत्र द्वारा पूर्णसममितिक है। | ताकि {{math|1=''F'' = ''u'' + ''i v''}} कॉची के अभिन्न सूत्र द्वारा पूर्णसममितिक है। | ||
फलन {{mvar|v}} से प्राप्त {{mvar|u}} इस तरह का [[हार्मोनिक संयुग्म|संनादी संयुग्म]] कहा जाता है। {{mvar|u}} की सीमा {{math|''v''(''x'',''y'')}} जैसा {{math|''y'' → 0}} का हिल्बर्ट रूपांतरण {{mvar|f}} है। इस प्रकार, संक्षेप में, | |||
<math display="block">\operatorname{H}(f) = \lim_{y \to 0} Q(-, y) \star f</math> | <math display="block">\operatorname{H}(f) = \lim_{y \to 0} Q(-, y) \star f</math> | ||
Line 354: | Line 354: | ||
है। | है। | ||
=== | === कारण कार्य सिद्धांत === | ||
फलन <math>h(t) = 1/(\pi t)</math> संवलन के रूप में व्यावहारिक कार्यान्वयन के लिए दो चुनौतियाँ प्रस्तुत करता है: | |||
* इसकी अवधि अनंत | * इसकी अवधि अनंत है। इसके अतिरिक्त एक परिमित लंबाई सन्निकटन का उपयोग किया जाना चाहिए। परंतु [[विंडो फंक्शन|विंडो]] फलन की लंबाई भी रूपांतरण की प्रभावी आवृत्ति सीमा को कम करती है। खिड़की जितनी छोटी होगी, कम और उच्च आवृत्तियों पर हानि उतनी ही अधिक होगी। [[चतुर्भुज फ़िल्टर]] भी देखें। | ||
* यह एक [[कारण फ़िल्टर]] है | नॉन-कॉज़ल | * यह एक [[कारण फ़िल्टर]] है | नॉन-कॉज़ल फ़िल्टर जिसमे एक विलंबित संस्करण, <math>h(t-\tau),</math> की आवश्यकता होती है। इसी निर्गत में बाद में <math>\tau.</math> विलंब होता है विश्लेषणात्मक संकेत का काल्पनिक भाग निर्मित करते समय, स्रोत के वास्तविक भाग को समतुल्य राशि से विलंबित होना चाहिए। | ||
== असतत हिल्बर्ट रूपांतरण == | == असतत हिल्बर्ट रूपांतरण == |
Revision as of 19:12, 1 April 2023
गणित और संकेत प्रक्रमन में, हिल्बर्ट रूपांतरण एक विशिष्ट एकल फलन है जो किसी वास्तविक चर का एक फलन, u(t) लेता है और एक वास्तविक चर H(u)(t) का अन्य फलन उत्पन्न करता है। हिल्बर्ट रूपांतरण, फलन के सापेक्ष संवलन के कॉची मान सिद्धांत द्वारा दिया गया है। हिल्बर्ट रूपांतरण का आवृत्ति क्षेत्र में विशेष रूप से सरल प्रतिनिधित्व है: यह फलन के प्रत्येक आवृत्ति घटक को आवृत्ति के संकेत के आधार पर ±90° (π⁄2 रेडियन) का चरण रूपांतरण प्रदान करता है। संकेत प्रक्रमन में हिल्बर्ट रूपांतरण महत्वपूर्ण है, जहाँ यह वास्तविक-मान संकेत के विश्लेषणात्मक संकेत u(t) का एक घटक है। विश्लेषणात्मक फलनों के लिए रीमैन-हिल्बर्ट समस्या के एक विशेष स्थिति को हल करने के लिए हिल्बर्ट रूपांतरण को पहली बार डेविड हिल्बर्ट द्वारा इस समायोजन में प्रस्तुत किया गया था।
परिभाषा
u के हिल्बर्ट रूपांतरण को फलन h(t) = 1/ π t ; जिसे कॉची कर्नेल के रूप में भी जाना जाता है, के साथ U(t) के संवलन के रूप में माना जा सकता है। चूँकि 1⁄t, t = 0 में समाकलनीय नहीं है, संवलन को परिभाषित करने वाला समाकल सदैव अभिसरित नहीं होता है। इसके अतिरिक्त, हिल्बर्ट रूपांतरण को कॉची प्राथमिक मान का उपयोग करके परिभाषित किया गया है. स्पष्ट रूप से, एक फलन (या संकेत) का हिल्बर्ट रूपांतरण u(t) द्वारा दिया जाता है।
ऊपरी अर्ध तल, किसी विश्लेषणात्मक फलन के सापेक्ष, हिल्बर्ट रूपांतरण सीमा मानों के वास्तविक भाग और काल्पनिक भाग के मध्य संबंध का वर्णन करता है।अर्थात्, यदि f(z) ऊपरी अर्ध जटिल तल {z : Im{z} > 0} में विश्लेषणात्मक है, और u(t) = Re{f (t + 0·i)}, तो Im{f (t + 0·i)} = H(u)(t) योगात्मक स्थिरांक तक विश्लेषणात्मक होगा, बशर्ते इसका हिल्बर्ट रूपांतरण उपलब्ध हो।
अंकन
संकेत प्रक्रमन में, u(t) के हिल्बर्ट रूपांतरण को सामान्यतः द्वारा निरूपित किया जाता है। [3] यद्यपि, गणित में इसका उपयोग, पहले से ही बड़े पैमाने पर फूरियर रूपांतरण u(t) को निरूपित करने के लिए किया जाता है।[4] कभी-कभी, हिल्बर्ट रूपांतरण को के द्वारा निरूपित किया जा सकता है। इसके अतिरिक्त, कई स्रोत हिल्बर्ट रूपांतरण को यहां परिभाषित रूपांतरण के नकारात्मक रूप में परिभाषित करते हैं।[5]
इतिहास
हिल्बर्ट के 1905 के कार्य में हिल्बर्ट रूपांतरण उत्पन्न हुआ, जिसे रीमैन ने विश्लेषणात्मक फलनों से संबंधित एक समस्या पर कार्य करते हुए प्रदर्शित किया था इसीलिए इसे रीमैन-हिल्बर्ट समस्या के रूप में भी जाना जाता है।[6][7] हिल्बर्ट का कार्य मुख्य रूप से वृत्त पर परिभाषित फलनों के सापेक्ष हिल्बर्ट रूपांतरण से संबंधित था।[8][9] असतत हिल्बर्ट रूपांतरण से संबंधित उनके पहले के कुछ काम गौटिंगेन में उनके द्वारा दिए गए व्याख्यानों से संबंधित हैं। इनके परिणाम बाद में सभीमन वेइल द्वारा अपने शोध प्रबंध में प्रकाशित किए गए थे।[10] शूर ने असतत हिल्बर्ट रूपांतरण के विषय में हिल्बर्ट के परिणामों में सुधार किया और उन्हें अभिन्न स्तिथियों में विस्तारित किया।[11] ये परिणाम रिक्त स्थान L2 और ℓ2 तक ही सीमित थे। 1928 में, मार्सेल रिज ने साबित किया कि हिल्बर्ट रूपांतरण को u में परिभाषित किया जा सकता है तथा 1 <p < ∞ के लिए हिल्बर्ट रूपांतरण एक परिबद्ध संचालिका है ।[12] हिल्बर्ट रूपांतरण एंटोनी ज़िगमंड और अल्बर्टो काल्डेरोन के लिए उनके एकल अभित्र के अध्ययन के समय एक प्रेरक उदाहरण था।[13] उनकी जांच ने आधुनिक संनादी विश्लेषण में मौलिक भूमिका निभाई है। हिल्बर्ट रूपांतरण के विभिन्न सामान्यीकरण, जैसे बिलिनियर और ट्रिलिनियर हिल्बर्ट रूपांतरण आज भी अनुसंधान के सक्रिय क्षेत्र उपयोग किए जाते हैं।
फूरियर रूपांतरण के साथ संबंध
हिल्बर्ट रूपांतरण एक गुणक फूरियर विश्लेषण है।[14] H का गुणक σH(ω) = −i sgn(ω) है, जहाँ sgn साइनम फलन है। इसलिए:
यूलर के सूत्र द्वारा,
जब हिल्बर्ट रूपांतरण को दो बार लागू किया जाता है, तो u(t) के ऋणात्मक और धनात्मक आवृत्ति घटकों के चरण क्रमशः +180 डिग्री और -180 डिग्री से स्थानांतरित हो जाते हैं, जो समान मात्रा में हैं। अर्थात H(H(u)) = −u के लिए संकेत अस्वीकृत है।
चयनित हिल्बर्ट रूपांतरणों की तालिका
निम्न तालिका में, आवृत्ति पैरामीटर एक वास्तविक संख्या है।
संकेत |
हिल्बर्ट रूपांतरण [fn 1] |
---|---|
[fn 2] |
|
[fn 2] |
|
| |
| |
(डॉसन फलन देखें) | |
सिंक फलन |
|
डिराक डेल्टा फलन |
|
अभिलक्षणिक फलन |
टिप्पणियाँ
- ↑ Some authors (e.g., Bracewell) use our −H as their definition of the forward transform. A consequence is that the right column of this table would be negated.
- ↑ 2.0 2.1 The Hilbert transform of the sin and cos functions can be defined by taking the principal value of the integral at infinity. This definition agrees with the result of defining the Hilbert transform distributionally.
हिल्बर्ट रूपांतरणों की एक विस्तृत तालिका उपलब्ध है।[15]
ध्यान दें कि किसी स्थिरांक का हिल्बर्ट रूपांतरण, शून्य है।
परिभाषा का डोमेन
यह किसी भी तरह से स्पष्ट नहीं है कि हिल्बर्ट रूपांतरण बिल्कुल भी अच्छी तरह से परिभाषित है, क्योंकि इसे परिभाषित करने वाले अनुचित अभिन्न को उपयुक्त अर्थ में अभिसरित होना चाहिए। यद्यपि, हिल्बर्ट रूपांतरण फलनों की एक विस्तृत श्रेणी के लिए अच्छी तरह से परिभाषित है, अर्थात् उन में के लिए 1 < p < ∞.
अधिक सटीक, यदि 1 < p < ∞ के लिए u, में है, फिर अनुचित समाकल को परिभाषित करने वाली सीमा
p = 1 के संबंध में, हिल्बर्ट रूपांतरण अभी भी लगभग सभी स्थानों पर बिंदुवार अभिसरित होता है, लेकिन स्थानीय स्तर पर भी, स्वयं पूर्णांक होने में विफल हो सकता है। विशेष रूप से, माध्य में अभिसरण सामान्य रूप से इस संबंध में नहीं होता है।[17] L1 फलन का हिल्बर्ट रूपांतरण, यद्यपि, L1-मंद में अभिसरण करता है, और हिल्बर्ट रूपांतरण L1 से L1w तक एक परिबद्ध संचालिका है। .[18] विशेष रूप से, चूंकि हिल्बर्ट रूपांतरण भी L2 पर एक गुणक संचालिका है, मारसिंकेविच प्रक्षेप और एक द्वैत तर्क एक वैकल्पिक प्रमाण प्रस्तुत करता है कि H, Lp पर परिबद्ध है।
गुण
सीमाबद्धता
यदि 1 < p < ∞, तो का हिल्बर्ट रूपांतरण एक परिबद्ध रैखिक संकारक है, जिसका अर्थ है कि एक स्थिरांक Cp उपलब्ध है। यह ऐसा है कि
सबसे सटीक स्थिरांक द्वारा दिया गया है[20]
2 का घातांक होने के कारण के लिए सर्वोत्तम खोजने की एक सरल विधि तथाकथित कोटलर की समीकरण के माध्यम से f के सभी मानो के लिए सत्य है नियतकालिक हिल्बर्ट रूपांतरण के लिए समान सर्वोत्तम स्थिरांक हैं।
हिल्बर्ट रूपांतरण की सीमा का तात्पर्य है सममित आंशिक योग संकार्य का अभिसरण
विरोधी आत्म-संबंध
हिल्बर्ट रूपांतरण एक एंटी-स्वयं संलग्न संकार्य है, जो द्वैत युग्मन और ,के मध्य है। जहाँ p और q धारक संयुग्म हैं और 1 < p, q < ∞. प्रतीकात्मक रूप से,
विपरीत रूपांतरण
हिल्बर्ट रूपांतरण एक विरोधी-प्रत्यावर्तन है,[23] जिसका तात्पर्य यह है की
जटिल संरचना
क्योंकि H2 = −I (I तत्समक संकार्य है) वास्तविक मान फलनों के वास्तविक बनच स्थान पर हिल्बर्ट रूपांतरण इस बनच स्थान पर एक रेखीय जटिल संरचना को परिभाषित करता है। विशेष रूप से, जब p = 2 के समान होता है तों हिल्बर्ट रूपांतरण हिल्बर्ट को वास्तविक-मान फलनों का स्थान देता है एक जटिल हिल्बर्ट स्थान की संरचना को संदर्भित करता है।
हिल्बर्ट के ऐगेनस्टेट हार्डी स्थान H वर्ग में ऊपरी और निचले अर्धरिक्तियों में होलोमॉर्फिक फलन के पाले-वीनर प्रमेय द्वारा अभ्यावेदन को H2 के रूप में रूपांतरित करते हैं।
भेद
औपचारिक रूप से, हिल्बर्ट रूपांतरण का व्युत्पन्न, डेरिवेटिव का हिल्बर्ट रूपांतरण है, अर्थात ये दो रैखिक संकार्य निम्नलिखित सूत्रों की गणना करते हैं:
संवलन
हिल्बर्ट रूपांतरण को औपचारिक रूप से टेम्पर्ड वितरण और फूरियर रूपांतरण के साथ एक संवलन के रूप में प्रदर्शित किया जा सकता है[25]
निश्चरता
हिल्बर्ट रूपांतरण में पर निम्नलिखित निश्चरता गुण हैं .
- यह अनुवाद के साथ यात्रा करता है। अर्थात यह Ta f(x) = f(x + a) संफलनों के साथ आवागमन करता है जहाँ सभी a में सत्य है।
- यह सकारात्मक प्रसार के साथ आवागमन करता है। अर्थात यह Mλ f (x) = f (λ x) संफलनों के साथ आवागमन करता है जहाँ सभी λ > 0. है ।
- यह R f (x) = f (−x) परावर्तन के साथ एंटीकम्यूटेटिविटी है .
गुणनात्मक स्थिरांक तक, इन गुणों के साथ हिल्बर्ट रूपांतरण L2 एकमात्र सीमांत संकार्य है ।[27]
वास्तव में संफलनों का एक व्यापक समूह है जो हिल्बर्ट रूपांतरण के साथ आवागमन करता है। समूह एकात्मक संफलनों द्वारा कार्य करता है Ug स्थान पर सूत्र द्वारा
परिभाषा के क्षेत्र का विस्तार
वितरण का हिल्बर्ट रूपांतरण
वितरण के कुछ स्थानों (गणित) में हिल्बर्ट रूपांतरण को आगे बढ़ाना संभव है। चूंकि हिल्बर्ट रूपांतरण विभेदीकरण के साथ आवागमन करता है, और यह Lp के साथ एक बंधा हुआ संकार्य है , H सओबोलेव रिक्त स्थान की व्युत्क्रम सीमा पर निरंतर रूपांतरण देने के लिए प्रतिबंधित करता है:
के लिए , परिभाषित किया जाता है:
बाध्य फलनों का हिल्बर्ट रूपांतरण
हिल्बर्ट रूपांतरण को फलनों के लिए परिभाषित किया जा सकता है, परंतु इसमें कुछ संशोधनों और चेतावनियों की आवश्यकता है। उचित रूप से समझे जाने पर, हिल्बर्ट मानचित्रों को रूपांतरित करता है सीमांत मीन दोलन (बीएमओ) कक्षाओं के बनच स्थान के लिए।
भोलेपन से व्याख्या की गई, एक बंधे हुए कार्य का हिल्बर्ट रूपांतरण स्पष्ट रूप से खराब परिभाषित है। उदाहरण के लिए, साथ u = sgn(x), अभिन्न परिभाषित H(u) लगभग सभी जगह विचलन करता है ±∞. इस तरह की कठिनाइयों को कम करने के लिए, हिल्बर्ट ने एक का रूपांतरण किया L∞ फलन इसलिए अभिन्न के निम्नलिखित नियमितीकरण रूप द्वारा परिभाषित किया गया है
फ़ेफ़रमैन के कार्य का गसभी परिणाम[31] यह है कि एक कार्य बंधे हुए दोलन का होता है यदि और केवल यदि उसका रूप . के लिए f + H(g) हो।
संयुग्म कार्य
हिल्बर्ट रूपांतरण को f(x) और g(x) फलनों की एक युग्म के रूप में समझा जा सकता है जैसे कि फलन
लगता है कि फिर, प्वासों समाकल के सिद्धांत द्वारा, f ऊपरी अर्ध-तल में एक अद्वितीय संनादी विस्तार को स्वीकार करता है, और यह विस्तार इसके द्वारा दिया जाता है
फलन v से प्राप्त u इस तरह का संनादी संयुग्म कहा जाता है। u की सीमा v(x,y) जैसा y → 0 का हिल्बर्ट रूपांतरण f है। इस प्रकार, संक्षेप में,
टीकमर्श की प्रमेय
टीकमर्श की प्रमेय, एडवर्ड चार्ल्स टीकमर्श के नाम पर, जिन्होंने इसे अपने 1937 के काम में सम्मिलित किया था ऊपरी आधे स्थान और हिल्बर्ट रूपांतरण में पूर्णसममितिक फलनों के सीमा मानों के मध्य संबंध को सटीक बनाता है।[33] यह एक जटिल-मान वर्ग-समाकलन योग्य फलन F(x) के लिए आवश्यक और पर्याप्त शर्तें देता है। वास्तविक रेखा पर हार्डी स्थान में किसी फलन का सीमा मान H2(U) होना ऊपरी आधे स्थान में पूर्णसममितिक फलन U को संदर्भित कर सकता है।
प्रमेय में कहा गया है कि एक जटिल-मान वर्ग-समाकलन योग्य फलन के लिए निम्नलिखित शर्तें समतुल्य हैं:
- F(x) की सीमा है z → x एक होलोमॉर्फिक फलन का F(z) ऊपरी आधे स्थान में ऐसा है
- के वास्तविक और काल्पनिक भाग F(x) एक दूसरे के हिल्बर्ट रूपांतरण हैं।
- फूरियर रूपांतरण के लिए लुप्त हो जाता है x < 0.
कक्षा के फलनों के लिए एक कमजोर परिणाम सत्य है Lp के लिए p > 1.[34] विशेष रूप से, यदि F(z) एक पूर्णसममितिक फलन है जैसे कि
यह परिप्रेक्ष्य में p = 1 सही नहीं है। वास्तव में, हिल्बर्ट एक का रूपांतरण L1 फलन f को माध्य से दूसरे में अभिसरण करने की आवश्यकता नहीं है L1 फलन। फिर भी,[35] का हिल्बर्ट रूपांतरण f लगभग सभी जगह एक परिमित कार्य में अभिसरण करता है g ऐसा है कि
रीमैन-हिल्बर्ट समस्या
रीमैन-हिल्बर्ट समस्या का एक रूप फलनों के युग्म की पहचान करना चाहता है। F+ और F− इस प्रकार है कि F+ ऊपरी आधे स्थान पर पूर्णसममितिक फलन है और F− निचले आधे तल पर पूर्णसममितिक है, जैसे कि के लिए x वास्तविक अक्ष के साथ,
औपचारिक रूप से, यदि F± रीमैन-हिल्बर्ट समस्या को हल करें
वृत्त पर हिल्बर्ट रूपांतरण
एक आवधिक फलन f के लिए वृत्ताकार हिल्बर्ट रूपांतरण निम्नलिखित प्रमेय द्वारा परिभाषित किया गया है:
हिल्बर्ट कर्नेल को परिपत्र हिल्बर्ट रूपांतरण के लिए, कॉची कर्नेल को 1⁄x तथा अधिक सटीक रूप से, x ≠ 0 के लिए आवधिक बनाकर प्राप्त किया जा सकता है।
केली रूपांतरण द्वारा एक और अधिक सीधा संबंध C(x) = (x – i) / (x + i) प्रदान किया गया है , जो वास्तविक रेखा को वृत्त पर और ऊपरी आधे स्थान को इकाई डिस्क पर ले जाता है। यह L2(T) का पर एकात्मक मानचित्र को प्रेरित करता है
संकेत प्रक्रमन में हिल्बर्ट रूपांतरण
बेडरोसियन प्रमेय
बेड्रोसियन के प्रमेय में कहा गया है कि अनतिव्यापी वर्णक्रम के साथ निम्न-पास और उच्च-पास संकेत के उत्पाद का हिल्बर्ट रूपांतरण निम्न-पास संकेत के उत्पाद और उच्च-पास संकेत के हिल्बर्ट रूपांतरण द्वारा दिया जाता है, या
से संकेत प्रक्रमन में हिल्बर्ट रूपांतरण को प्रदर्शित किया जाता है।
विश्लेषणात्मक प्रतिनिधित्व
एक विशिष्ट प्रकार का संयुग्म फलन है:
|
(Eq.1) |
फूरियर रूपांतरण गुण इंगित करता है कि यह जटिल समकरण संक्रिया सभी नकारात्मक आवृत्ति घटकों um(t) को स्थानांतरित कर सकता है। उस स्थिति में, परिणाम का काल्पनिक भाग वास्तविक भाग का हिल्बर्ट रूपांतरण है। यह हिल्बर्ट रूपांतरण उत्पन्न करने का एक अप्रत्यक्ष तरीका है।
कोण (चरण/आवृत्ति) प्रतिरुपण
एकल पार्श्वबैंड प्रतिरुपण
um(t) में Eq.1 भी एक विश्लेषणात्मक प्रतिनिधित्व संदेश तरंग का है, जो :
है।
कारण कार्य सिद्धांत
फलन संवलन के रूप में व्यावहारिक कार्यान्वयन के लिए दो चुनौतियाँ प्रस्तुत करता है:
- इसकी अवधि अनंत है। इसके अतिरिक्त एक परिमित लंबाई सन्निकटन का उपयोग किया जाना चाहिए। परंतु विंडो फलन की लंबाई भी रूपांतरण की प्रभावी आवृत्ति सीमा को कम करती है। खिड़की जितनी छोटी होगी, कम और उच्च आवृत्तियों पर हानि उतनी ही अधिक होगी। चतुर्भुज फ़िल्टर भी देखें।
- यह एक कारण फ़िल्टर है | नॉन-कॉज़ल फ़िल्टर जिसमे एक विलंबित संस्करण, की आवश्यकता होती है। इसी निर्गत में बाद में विलंब होता है विश्लेषणात्मक संकेत का काल्पनिक भाग निर्मित करते समय, स्रोत के वास्तविक भाग को समतुल्य राशि से विलंबित होना चाहिए।
असतत हिल्बर्ट रूपांतरण
फ़ाइल: बैंडपास असतत हिल्बर्ट रूपांतरण फ़िल्टर.टीआईएफ|थंब|400पीएक्स|दाएं|चित्र 1: फ़िल्टर जिसकी आवृत्ति प्रतिक्रिया Nyquist आवृत्ति के लगभग 95% तक सीमित है फ़ाइल: हाईपास डिस्क्रीट हिल्बर्ट रूपांतरण फ़िल्टर.टिफ़|थंब|400px|दाएं|चित्र 2: हाईपास फ़्रीक्वेंसी रिस्पॉन्स के साथ हिल्बर्ट रूपांतरण फ़िल्टर
असतत कार्य के लिए, , असतत-समय फूरियर रूपांतरण (DTFT) के साथ, , और असतत हिल्बर्ट रूपांतरण , का डीटीएफटी क्षेत्र में −π < ω < π द्वारा दिया गया है:
विलोम DTFT, असतत चर (अनुक्रम) के संवलन प्रमेय#Functions का उपयोग करते हुए है:[46]
जहाँ
जो एक अनंत आवेग प्रतिक्रिया (IIR) है। जब संवलन संख्यात्मक रूप से किया जाता है, तो परिमित आवेग प्रतिक्रिया सन्निकटन को प्रतिस्थापित किया जाता है h[n], जैसा कि चित्र 1 में दिखाया गया है। एंटी-सिमेट्रिक गुणांक की एक विषम संख्या के साथ एक एफआईआर फ़िल्टर को टाइप III कहा जाता है, जो फ़्रीक्वेंसी 0 और Nyquist पर स्वाभाविक रूप से शून्य परिमाण की प्रतिक्रिया प्रदर्शित करता है, जिसके परिणामस्वरूप यह एक बैंडपास फ़िल्टर आकार में होता है। चित्र 2 में एक प्रकार IV डिज़ाइन (एंटी-सिमेट्रिक गुणांक की सम संख्या) दिखाया गया है। चूंकि Nyquist आवृत्ति पर परिमाण प्रतिक्रिया समाप्त नहीं होती है, यह ऑड-टैप फ़िल्टर की तुलना में एक आदर्श हिल्बर्ट रूपांतरणर का थोड़ा बेहतर अनुमान लगाती है। यद्यपि
- एक विशिष्ट (अर्थात ठीक से फ़िल्टर और नमूना) u[n] अनुक्रम में Nyquist आवृत्ति पर कोई उपयोगी घटक नहीं है।
- प्रकार IV आवेग प्रतिक्रिया की आवश्यकता है a 1⁄2 नमूना रूपांतरण में h[n] अनुक्रम। इससे शून्य-मान वाले गुणांक गैर-शून्य हो जाते हैं, जैसा कि चित्र 2 में देखा गया है। इसलिए टाइप III डिज़ाइन संभावित रूप से टाइप IV से दोगुना कुशल है।
- टाइप III डिज़ाइन का समूह विलंब नमूनों की एक पूर्णांक संख्या है, जो संरेखण की सुविधा प्रदान करता है साथ एक विश्लेषणात्मक संकेत बनाने के लिए। टाइप IV का समूह विलंब दो नमूनों के मध्य आधा है।
MATLAB फलन, hilbert(u,N),[47] आवधिक योग के साथ एक यू [एन] अनुक्रम को हल करता है:[upper-alpha 1]
और एक चक्र लौटाता है (N नमूने) एक जटिल-मान आउटपुट अनुक्रम के काल्पनिक भाग में आवधिक परिणाम। संवलन को फ़्रीक्वेंसी डोमेन में एरे के उत्पाद के रूप में लागू किया जाता हैके नमूने के साथ −i sgn(ω) वितरण (जिसके वास्तविक और काल्पनिक घटक सभी केवल 0 या हैं±1). चित्र 3 के आधे चक्र की तुलना करता है hN[n] के समतुल्य लंबाई वाले हिस्से के साथ h[n]. के लिए एक प्राथमिकी सन्निकटन दिया द्वारा चिह्नित प्रतिस्थापन के लिए −i sgn(ω) नमूने संवलन के एफआईआर संस्करण में परिणत होते हैं।
आउटपुट अनुक्रम का वास्तविक भाग मूल इनपुट अनुक्रम है, ताकि जटिल आउटपुट का एक विश्लेषणात्मक संकेत हो u[n]. जब इनपुट शुद्ध कोसाइन का एक खंड होता है, तो दो अलग-अलग मानों के लिए परिणामी संवलन N को चित्र 4 (लाल और नीले प्लॉट) में दर्शाया गया है। किनारे के प्रभाव परिणाम को शुद्ध साइन फलन (ग्रीन प्लॉट) होने से रोकते हैं। तब से hN[n] एफआईआर अनुक्रम नहीं है, प्रभावों की सैद्धांतिक सीमा संपूर्ण आउटपुट अनुक्रम है। परंतु साइन फलन से अंतर किनारों से दूरी के साथ कम हो जाता है। पैरामीटर N आउटपुट अनुक्रम लंबाई है। यदि यह इनपुट अनुक्रम की लंबाई से अधिक है, तो इनपुट को शून्य-मान तत्वों को जोड़कर संशोधित किया जाता है। ज्यादातर मामलों में, यह मतभेदों की भयावहता को कम करता है। परंतु उनकी अवधि के अंतर्निहित उत्थान और पतन के समय का प्रभुत्व है h[n] आवेग प्रतिक्रिया।
किनारे के प्रभावों के लिए सराहना महत्वपूर्ण है जब ओवरलैप-सेव विधि नामक एक विधि | ओवरलैप-सेव का उपयोग लंबे समय तक संवलन करने के लिए किया जाता है u[n] अनुक्रम। लंबाई के खंड N आवधिक कार्य के साथ संलिप्त हैं:
जब गैर-शून्य मानों की अवधि है आउटपुट अनुक्रम सम्मिलित है N − M + 1 के नमूने M − 1 के प्रत्येक ब्लॉक से आउटपुट को छोड़ दिया जाता है N, और अंतराल को रोकने के लिए इनपुट ब्लॉकों को उस राशि से ओवरलैप किया जाता है।
चित्रा 5 आईआईआर हिल्बर्ट (·) फलन और एफआईआर सन्निकटन दोनों का उपयोग करने का एक उदाहरण है। उदाहरण में, एक कोसाइन फलन के असतत हिल्बर्ट रूपांतरण की गणना करके एक साइन फलन बनाया जाता है, जिसे चार ओवरलैपिंग सेगमेंट में संसाधित किया गया था, और एक साथ वापस पाई गई थी। जैसा कि एफआईआर परिणाम (नीला) दिखाता है, आईआईआर परिणाम (लाल) में स्पष्ट विकृतियां मध्य के अंतर के कारण नहीं होती हैं h[n] और hN[n] (चित्र 3 में सभीा और लाल)। यह तथ्य कि hN[n] पतला है (विंडो) वास्तव में इस संदर्भ में मददगार है। वास्तविक समस्या यह है कि यह पर्याप्त विंडो नहीं है। प्रभावी रूप से, M = N, जबकि ओवरलैप-सेव मेथड की जरूरत है M < N.
संख्या-सैद्धांतिक हिल्बर्ट रूपांतरण
संख्या सिद्धांत संबंधी हिल्बर्ट रूपांतरण एक विस्तार है{{sfn|Kak|1970}असतत हिल्बर्ट का } पूर्णांक मॉडुलो में एक उपयुक्त अभाज्य संख्या में बदल जाता है। इसमें यह असतत फूरियर रूपांतरण के सामान्यीकरण को संख्या सैद्धांतिक रूपांतरणों में बदल देता है। संख्या सिद्धांत संबंधी हिल्बर्ट रूपांतरण का उपयोग ऑर्थोगोनल असतत अनुक्रमों के सेट उत्पन्न करने के लिए किया जा सकता है।[50]
यह भी देखें
- विश्लेषणात्मक संकेत
- संनादी संयुग्म
- हिल्बर्ट स्पेक्ट्रोस्कोपी
- हिल्बर्ट जटिल स्थान में रूपांतरित होता है
- हिल्बर्ट-हुआंग रूपांतरण
- क्रेमर्स-क्रोनिग संबंध
- रिज्ज़ ट्रांसफॉर्म
- सिंगल साइडबैंड | सिंगल साइडबैंड संकेत
- संवलन टाइप के सिंगुलर अभिन्न संकार्य्स
टिप्पणियाँ
पृष्ठ उद्धरण
- ↑ due to Schwartz 1950; see Pandey 1996, Chapter 3.
- ↑ Zygmund 1968, §XVI.1
- ↑ e.g., Brandwood 2003, p. 87
- ↑ e.g., Stein & Weiss 1971
- ↑ e.g., Bracewell 2000, p. 359
- ↑ Kress 1989.
- ↑ Bitsadze 2001.
- ↑ 8.0 8.1 Khvedelidze 2001.
- ↑ Hilbert 1953.
- ↑ Hardy, Littlewood & Pólya 1952, §9.1.
- ↑ Hardy, Littlewood & Pólya 1952, §9.2.
- ↑ Riesz 1928.
- ↑ Calderón & Zygmund 1952.
- ↑ Duoandikoetxea 2000, Chapter 3.
- ↑ King 2009b.
- ↑ Titchmarsh 1948, Chapter 5.
- ↑ Titchmarsh 1948, §5.14.
- ↑ Stein & Weiss 1971, Lemma V.2.8.
- ↑ This theorem is due to Riesz 1928, VII; see also Titchmarsh 1948, Theorem 101.
- ↑ This result is due to Pichorides 1972; see also Grafakos 2004, Remark 4.1.8.
- ↑ See for example Duoandikoetxea 2000, p. 59.
- ↑ Titchmarsh 1948, Theorem 102.
- ↑ Titchmarsh 1948, p. 120.
- ↑ Pandey 1996, §3.3.
- ↑ Duistermaat & Kolk 2010, p. 211.
- ↑ Titchmarsh 1948, Theorem 104.
- ↑ Stein 1970, §III.1.
- ↑ See Bargmann 1947, Lang 1985, and Sugiura 1990.
- ↑ Gel'fand & Shilov 1968.
- ↑ Calderón & Zygmund 1952; see Fefferman 1971.
- ↑ Fefferman 1971; Fefferman & Stein 1972
- ↑ Titchmarsh 1948, Chapter V.
- ↑ Titchmarsh 1948, Theorem 95.
- ↑ Titchmarsh 1948, Theorem 103.
- ↑ Titchmarsh 1948, Theorem 105.
- ↑ Duren 1970, Theorem 4.2.
- ↑ see King 2009a, § 4.22.
- ↑ Pandey 1996, Chapter 2.
- ↑ Rosenblum & Rovnyak 1997, p. 92.
- ↑ Schreier & Scharf 2010, 14.
- ↑ Bedrosian 1962.
- ↑ Osgood, p. 320
- ↑ Osgood, p. 320
- ↑ Franks 1969, p. 88
- ↑ Tretter 1995, p. 80 (7.9)
- ↑ Rabiner 1975
- ↑ MathWorks. "hilbert – Discrete-time analytic signal using Hilbert transform". MATLAB Signal Processing Toolbox Documentation. Retrieved 2021-05-06.
- ↑ Johansson, p. 24
- ↑ Johansson, p. 25
- ↑ Kak 2014.
संदर्भ
- Bargmann, V. (1947). "Irreducible unitary representations of the Lorentz group". Ann. of Math. 48 (3): 568–640. doi:10.2307/1969129. JSTOR 1969129.
- Bedrosian, E. (December 1962). A product theorem for Hilbert transforms (PDF) (Report). Rand Corporation. RM-3439-PR.
- Bitsadze, A. V. (2001) [1994], "Boundary value problems of analytic function theory", Encyclopedia of Mathematics, EMS Press
- Bracewell, R. (2000). The Fourier Transform and Its Applications (3rd ed.). McGraw–Hill. ISBN 0-07-116043-4.
- Brandwood, David (2003). Fourier Transforms in Radar and Signal Processing. Boston: Artech House. ISBN 9781580531740.
- Calderón, A. P.; Zygmund, A. (1952). "On the existence of certain singular integrals". Acta Mathematica. 88 (1): 85–139. doi:10.1007/BF02392130.
- Duoandikoetxea, J. (2000). Fourier Analysis. American Mathematical Society. ISBN 0-8218-2172-5.
- Duistermaat, J. J.; Kolk, J. A. C. (2010). Distributions. Birkhäuser. doi:10.1007/978-0-8176-4675-2. ISBN 978-0-8176-4672-1.
- Duren, P. (1970). Theory of H^p Spaces. New York, NY: Academic Press.
- Fefferman, C. (1971). "Characterizations of bounded mean oscillation". Bulletin of the American Mathematical Society. 77 (4): 587–588. doi:10.1090/S0002-9904-1971-12763-5. MR 0280994.
- Fefferman, C.; Stein, E. M. (1972). "H^p spaces of several variables". Acta Mathematica. 129: 137–193. doi:10.1007/BF02392215. MR 0447953.
- Franks, L.E. (September 1969). Thomas Kailath (ed.). Signal Theory. Information theory. Englewood Cliffs, NJ: Prentice Hall. ISBN 0138100772.
- Gel'fand, I. M.; Shilov, G. E. (1968). Generalized Functions. Vol. 2. Academic Press. pp. 153–154. ISBN 0-12-279502-4.
- Grafakos, Loukas (2004). Classical and Modern Fourier Analysis. Pearson Education. pp. 253–257. ISBN 0-13-035399-X.
- Hardy, G. H.; Littlewood, J. E.; Pólya, G. (1952). Inequalities. Cambridge, UK: Cambridge University Press. ISBN 0-521-35880-9.
- Hilbert, David (1953) [1912]. Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen [Framework for a General Theory of Linear Integral Equations] (in Deutsch). Leipzig & Berlin, DE (1912); New York, NY (1953): B.G. Teubner (1912); Chelsea Pub. Co. (1953). ISBN 978-3-322-00681-3. OCLC 988251080. Retrieved 2020-12-18 – via archive.org.
{{cite book}}
: CS1 maint: location (link) - Johansson, Mathias. "The Hilbert transform, Masters Thesis" (PDF). Archived from the original (PDF) on 2012-02-05.; also http://www.fuchs-braun.com/media/d9140c7b3d5004fbffff8007fffffff0.pdf
- Kak, Subhash (1970). "The discrete Hilbert transform". Proc. IEEE. 58 (4): 585–586. doi:10.1109/PROC.1970.7696.
- Kak, Subhash (2014). "Number theoretic Hilbert transform". Circuits Systems Signal Processing. 33 (8): 2539–2548. arXiv:1308.1688. doi:10.1007/s00034-014-9759-8. S2CID 21226699.
- Khvedelidze, B. V. (2001) [1994], "Hilbert transform", Encyclopedia of Mathematics, EMS Press
- King, Frederick W. (2009a). Hilbert Transforms. Vol. 1. Cambridge, UK: Cambridge University Press.
- King, Frederick W. (2009b). Hilbert Transforms. Vol. 2. Cambridge, UK: Cambridge University Press. p. 453. ISBN 978-0-521-51720-1.
- Kress, Rainer (1989). Linear Integral Equations. New York, NY: Springer-Verlag. p. 91. ISBN 3-540-50616-0.
- Lang, Serge (1985). SL(2,). Graduate Texts in Mathematics. Vol. 105. New York, NY: Springer-Verlag. ISBN 0-387-96198-4.
- Osgood, Brad, The Fourier Transform and its Applications (PDF), Stanford University, retrieved 2021-04-30
- Pandey, J. N. (1996). The Hilbert transform of Schwartz distributions and applications. Wiley-Interscience. ISBN 0-471-03373-1.
- Pichorides, S. (1972). "On the best value of the constants in the theorems of Riesz, Zygmund, and Kolmogorov". Studia Mathematica. 44 (2): 165–179. doi:10.4064/sm-44-2-165-179.
- Rabiner, Lawrence R.; Gold, Bernard (1975). "Chapter 2.27, Eq 2.195". Theory and application of digital signal processing. Englewood Cliffs, N.J.: Prentice-Hall. p. 71. ISBN 0-13-914101-4.
- Riesz, Marcel (1928). "Sur les fonctions conjuguées". Mathematische Zeitschrift (in français). 27 (1): 218–244. doi:10.1007/BF01171098. S2CID 123261514.
- Rosenblum, Marvin; Rovnyak, James (1997). Hardy classes and operator theory. Dover. ISBN 0-486-69536-0.
- Schwartz, Laurent (1950). Théorie des distributions. Paris, FR: Hermann.
- Schreier, P.; Scharf, L. (2010). Statistical signal processing of complex-valued data: The theory of improper and noncircular signals. Cambridge, UK: Cambridge University Press.
- Smith, J. O. (2007). "Analytic Signals and Hilbert Transform Filters, in Mathematics of the Discrete Fourier Transform (DFT) with Audio Applications" (2nd ed.). Retrieved 2021-04-29.; also https://www.dsprelated.com/freebooks/mdft/Analytic_Signals_Hilbert_Transform.html
- Stein, Elias (1970). Singular integrals and differentiability properties of functions. Princeton University Press. ISBN 0-691-08079-8.
- Stein, Elias; Weiss, Guido (1971). Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press. ISBN 0-691-08078-X.
- Sugiura, Mitsuo (1990). Unitary Representations and Harmonic Analysis: An Introduction. North-Holland Mathematical Library. Vol. 44 (2nd ed.). Elsevier. ISBN 0444885935.
- Titchmarsh, E. (1986) [1948]. Introduction to the theory of Fourier integrals (2nd ed.). Oxford, UK: Clarendon Press. ISBN 978-0-8284-0324-5.
- Tretter, Steven A. (1995). R.W.Lucky (ed.). Communication System Design Using DSP Algorithms. New York: Springer. ISBN 0306450321.
- Zygmund, Antoni (1988) [1968]. Trigonometric Series (2nd ed.). Cambridge, UK: Cambridge University Press. ISBN 978-0-521-35885-9.
अग्रिम पठन
- Benedetto, John J. (1996). Harmonic Analysis and its Applications. Boca Raton, FL: CRC Press. ISBN 0849378796.
- Carlson; Crilly & Rutledge (2002). Communication Systems (4th ed.). ISBN 0-07-011127-8.
- Gold, B.; Oppenheim, A. V.; Rader, C. M. (1969). "Theory and Implementation of the Discrete Hilbert Transform" (PDF). Proceedings of the 1969 Polytechnic Institute of Brooklyn Symposium. New York. Retrieved 2021-04-13.
- Grafakos, Loukas (1994). "An elementary proof of the square summability of the discrete Hilbert transform". American Mathematical Monthly. Mathematical Association of America. 101 (5): 456–458. doi:10.2307/2974910. JSTOR 2974910.
- Titchmarsh, E. (1926). "Reciprocal formulae involving series and integrals". Mathematische Zeitschrift. 25 (1): 321–347. doi:10.1007/BF01283842. S2CID 186237099.
बासभीी संबंध
- Derivation of the boundedness of the Hilbert transform
- Mathworld Hilbert transform — Contains a table of transforms
- Weisstein, Eric W. "Titchmarsh theorem". MathWorld.
- "GS256 Lecture 3: Hilbert Transformation" (PDF). Archived from the original (PDF) on 2012-02-27. an entry level introduction to Hilbert transformation.